Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara"

Transcrição

1 Institut d Físic USP Físic Mdn I Aul 9 Pfss: Mzé Bch

2 Aul 9 O átm d hidgêni n ti d Schding 1. A sluçã d átm d H n ti d Schding. Cmpçã cm s sultds d Bh.. Os stds dgnds m ngi: stds d msm ngi divss móduls d mmnt ngul difnts cmpnnt z d mmnt ngul.. As funçõs d nd s dnsidds vlumétics d pbbilidd s dnsidds diis d pbbilidd: difnçs significds. A simti sféic m Schding.. Aplicçã: vl mis pvávl vl médi d distânci d létn núcl n std fundmntl: cmpçã cm i d mvimnt ltiv n Mdl d Bh. Físic Mdn I - Pfss: Mzé Bch

3 Físic Mdn. Tipl Llwllyn Físic Mdn I - Pfss: Mzé Bch

4 Físic Mdn. Tipl Llwllyn Físic Mdn I - Pfss: Mzé Bch

5 A dgnscênci ds ut-stds d ngi: difnts stds difnts funçõs d nd cm msm ngi qui gupds só ns difnts Cmp cm mdl d Bh! Figu d liv : Mdn Physics - T. Thntn Rx Físic Mdn I - Pfss: Mzé Bch

6 Estds dgnds m ngi d átm d H n ti d Schding 1. Estd fundmntl: n=1 =0 m =0 um std s; nã há dgnscênci m ngi só há um std cm st ngi. Pimi std xcitd: n= =0 m =0 um std s; =1 m =1; =1 m =0; =1 m =-1 tês std p; Qut difnts stds cm msm ngi dgnscênci =. Sgund std xcitd: n= =0 m =0 um std s; =1 m =1; =1 m =0; =1 m =-1 tês std p; = m =; = m =1; = m =0; = m =-1; = m =-; cinc stds d; Nv difnts stds cm msm ngi dgnscênci = 9 nívl d nívl d Físic Mdn I - Pfss: Mzé Bch

7 Dus psntçõs n pln p dnsidd vlumétic d pbbilidd d std fundmntl d átm d H Figu d liv: Físic Mdn. Tipl Llwllyn Físic Mdn I - Pfss: Mzé Bch

8 n=1ef n= difnts pimis stds xcitds Um psntçã spcil d dnsidd vlumétic d pbbilidd: vlums sféics ns quis mi pbbilidd vlum mis scu Obsv simti sféic d ptncil snd pduzid n pbbilidd d st m tds s difnts stds d msm ngi. n=9 difnts sgunds std s xcitds Figu d liv Físic Quântic Eisbg Rsnick Físic Mdn I - Pfss: Mzé Bch

9 Físic Mdn I - Pfss: Mzé Bch A dnsidd dil d pbbilidd ds stds d átm d H Dnsidd dil d pbbilidd = pbbilidd d létn st um distânci nt +d d núcl dividid p d indpndnt d diçã d vt psiçã: As funçõs hmônics sféics stã nmlizds Dnsidd dil d std fundmntl:. *. * R d d sn Y Y R d d sn t t P n m td m n td n R P 10 10

10 As funçõs d nd d pt dil R n à squd. A dnsidd dil d pbbilidd figus à diit pbbilidd d létn st um distânci nt +d d núcl p d. Cmp cm i d Bh! Figu d Mdn Physics - T. Thntn Rx Físic Mdn I - Pfss: Mzé Bch

11 Físic Mdn I - Pfss: Mzé Bch Funçã d nd ngi dnsidd dil d EF d H R P E 60V 1 ] [ B A 59 0 t i t E i R Y t 1 ] [ A dnsidd dil d pbbilidd d EF:

12 Físic Mdn I - Pfss: Mzé Bch O vl mis pvávl vl médi d i d átm d H n EF Dtminçã d vl mis pvávl d distânci nt létn núcl n EF d H i mis pvávl n EF: Dtminçã d distânci médi n mvimnt ltiv i médi fç: Fi usd intgl: 0 10 d dp B EF p B d d P !! n x n n dx x

13 DENSIDADES VOLUMÉTRICAS DE PROBABILIDADE DO ÁTOMO DE HIDROGÊNIO Vj mis m: Figu d Mdn Physics - T. Thntn Rx Físic Mdn I - Pfss: Mzé Bch

14 Cmntáis finis 1. As tnsiçõs nt stds d H qund há pns intçã culmbin só s xplic cm stds mists. E sts justificm ctmnt missã d fótns cm ngi igul difnç nt s ngis ds stds tômics. Tds s stds stcináis d MQ tm E=0 ptnt dvi t t~.. Obsv qu s funçõs hmônics sféics têm pidd bm dfinid: u sã ps u imps.. Obsv tmbém qu ps ds funçõs d nd dpndm d ngul s dnsidds d pbbilidd nunc dpndm d qu signific qu nã dpndm d cmpnnt z d L. Vcês pm n simti zimutl m tn d ix d z ds figus ds distibuiçõs?. Ms s f clcd um cmp mgnétic intn u xtn... s bsv qu ti pdiz. Bm é qus ist! Ms st é um ut histói qu fic p um ut vz...cntd n póxim smst pl Mcã. Ops... pl Pf Mtins. Físic Mdn I - Pfss: Mzé Bch

15 PRAZER EM CONHECE-LOS! Msm qu vcês nã pssm diz msm! Mzé

O dipolo infinitesimal (Hertziano) é um elemento de corrente de comprimento l tal que l << λ (critério usual: l < λ/50).

O dipolo infinitesimal (Hertziano) é um elemento de corrente de comprimento l tal que l << λ (critério usual: l < λ/50). Cpítuo : O dipoo infinitsim O dipoo infinitsim (tzino) é um mnto d cont d compimnto t qu

Leia mais

Aula 11 Mais Ondas de Matéria II

Aula 11 Mais Ondas de Matéria II http://www.bugman3.com/physics/ Aula Mais Ondas d Matéia II Física Gal F-8 O átomo d hidogênio sgundo a Mcânica Quântica Rcodando: O modlo atômico d Boh (93) Motivação xpimntal: Nils H. D. Boh (885-96)

Leia mais

Aula 7-1 Campos Magnéticos produzidos por Correntes Lei de Biot-Savart Física Geral e Experimental III Prof. Cláudio Graça Capítulo 7

Aula 7-1 Campos Magnéticos produzidos por Correntes Lei de Biot-Savart Física Geral e Experimental III Prof. Cláudio Graça Capítulo 7 Aul 7-1 Cmps Mgnétics pduzids p Centes Lei de Bit-Svt Físic Gel e Expeimentl III Pf. Cláudi Gç Cpítul 7 Cmp B p cente elétic Expeiênci de Oested Fi n iníci d sécul XIX (em 180) que físic dinmquês Hns Chistin

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios sluçõs Ecícis MTEMÁTI IV LOO 0 nhcimnts lgébics pítul 0 Funçõs Tignmétics 0 p.( p-)( p-b).( p- c), n + b+ c 8+ + p 8 8.0...9..... LOO 0 0 D + D sn cs tg 0 + 0... sn +.,8.,8. sn 0. +,.,8. +, cm. sn 0 0

Leia mais

faz toda diferença em sua dieta. Escolha seu prato principal e

faz toda diferença em sua dieta. Escolha seu prato principal e Há i d 10 n, COMABEM - Rfiçõ Ditétic - v tund pciliznd n fncint d fiçõ fc cngld, ppd d ni udávl. Aqui, vcê ncnt vái pçõ c bix t clóic vind duçã d p, lh d qulidd d vid qund ptd d lgu ptlgi, nutnçã d p c

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

Características construtivas

Características construtivas Acionmntos Eléticos Máquins d Cont Contínu Cctístics constutivs Cmpo Amdu Enolmnto d cmpo: podução d fluxo (nolmnto concntdo ou imãs pmnnts); Enolmnto d mdu: convsão d ngi (nolmnto distibuído) Acionmntos

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA SOLUÇÃO D EQUÇÃO DE LPLCE PR O POTENCIL DE LIGÇÃO IÔNIC Bathista,. L. B. S., Ramos, R. J., Noguia, J. S. Dpatamnto d Física - ICET - UFMT, MT, v. Fnando Coa S/N CEP 786-9 Basil, -mail: andlbbs@hotmail.com

Leia mais

Eu só quero um xodó. Música na escola: exercício 14

Eu só quero um xodó. Música na escola: exercício 14 Eu só qu u xdó Músic n scl: xcíci 14 Eu só qu u xdó Ptitus Mi, hni lt Aut: Dinguinhs stáci Rgiã: Pnbuc : 1973 Fix: 14 Anj: Edsn Jsé Alvs Músics: Edsn Jsé Alvs vilã Pvt clints, sx t Jsé Alvs Sbinh Zzinh

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

TEMA 5 2º/3º ciclo. A LIndo de perguntas. saudável? Luísa, 15 anos

TEMA 5 2º/3º ciclo. A LIndo de perguntas. saudável? Luísa, 15 anos 2º/3º cicl s O Ã Ç T N E M I d pguns u m mu um p z pdms f ps O qu sudávl? blnç d i c n c id p Sá d p d n cm p, ic mbém é g á s n v ic. Dsc ís f m f civ b id v m u i d lóics. c s impânc s g õs sb ç n s

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM Messinki Tuote LVI-numero Pikakoodi PUSERRUSLIITIN EM 1551002 XV87 PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM 2 PUSERRUSLIITIN EM 35 MM

Leia mais

Uma expansão cheia de ternura por Antoine Bauza & Corentin Lebrat

Uma expansão cheia de ternura por Antoine Bauza & Corentin Lebrat Um xpnsã chi d tnu p Antin Buz & Cntin Lbt Mis um pnd! Vcê fz um Ótim tblh, tnt cm bmbuzl qunt cm su hbitnt! Rcb st nvt cm cmpns... Ctmnt, Mjstd! Su muit gt... N vdd, um pnd mis nà mud muit s ciss. NÀ

Leia mais

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM

Messinki PUSERRUSLIITIN EM 10 MM PUSERRUSLIITIN EM 12 MM PUSERRUSLIITIN EM 15 MM PUSERRUSLIITIN EM 18 MM PUSERRUSLIITIN EM 22 MM Messinki Tuote LVI-numero Pikakoodi PUSERRUSLIITIN EM 1551002 XV87 PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM PUSERRUSLIITIN EM 35 MM 10X

Leia mais

BALIZA. Cor central.da PLAYMOBIL podes fazer passes. verde-claro curtos, passes longos e, até, rematar para com a nova função de rotação.

BALIZA. Cor central.da PLAYMOBIL podes fazer passes. verde-claro curtos, passes longos e, até, rematar para com a nova função de rotação. PONTAP DE SAÍDA TCNICAS DE Pntpé bliz Est lnc cntc n iníci jg pós cd gl. Est Gnhs cntr p dis"d jg- bl qund cm dis st jgdrs cir list d cmp tu d quip: pntpé é dd REMATE ntr d círcul cntrl. Os jgdrs jg cm

Leia mais

21/07/2015 13:36:51 ARTE MODA ARTE ARQUITETURA ARQUITETURA ENTRETENIMENTO MODA DESTINO GASTRONOMIA GASTRONOMIA MODA POLINÉSIA FRANCESA. CAPA 24.

21/07/2015 13:36:51 ARTE MODA ARTE ARQUITETURA ARQUITETURA ENTRETENIMENTO MODA DESTINO GASTRONOMIA GASTRONOMIA MODA POLINÉSIA FRANCESA. CAPA 24. R 3 R R D S VL L Ó S L U D K LÃ W -S / 3 SH FW -S Ã P UL F S SP / / : 8:3 3// 8/ 3/ : 6: SPCL - PRU C VCÊ UC VU.in 7 R Ú 8 9 - R$,,9 R$ CP.in S D PP R S G GS S - R$, 9 R D : : U Q R VG D R SÃ PU L FS H

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 10. Professora: Mazé Bechara Institut de Física USP Física V - Aula 10 Prfessra: Mazé Bechara Material para leitura na Xerx d IF 1. Prduçã e ransfrmaçã de Luz; Albert instein (1905); Artig 5 d Livr O an Miraculs de instein (traduçã

Leia mais

Boiadêro. Música na escola: exercício 13

Boiadêro. Música na escola: exercício 13 Bidê Músic n scl: xcíci 13 Bidê Aut: Aut scnhcid, cnçã flclóic Ptitus Mi, hni lt Rgiã: Piçbuçu (Algs) Fnt: 500 Cnçõs Bsilis, Elind A. Pz Fix: 13 j: Nil Azvd Pvt Músics: Cls Rbt Olivi pin tôni Dis Csqui

Leia mais

Quem falou foi Henrieta, toda arrumada com a camisa de goleira. E tinha mais um monte de gente: Alice, Cecília, Martinha, Edilene, Luciana, Valdete,

Quem falou foi Henrieta, toda arrumada com a camisa de goleira. E tinha mais um monte de gente: Alice, Cecília, Martinha, Edilene, Luciana, Valdete, Cpítul 3 N ã p! Abu! On já viu? Et qu é n! Cê minh mã? Qun mnin chgm p jg nqul ming, qu ncntm? Um gup mnin. D cmit, têni, clçã muit ipiçã. E g? Afinl, qum tinh ti qul ii mluc? D qun vcê gtm futl? pguntu

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

ano Literatura, Leitura e Reflexão m e s t re De quem e a vez? José Ricardo Moreira

ano Literatura, Leitura e Reflexão m e s t re De quem e a vez? José Ricardo Moreira S 1- Litt, Lit Rflxã 3- t D q vz? Jé Rid Mi Cpítl 1 P gt Td é di pfit p l: U liv lgl, d lid. E t d di fz d! P Hê: U di vô lá íti, vid hitói d tp q l id gt. P Hit: Ah, di d ihd, it l, it ág, it hi! P L:

Leia mais

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira:

MATRIZES. Em uma matriz M de m linhas e n colunas podemos representar seus elementos da seguinte maneira: MATRIZES Definiçã Chm-se mtriz d tip m x n (m IN* e n IN*) td tel M frmd pr númers reis distriuíds em m linhs e n cluns. Em um mtriz M de m linhs e n cluns pdems representr seus elements d seguinte mneir:

Leia mais

Ondas Eletromagnéticas Interferência

Ondas Eletromagnéticas Interferência Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul

Leia mais

01. A equação de Clapeyron, válida para os gases ideais ou perfeitos, é dada pela expressão . Utilizando a análise dimensional,

01. A equação de Clapeyron, válida para os gases ideais ou perfeitos, é dada pela expressão . Utilizando a análise dimensional, FÍSCA 0. A quaçã d Clapyn, válida paa s ass idais u pfits, é dada pla xpssã pv nrt. Utilizand a anális dimnsinal, a dimnsã da cnstant univsal ds ass pfits R é A) ML TNθ -. ) MLT - N - θ -. D) ML T - N

Leia mais

TECNOLOGIA PETCHANNEL EM. 4K 60P HEVC 20 Mb. Nelson Faria

TECNOLOGIA PETCHANNEL EM. 4K 60P HEVC 20 Mb. Nelson Faria TECNOLOGIA PETCHANNEL EM 4K 60P HEVC 20 Mb Nln Fi TV nlógic cmç dligd m 2015. ADOÇÃO ADOÇÃO DA DA TECNOLOGIA TECNOLOGIA 4K 4K DIAGRAMA DIAGRAMA DE DE UMA UMA INSTALAÇÃO INSTALAÇÃO POR POR IP IP EQUIPAMENTOS

Leia mais

EM NOME DO PAI ====================== j ˆ«. ˆ««=======================

EM NOME DO PAI ====================== j ˆ«. ˆ««======================= œ» EM NOME O PI Trnscçã Isbel rc Ver Snts Pe. Jãzinh Bm & # #6 8 j. j... Œ. ll { l l l l n me d Pi e d Fi lh ed_es & #. 2. #. _. _ j.. Œ. Œ l l l j {.. l. pí t Sn t_ mém Sn t_ mém LÓRI O PI Trnscçã Isbel

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

Lista de Exercícios 4 Cálculo I

Lista de Exercícios 4 Cálculo I Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its

Leia mais

NOVA CASA DO ESTUDANTE PARA O CENTRO CIDADE BAIXA, PORTO ALEGRE RESTAURANTE UNIVERSITÁRIO CAMPUS CENTRAL DA UFRGS PARQUE DA REDENÇÃO CIDADE BAIXA

NOVA CASA DO ESTUDANTE PARA O CENTRO CIDADE BAIXA, PORTO ALEGRE RESTAURANTE UNIVERSITÁRIO CAMPUS CENTRAL DA UFRGS PARQUE DA REDENÇÃO CIDADE BAIXA .T STUNT UNIVSITÁI U TY PUS NTL UGS N É H YU VI NT QU T V. NG. LU I IZ NGL T Ã.J V SS P V Í I IX, PT LG SILV V. LUI PQU NÇÃ V Ã.J P SS G N L S N T L IT LI SI L V LI PÚ S I V L S I IX LLIZÇÃ esc 1/00 NT

Leia mais

RECURSOS HUMANOS ANÁLISE DO FLUXO DE TRABALHO

RECURSOS HUMANOS ANÁLISE DO FLUXO DE TRABALHO RECURSOS HUMANOS Intduçã Cncits dfiniçã Digms d flux d pcsss Gáfics d flux d pcsss Estud d cs: DDT d FPFutbl Intduçã Cncits dfiniçã Digms d flux d pcsss Gáfics d flux d pcsss Estud d cs: DDT d FPFutbl

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

Í n d i c e. I n t r o d u ç ã o C o m o e u c o n f i g u r o o S P A 9 3 2? I n f o r m a ç

Í n d i c e. I n t r o d u ç ã o C o m o e u c o n f i g u r o o S P A 9 3 2? I n f o r m a ç Í I t ç ã C m f g S P A 9 3 2? I f m ç õ s R l s Itçã Est tg é m m m sé p xl stlçã, tblshtg mtçã pts Cs Smll Bsss (tg Lksys Bsss Ss). Q. Cm fg SPA932? R. O SPA932 é m sl tmt 32-btt p SPA962. C SPA932 f

Leia mais

ATIVIDADE DE SALA (02)

ATIVIDADE DE SALA (02) COLÉGIO PLÍNIO LEITE CIÊNCIAS BIOLÓGICAS 2º Píd/2014 6º ANO ESCOLAR - ENSINO FUNDAMENTAL Nm: Pfss (): ATIVIDADE DE SALA (02) Tum: º: D: / / VALOR:... Mds ppss p suu d T Mus ds gs dés d suu d T bsvm-s m

Leia mais

Politiska riktlinjer, avsnitt 2 En stنndigt f rنnderlig vنrld

Politiska riktlinjer, avsnitt 2 En stنndigt f rنnderlig vنrld Politiska riktlinjer, avsnitt 2 En stنndigt f rنnderlig vنrld i~éé هê pلا o~ا cêëن~ضëëي نن~êة aلëيêلâي vêâ~هاة cêةاê~ض~هاةë êâ~هاة M m~êيلëي êةنëةه _لر~ننيلننâ~éليةنOلêلâينلهàةêه~ T OT _لر~نن _لر~نن نêا~ضOEâ~éليةنOFKاçإ

Leia mais

======================== Œ œ»» Œ C7 ˆ_ ««G 7

======================== Œ œ»» Œ C7 ˆ_ ««G 7 1) É tã bnit n tr (ntrd) cminh cm Jesus (Miss d Temp mum cm crinçs) & 2 4 m œ É tã b ni t n_ tr me s s gr d, & œ t h brn c, ve ce s. & _ Mis s vi c me çr n ns s_i gre j; _u & j im c ris ti cm e gri, v

Leia mais

Chotes. Música na escola: exercício 12

Chotes. Música na escola: exercício 12 Chts Músic n scl: xcíci 12 Chts Aut: Aut scnhci, cnçã flclóic Rgiã: Ri Gn Sul Fix: 12 Anj: Nil Azv Pvt Músics: Cls Rbt Olivi pin Nil Azv Pvt clints sx lt Cnts: lic Alid Pi Guilh Cnciçã Sntn Eily Ryn Buin

Leia mais

sábado, 5 de março de 2016 Destaque Foto: Leandro Brito Sessão fofura Liz Muniz Casamento Sarah e Luis Henrique

sábado, 5 de março de 2016 Destaque Foto: Leandro Brito Sessão fofura Liz Muniz Casamento Sarah e Luis Henrique Em áb, 5 mç 2016 Dtqu Ft: Ln Bit Sã ffu Liz uniz Cmnt Sh Lui Hniqu OGI GUAÇU, áb, 5 mç 2016 OGI GUAÇU, áb, 5 mç 2016 2 3 Sh LuiHniqu O mnt Sh hi Suz Lui Hniqu Bini Hnói fi liz n i 24 jni. Amig fmili fm

Leia mais

Física II Aula A08. Prof. Marim

Física II Aula A08. Prof. Marim Físic II Aul A8 Prof. Mrim FÍSICA 2 A8 POTENCIAL ELÉTRICO Trlho relizdo por um forç: W = F.d L = F.c o s.d L Trlho relizdo por um forç conservtiv: W = U - U = - U - U = - ΔU Prof. Mrim Energi Potencil

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

E v o lu ç ã o d o c o n c e i t o d e c i d a d a n i a. A n t o n i o P a i m

E v o lu ç ã o d o c o n c e i t o d e c i d a d a n i a. A n t o n i o P a i m E v o lu ç ã o d o c o n c e i t o d e c i d a d a n i a A n t o n i o P a i m N o B r a s i l s e d i me nt o u - s e u ma v is ã o e r r a d a d a c id a d a n ia. D e u m mo d o g e r a l, e s s a c

Leia mais

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara Instituto d Física USP Física Modrna I Aula 09 Profssora: Mazé Bchara Aula 09 O fito fotolétrico a visão corpuscular da radiação ltromagnética 1. Efito fotolétrico: o qu é, o qu s obsrva xprimntalmnt,

Leia mais

Polarização das antenas - Resumo

Polarização das antenas - Resumo Propgção de Onds e Antens Aul 5 04/05/09 Polrizção ds ntens - Resumo Polrizção liner Um ond hrmónic no tempo (que vri sinusoidlmente no tempo) é linermente polrizd num ddo ponto no espço se o vector do

Leia mais

Sistemas Solares Passivos na Arquitectura em Portugal

Sistemas Solares Passivos na Arquitectura em Portugal Univsidd Técnic d Lisbo Fculdd d Aquitc Anxos Cílo II (2.1) Ts d Doutomnto Sistms Sols Pssivos n Aquitc m Pogl Os Envidçdos nos Edifícios Rsidnciis m Lisbo Máci Cistin Pi Tvs Ointdo: Douto Héld José Pdigão

Leia mais

Missa Ave Maris Stella

Missa Ave Maris Stella Missa Av Maris Stlla Para coro a calla a quatro vozs SATB Notas sobr a comosição A rsnt comosição constituis a artir d um ordinário da missa m latim ara coro a quatro vozs a calla, sm divisi Sorano, Alto,

Leia mais

O atrito de rolamento.

O atrito de rolamento. engengens. Obseve-se que s foçs de tito de olmento epesentds n figu (F e f ) têm sentidos opostos. (Sugeimos que voê, ntes de possegui, poue i um modelo que pemit expli s foçs de tito de olmento). "Rffiniet

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS REAIS

FUNÇÕES DE VÁRIAS VARIÁVEIS REAIS INTRODUÇÃO FUNÇÕES DE VÁRIAS VARIÁVEIS REAIS Uma ganda ísica pod dpnd d divsas outas gandas Po mplo: a vlocidad do som m um gás idal dpnd da dnsidad do gás d sua pssão Muitas unçõs dpndm d mais d uma vaiávl

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

INSTRUÇÕES C C C. o 2 2

INSTRUÇÕES C C C. o 2 2 INTUÇÕ Congresso 2001 -C Congresso 2009 -P Congresso 2002 -C Congresso 1998 - Congresso 2006 - Congresso 2010 -B Congresso 2003 -B Congresso 1999 -P 2013 Congresso 1996 -P Congresso 2004 -J Congresso 2007

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Operações comuns em transportes

Operações comuns em transportes paçõ cmu m tapt Ex Wk (EXW) : aplica- a qualqu mdal d tapt; b ã tgu a dpdêcia d vdd (igm), m cagamt, ã ã dmbaaçad paa xptaçã. = ic = ut Vdd mpad ai (A): aplica- a qualqu mdal d tapt; b ã tgu a taptad digad

Leia mais

Análise de Circuitos em Regime Forçado Sinusoidal

Análise de Circuitos em Regime Forçado Sinusoidal Teria ds Circuits e Fundaments de Electrónica Análise de Circuits em egime Frçad Sinusidal Teresa endes de Almeida TeresaAlmeida@ist.utl.pt DEEC Área Científica de Electrónica T..Almeida ST-DEEC- ACElectrónica

Leia mais

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria Plana - Parte 3. Paralelogramos Especiais. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 8 no E.F. Professores Cleer Assis e Tigo Mirnd Elementos Básicos de Geometri Pln - Prte 3 Prlelogrmos Especiis 1 Exercícios Introdutórios

Leia mais

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3.

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3. Universidde Federl de Uberlândi Fculdde de Mtemátic Disciplin : Geometri Diferencil Assunto: Cálculo no Espço Euclidino e Curvs Diferenciáveis Prof. Sto 1 List de exercícios 1. Prove chmd identidde de

Leia mais

AQUECEDORES & PRESSURIZADORES. AF114 Catalogo Aquecedores 2014 AB 400x200mm.indd 1 04/06/14 10:32

AQUECEDORES & PRESSURIZADORES. AF114 Catalogo Aquecedores 2014 AB 400x200mm.indd 1 04/06/14 10:32 QUEEDORES & PRESSURIZDORES 2014 F114 lg qud 2014 400x200.indd 1 04/06/14 10:32 Linh Águ Qun Obi. Mi fiin, i unávl. S unávl é uiliz u nui d f i inlign. É iiz uld, duzi dpdíi, g i i fiz. É i qu Linh Águ

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

a sua nova pedida, e a dos seus clientes também

a sua nova pedida, e a dos seus clientes também TOP! su nv pedid, e ds seus clientes tmbém A mrc Riz d Bem trduz cncepçã de liments sudáveis, nde prticmente td cdei limentíci prte d gricultur. Um nme simples, diret e frte em um lingugem de fácil entendiment

Leia mais

Ajuste Fino. Por Loud custom Shop Guitars SERIE FAÇA VOCÊ MESMO LOUD CUSTOM SHOP GUITARS

Ajuste Fino. Por Loud custom Shop Guitars SERIE FAÇA VOCÊ MESMO LOUD CUSTOM SHOP GUITARS Ajuste Fin Pr Lud custm Shp Guitars SERIE FAÇA VOCÊ MESMO LOUD CUSTOM SHOP GUITARS AJUSTE FINO Uma das cisas mais bacanas n mund da guitarra é fat de nã existir cert u errad. Sempre irá existir muitas

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Dimensionar um projeto de irrigação por aspersão para as seguintes condições:

Dimensionar um projeto de irrigação por aspersão para as seguintes condições: Departamento de Engenharia Rural - ESALQ/USP LER 1571 Irrigação Prof. Marcos V. Folegatti Projeto de um sistema de irrigação por ASPERSÃO Dimensionar um projeto de irrigação por aspersão para as seguintes

Leia mais

FUNDO PAULO K. BABA Série Bibliográfica

FUNDO PAULO K. BABA Série Bibliográfica UNIVERSIDADE ESTADUAL DE LONDRINA CENTRO DE LETRAS E CIÊNCIAS HUMANAS DEPARTAMENTO DE HISTÓRIA NÚCLEO DE DOCUMENTAÇÃO E PESQUISA HISTÓRICA FUNDO PAULO K. BABA Séi Bibligáfic Anj dciçã: Dnili Fi Ointçã

Leia mais

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011

Física III Escola Politécnica GABARITO DA PR 28 de julho de 2011 Físic III - 4320301 Escol Politécnic - 2011 GABARITO DA PR 28 de julho de 2011 Questão 1 () (1,0 ponto) Use lei de Guss pr clculr o vetor cmpo elétrico produzido por um fio retilíneo infinito com densidde

Leia mais

FUNDO PREVIDENCIÁRIO DOS SERVIDORES DE SANTA CRUZ ESTADO DE PERNAMBUCO EXERCÍCIO 2013

FUNDO PREVIDENCIÁRIO DOS SERVIDORES DE SANTA CRUZ ESTADO DE PERNAMBUCO EXERCÍCIO 2013 1º BIMESTRE 2013 Nacional (CMN) Valor Renda Fixa FI % títulos TN - Art. 7º, I, "b" Resolução 3.922/2010 CMN 4.127.056,93 99,86 5.583,91 4.132.640,84 0,14 2º BIMESTRE 2013 Nacional (CMN) Valor Renda Fixa

Leia mais

arctg x y F q E q v B d F d q E q v B se y r sen sen

arctg x y F q E q v B d F d q E q v B se y r sen sen List Gomti Anlític Cálculo Vtoil Pof. D. Cláudio S. Stoi Poduto misto, Plnos ts, Mtis, Dtminnts Sistms Lins, Coodnds cilíndics sféics, Cônics Poduto misto, Plnos ts. Ach qução do plno contndo o ponto P

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público

Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público Caixas Ativas e Passivas SKY 3000, SKY 00, SKY 700, SKY 600 e NASH 144 Áreas de Cbertura e Quantidade de Públic www.studir.cm.br Hmer Sette 18-07 - 01 A área cberta pelas caixas acima, em funçã d psicinament

Leia mais

Num sistema tridimensional um ponto pode ser localizado pela intersecção de três superfícies.

Num sistema tridimensional um ponto pode ser localizado pela intersecção de três superfícies. Sistems de cooden otogonis - 1 ELECTROMGNETISMO s leis do electomgnetismo são invintes em elção o sistem de cooden utilido. Muits vees solução de um poblem específico eque utilição de um sistem de cooden

Leia mais

Física II FEP 112 ( ) 1º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães

Física II FEP 112 ( ) 1º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães Física II FEP 11 (4300110) 1º Semestre de 01 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: valdir.guimaraes@usp.br Fone: 3091-7104(05) Aula 1 Temperatura e Teoria

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A Eam Final Nacional do Ensino Scundáio Pova Escita d Matmática A 1.º Ano d Escolaidad Dcto-Li n.º 139/01, d 5 d julho Pova 635/1.ª Fas Citéios d Classificação 1 Páginas 014 Pova 635/1.ª F. CC Página 1/

Leia mais

Cleber Giorgetti Assessoria e Consultoria. Business & Strategy Marketing & Sales Products & Services Technology & Innovation

Cleber Giorgetti Assessoria e Consultoria. Business & Strategy Marketing & Sales Products & Services Technology & Innovation Cb Gg A C B & Sgy Mkg & S P & Sv Thgy & v Qm Sm N m 2002, mp v x mp çm bjv gó, m m f óg, pb-h m mpv. Apçã hm é gó q vé xpê 20 f, q xm pçõ gã m pçõ m: G Tg, Avy, L Thg, B Lb, AT&T, SD T,. R m p m gó g,

Leia mais

Quem são? Um refugiado é toda pessoa que devido a temores de ser perseguida por motivos de raça,

Quem são? Um refugiado é toda pessoa que devido a temores de ser perseguida por motivos de raça, g u f R d Qum ã? Um fugd é td p qu dvd tm d pgud p mtv d ç, lgã, ncnldd, p ptnc dtmnd gup cl p u pnõ plítc, ncnt f d pí d u ncnldd nã p u nã qu c à ptçã d tl pí. Ou qu, ccnd d ncnldd tnd f d pí nd tv u

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

A integral de Riemann e Aplicações Aula 28

A integral de Riemann e Aplicações Aula 28 A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de

Leia mais

ENTENDENDO ESTRUTURA MOLECULAR COM A MOLÉCULA DE HIDROGÊNIO IONIZADA

ENTENDENDO ESTRUTURA MOLECULAR COM A MOLÉCULA DE HIDROGÊNIO IONIZADA DIVULGÇÃO ENTENDENDO ETRUTUR MOLECULR COM MOLÉCUL DE HIDROGÊNIO IONIZD Robto Rivlino d Mlo Mono* Instituto d Físic - Univsidd Fdl d hi - 4-34 - lvdo - Londo n Goms Tixi Instituto d Químic - Univsidd Fdl

Leia mais

Instituto Nacional de Pesquisas Espaciais

Instituto Nacional de Pesquisas Espaciais Instituto Nacional de Pesquisas Espaciais Exame de admissão para o programa de pós-graduação em Astrofísica 16/12/2013 - Duração: 4h00 Nome: Instruções para realização do exame: a) a prova é individual,

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Estequiometria. Mestranda: Daniele Potulski Disciplina: Química da madeira I

Estequiometria. Mestranda: Daniele Potulski Disciplina: Química da madeira I Estequiometria Mestranda: Daniele Potulski Disciplina: Química da madeira I Estequiometria Estequiometria é o cálculo da quantidade de reagentes e produtos da reação, baseado nas leis das reações químicas.

Leia mais

MASSAS LUBRIFICANTES DE ALTO RENDIMENTO

MASSAS LUBRIFICANTES DE ALTO RENDIMENTO MASSAS LUBRIFIANTES DE ALTO RENDIMENTO www.cquin.c M ARESENTAÇÃO LUBRIFIAÇÃO ÓTIMA é u nv c d cnitnt d lt ndint cncbid, pinciplnt, p u quini d Ob úblic, nd igênci d u lubificã ficint dudu é fundntl p vit

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Solução Prova 2 (Queda do Gato)

Solução Prova 2 (Queda do Gato) Departamento de Física Experimental Solução Prova 2 (Queda do Gato) 13-14 de maio de 2014 Queda do Gato La Recherche 487 (2014) pag. 54 Nesta apresentação são mostradas as soluções da prova 2 das turmas

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

Mapa de oferta por curso

Mapa de oferta por curso UNIVERSIDADE FEDERAL DE MINAS GERAIS Oferta e matrícula Mapa de oferta por curso SEMESTRE: 2017/1 Curso: 02004 FÍSICA Atividade acadêmica MATEMÁTICA ANTONIO ARTUR DE SOUZA, COMPUTACIONAL,, CAD232 CAD TCAD

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

VALTRA. Seq. Código VALTRA Código MAHLE Itens descrição Aplicação

VALTRA. Seq. Código VALTRA Código MAHLE Itens descrição Aplicação Seq. Código VALTRA Código MAHLE Itens descrição Aplicação 1 111050 - Camisa Motor 225 D 225 / D 226 / D 227 / D 327 2 111220 BC 313 - STD Bronzina Mancal central Motor 225/229 STD D-225 / 226 / 230 3 111230

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

P1 de CTM OBS: Esta prova contém 7 páginas e 6 questões. Verifique antes de começar.

P1 de CTM OBS: Esta prova contém 7 páginas e 6 questões. Verifique antes de começar. P de CTM 0. Nome: Assintur: Mtrícul: Turm: OBS: Est prov contém 7 págins e 6 questões. Verifique ntes de começr. Tods s resposts devem ser justificds. Não é permitido usr clculdor. As questões podem ser

Leia mais

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE MOVIMENTOS SOB A AÇÃO DE UMA ORÇA RESULTANTE DE INTENSIDADE CONSTANTE Trjóris Tmos os sguins csos: 1º) S forç rsuln ivr dirção d vlocidd só vrirá o módulo ds rjóri srá rilín. v R Ou R v º) S forç rsuln

Leia mais

Controle de Atendimento de Cobrança

Controle de Atendimento de Cobrança Cntrle de Atendiment de Cbrança Intrduçã Visand criar um gerenciament n prcess d cntrle de atendiment de cbrança d sistema TCar, fi aprimrad pela Tecinc Infrmática prcess de atendiment, incluind s títuls

Leia mais