Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Tamanho: px
Começar a partir da página:

Download "Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados."

Transcrição

1 Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu os rmos são irionos. um grfo irigio: um grfo não irigio: V={ xríio } E={ xríio } V={ xríio } E={ xríio }

2 Grfos: lgum notção Do um grfo G=(V,E), E VxV Os vértis u v são jnts m G ss <u,v> ou <v,u> são rmos G. : & são jnts & não são jnts f Grfos não irigios: grus g(v)=# rmos inints (jnts) no vérti v m G. Ex: g()= g(f)= f Grfos irigios: gru g-(v)=# rmos inints m v g-s(v)=# rmos qu prtm v Ex: g-()= g-s()= g-(f)= g-s(f)= Torm: Sj G = (V, E) um grfo não irigio om vértis. Então gru( v) = v V Corolário: Too o grfo não irigio possuiu um númro pr vértis om gru impr. f Exríio: quntos rmos xistm num grfo om vértis um os quis gru

3 Um grfo K n iz-s omplto s ontém toos os rmos, i.., E={<u,v> VxV:u v} : Quntos rmos xistm m K n Cilos Pr too o n, um ilo om n vértis, C n, é um grfo m qu V={v,v,,v n } E={<v,v >,,<v n,v n >,<v n,v >}. Quntos rmos xistm m C n Ros Pr too o n, um ro W n+, é um grfo otio prtir um ilo C n iionno um vérti xtr v ntro n rmos xtr {<v ntro,v >, <v ntro,v >,,<v ntro,v n >}. Quntos rmos xistm m W n G =(V,E ) é um su-grfo G=(V,E) s só s V V E E. :

4 Tl jênis A união G G ois grfos G =(V, E ) G =(V,E ) é plo grfo (V V, E E ). : G G G G Um tl om um linh por vérti, listno toososvértisjnts. Vértis Vérti Ajnts,,,, f,, f f, Exríio: snh o grfo. Tl jênis: grfos irigios Um tl om um linh por vérti, listno os vértis trminis os nós om origm nss vérti. Mtriz jênis Mtriz A = [ ij ], on ij é s <v i, v j > é um rmo G, so ontrário. Exríio: trmin tl jênis. Exríio: trmin mtriz jênis

5 Isomorfismo ntr grfos Os grfos G =(V, E ) G =(V, E ) são isomorfos ss xist um ijção f:v V tl qu pr too o, V, são jnts m G ss f() f() são jnts m G. Isomorfismo ntr grfos Coniçõs nssáris ms não sufiints pr qu grfos G =(V, E ) G =(V, E ) sjm isomorfos: V = V, E = E. O númro vértis om gru n sj o msmo m mos os grfos. Pr too o sugrfo g um grfo, xist um sugrfo o outro grfo qu é isomorfo g. Isomorfismo ntr grfos: xmplo Isomorfismo ntr grfos: xmplo Dig s os sguints grfos são isomorfos Dig s os sguints grfos são isomorfos f

6 Complmnto um grfo Sj G um grfo om n vértis. O omplmnto G, G, é o sugrfo o grfo omplto (K n ) qu onsist nos n vértis G toos os rmos K n qu não prtnm G. Algum trminologi Num grfo não irigio, um minho tmnho n, u pr v, é um squêni n rmos jnts om iníio no vérti u (=x ) fim no vérti v (=x n ). Um minho é um iruito s u=v n >. Um minho pss plos vértis x, x,, x n-, ou trvss os rmos,,, n. Um minho ou ilo iz-s simpls s não ontém o msmo rmo mis o qu um vz. Um minho pr Um minho pr f Est minho pss plos vértis f nss orm f Est minho pss plos vértis f,,, nss orm. O minho tm tmnho. Éum iruito porqu omç no W W msmo vérti. Chm-s simpls porqu não ontém o msmo vérti mis o qu um vz.

7 Grfos onxos Um grfo não irigio é onxo ss xist um minho ntr qulqur pr vértis istintos o grfo. G é onxo, visto qu pr too o pr vértis, xist um minho ntr ls. G não é onxo, não xist um minho ntr. G G Grfos onxos Torm: Exist um minho simpls ntr too o pr vértis istintos um grfo não irigio onxo. Componnt onx: Um grfo não onxo é união ois ou mis sugrfos onxos, os quis qulqur pr não tm vértis m omum. Ests sugrfos onxos isjuntos são hmos omponnts onxs o grfo iniil. Componnts onxs O grfo H é união três sugrfos onxos isjuntos H, H, H. Ests três sugrfos são s omponnts onxs H. Vértis rmos ort Um vérti/rmo ort spr um omponnt onx m us s o rmovrmos. Os vértis ort G são,,, o rmovrmos um ls ( os sus rmos jnts) torn o grfo não onxo. Os rmos ort são <, > <, >.

8 Cminhos/Cilos Eulrinos Um iruito Eulrino num grfo G é um iruito simpls ontno toos os rmos G. Um minho Eulrino num grfo G é um minho simpls ontno toos os rmos G. Um grfo onxo tm um iruito Eulrino ss toos os sus vértis tm gru pr. Est fto simpls po sr uso pr trminr s po snhr o grfo sm lvntr o lápis. Um grfo onxo tm um minho Eulrino s possui xtmnt ois vértis gru impr. Cminhos/Cilos Hmiltoninos Um iruito Hmiltonino éum iruito qu pss toos os vértis G um só vz. Um minho Hmiltonino éum minho qu trvss toos os vértis G um só vz. Inflizmnt não xist nnhum onição nssári sufint pr xistêni um iruito Hmiltonino. Psos E s triuíssmos psos os rmos : Molr um ompnhi ér, s, tmpos voo, ustos Molr um r omputors, s, tmpo rspost Ests grfos são onhios omo grfos psos, stmos intrssos no usto (tmnho) o minho m qu som os psos sj minimiz. Prolm o mnor minho Um grfo om psos é um grfo m qu rmo s ssoi um pso (númro). Psos pom rprsntr, por xmplo, s, ustos ou tmpos prurso ntr ois vértis. O tmnho um minho num grfo om psos é som os psos os rmos o minho.

9 Mp o mtro Tokyo Dtrmin o tmnho o mnor minho ntr z no sguint grfo om psos. Stup: Ii o Algoritmo G = grfo om psos Nst isiplin, os psos srão POSITIVOS. G é um grfo onxo. Um poimnto lling srá ftuo itrção Um vérti w srá mro om o tmnho o mnor minho pr w qu ontém somnt vértis já trtos. Mrr om toos os outros vértis om. L () = L (v) = Mrs são os minhos mis urtos ntr os vértis S k = onjunto vértis trtos pois k itrçõs. S =. O onjunto S k éformo iionno o vérti u NÂO m S k- om mnor mr. Dpois iionr u S k tulizmos s mrs toos os vértis qu não stão ms k Pr tulizr s mrs: L k (, v) = min{l k- (, v), L k- (, u) + w(u, v)}

10 s s

11 - - - Exmpl - - Pross Pross istn istn Exmpl - Pross Pross istn istn -

12

13

14 Algoritmo Dijkstr s Cminho pr :,,,, () (, ) (, (,, ) ) (,,,,,, ) ) - () (,, ), )

Otimização em Grafos

Otimização em Grafos Otimizção m Grfos Luii G. Simontti PESC/COPPE 2017 Luii Simontti (PESC) EEL857 2017 1 / 25 Grfo (não iriono): G = (V, E) V - onjunto vértis - V = {1, 2, 3, 4, 5, 6, 7} E - onjunto rsts - E = {[1, 2], [1,

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

AULA 12. Otimização Combinatória p. 342

AULA 12. Otimização Combinatória p. 342 AULA 2 Otimizção Comintóri p. 342 Emprlhmntos pso máximo Otimizção Comintóri p. 343 Emprlhmntos Um mprlhmnto m um gro (não-orinto) é um onjunto rsts qu us--us não tm pont m omum. Exmplo: {, } {, } ormm

Leia mais

Lista de Exercícios 9: Soluções Grafos

Lista de Exercícios 9: Soluções Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9: Soluçõs Gros Ciênis Exts & Engnhris 2 o Smstr 2016 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção

Leia mais

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328 MAC0328 Algoritmos m Gros AULA 1 Eição 2011 MAC0328 Algoritmos m Gros Aministrção Págin isiplin: uls, stro, órum,... http://p.im.usp.r/ Liro: PF = Pulo Folo, Algoritmos pr Gros m C i Sgwik www.im.usp.r/

Leia mais

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina: ~ am/328. Livro:

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina:  ~ am/328. Livro: MAC0328 Algoritmos m Gros MAC328 Algoritmos m Gros Arnlo Mnl 1º Smstr 2012 http://spikmth.om/250.html Algoritmos m Gros 1º sm 2012 1 / 1 Págin isiplin: Aministrção Algoritmos m Gros 1º sm 2012 2 / 1 Liro:

Leia mais

Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro. Grafos: Introdução

Núcleo de Computação Eletrônica Universidade Federal do Rio de Janeiro. Grafos: Introdução Núlo Computção Eltrôni Univrsi Frl o Rio Jniro Grfos: Introução Grfos Um grfo não orinto G é um pr (V, E), on V é um onjunto vértis E é um onjunto rsts; rst é um pr não orno vértis. Sj (v, w) E; v w são

Leia mais

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Anális Sínts Aloritmos Aloritmos Elmntrs m Gros [CLRS, Cp. 22] 2014/2015 Contxto Rvisão [CLRS, Cp.1-13] Funmntos; notção; xmplos Aloritmos m Gros [CLRS, Cp.21-26] Aloritmos lmntrs Árvors rnnts Cminos mis

Leia mais

v 2 Cada um dos arcos está associado a um par ordenado de vértices sendo o primeiro a extremidade inicial do arco e o outro a sua extremidade final.

v 2 Cada um dos arcos está associado a um par ordenado de vértices sendo o primeiro a extremidade inicial do arco e o outro a sua extremidade final. I. Introução 1. Grfo Orinto É um grfo "G" om um onjunto V vértis (nós) um onjunto U ros pono sr inio por G=(V,U). C um os ros stá ssoio um pr orno vértis sno o primiro xtrmi iniil o ro o outro su xtrmi

Leia mais

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5.

Conteúdo PCS Aula 12 Modelos de Rede e Algoritmo do Fluxo Máximo. Líria Sato Professor Responsável. 5.1 Modelos de rede. 5. PCS 5 Funmntos Engnhri Computção II Aul Molos R Algoritmo o Fluxo Máximo Contúo 5. Molos r lgoritmo o fluxo máximo 5. Molos r 5. Algoritmo o fluxo máximo Líri Sto Profssor Rsponsávl vrsão:. (st 00) Gomi,

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA GRAFOS Pro. Ynr Mlono Introução; Rprsntção m Mmóri; Aloritmo Dijkstr. Pro. Ynr Mlono Goms Cost Pro. Ynr Mlono 2 Dinição: G (V, E), on: V é um

Leia mais

GRAFOS GRAFOS GRAFOS. Introdução; Algoritmo de Dijkstra.

GRAFOS GRAFOS GRAFOS. Introdução; Algoritmo de Dijkstra. UNIVERSIAE ESTAUAL E EARTAMENTO E INFORMÁTICA ro. Ynr Mlono Introução; Rprsntção m Mmóri; Aloritmo ijkstr. ro. Ynr Mlono Goms Cost ro. Ynr Mlono 2 inição: G (V, E), on: V é um onjunto vértis (ou noos);

Leia mais

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não 13 - Gros Plnrs Nst ul qurmos rsponr à suint qustão: Do um ro G, é possívl nontrr um rprsntção rái pr o ro tl qu não hj ruzmnto rsts? Consir por xmplo o ro K 4 rprsnto rimnt ns iurs i1, i2 i3.: i. 1 i.

Leia mais

Problemas Hamiltonianos

Problemas Hamiltonianos Prolms Hmiltoninos Dfinição: Um iruito hmiltonino m um grfo onxo G é finio omo um minho lmntr, fho pssno m vérti G xtmnt um vz. Um grfo qu mit um iruito hmiltonino é um grfo hmiltonino. Evintmnt nm too

Leia mais

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster Primir Prov CTC-0 Estruturs Disrts 4/09/009 Pro Crlos nriqu Q Forstr om: GABARITO 40 pontos Consir Z n { 0 n } Z é um grupo on é oprção ou-xlusivo Mostr qu oprção ou-xlusivo it--it m plvrs 3 its orm um

Leia mais

Conteúdo. PCS 2215 Fundamentos de Engenharia de Computação II. Aulas 1-3 Grafos. Líria Sato Professor Responsável. 1.1 Conceitos principais

Conteúdo. PCS 2215 Fundamentos de Engenharia de Computação II. Aulas 1-3 Grafos. Líria Sato Professor Responsável. 1.1 Conceitos principais PCS Funmntos Engnhri Computção II Contúo. Grfos Auls - Grfos Líri Sto Profssor Rsponsávl. Cilos Hmiltoninos o prolm o ixiro vijnt. Algoritmo minho mínimo vrsão:. (st ) Gomi, Rli, Sto Sihmn, Auls PCS -

Leia mais

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova.

PROVA EXTRAMUROS (ii) A Parte I (duas questões dissertativas) corresponde a 25% da pontuação total da prova. +1/1/60+ PROVA EXTRAMUROS - 018 NOME: IDENTIDADE (OU PASSAPORTE): ASSINATURA: Instruçõs (i) O tmpo stino st prov é 5 hors. (ii) A Prt I (us qustõs issrttivs) orrspon 5% pontução totl prov. (iii) C qustão

Leia mais

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore Fonts Biliográis Estruturs Dos Aul 15: Árvors 24/05/2009 Livros: Introução Estruturs Dos (Cls, Crquir Rngl): Cpítulo 13; Projto Algoritmos (Nivio Zivini): Cpítulo 5; Estruturs Dos sus Algoritmos (Szwritr,

Leia mais

Grafos. Histórico. Histórico. Histórico. Histórico. Definição

Grafos. Histórico. Histórico. Histórico. Histórico. Definição Aloritmos Estruturs Dos II José Auusto Brnusks Dprtmnto Físi Mtmáti FFCLRP-USP Gros Nst ul é ornio um rv histório sor tori os ros São tmém introuzios onitos sor ros loritmos qu os mnipulm uusto@lrp.usp.r

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

Conteúdo PCS Aulas 4-5 Grafos. Líria Sato Professor Responsável. 4.1 Representação de Grafos. 4.1 Representação de Grafos

Conteúdo PCS Aulas 4-5 Grafos. Líria Sato Professor Responsável. 4.1 Representação de Grafos. 4.1 Representação de Grafos PCS 2215 Funmntos Ennri Computção II Contúo 4. Rprsntção ros, Gros isomoros plnrs Auls 4-5 Gros Líri Sto Prossor Rsponsávl vrsão: 1.2 (osto 2002) 1 Gomi, Rli, Sto Simn, 2002 Auls 4-5 PCS 2215 - Fun. En.

Leia mais

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e UDESC DCC BCC DISCIPLINA : TEG0001 Teori os Grfos PRIMEIRA LISTA DE EXERCÍCIOS 1.) Ientifique pr um os três grfos ixo:. número e nós e ros;. o gru e nó;. Compre som e toos os grus os nós e grfo om o número

Leia mais

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão)

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão) Disiplin: Progrmção 1 Profssor: Pulo Césr Frnns Olivir, BS, PhD List Exríios JvSript 8 (rvisão) 1. O qu ont o s xutr progrm ixo? jvsript: - funtion utorizr(snh){ if(snh == "luno"){ lrt("bm-vino!"); ls{

Leia mais

Operações em Estruturas de Dados

Operações em Estruturas de Dados Oprçõs m Estruturs Dos Intligêni rtifiil José ugusto Brnusks Dprtmnto Físi Mtmáti FFCP-USP Nst ul são srits lgums oprçõs omuns m struturs os frqüntmnt utilizs m I Otimizção ursão no Finl (umulors) Ornção

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2)

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2) Em d Profiiêni d Pré-Cálulo (. Informçõs instruçõs. Cro studnt, sj m-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstiulr, st m não tm rátr sltivo. O ojtivo qui é mdir su onhimnto m mtmáti dqur sus

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

Figura 1. Lema 1: Dado um grafo conexo com todos os vértices de grau par, então qualquer par de vértice faz parte de um caminho simples e fechado.

Figura 1. Lema 1: Dado um grafo conexo com todos os vértices de grau par, então qualquer par de vértice faz parte de um caminho simples e fechado. Grafo Eulriano... O Prolma do Cartiro Chinês...4 Algoritmos d Emparlhamnto.... 7 Prolmas Hamiltonianos...7 Propridads para grafos hamiltonianos...8 Método Exato: Método Composição Latina...8 Passos do

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

Exame de Proficiência de Pré-Cálculo

Exame de Proficiência de Pré-Cálculo +//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA S VI VOLTRÁ PR RINR 1. US, TU ÉS MU US #m US, TU ÉS MU US SNHOR TRR ÉUS MR U T LOUVRI #m SM TI NÃO POSSO VIVR M HGO TI OM LGRI MOR NST NOV NÇÃO #m #m OH...OH...OH LVNTO MINH VOZ #m LVNTO MINHS MÃOS #m

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -I Aula Toria dos Joos auríio Buarin otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

Estruturas de Dados. Organização. Grafos I: Definição. Algumas Aplicações. Conceitos & Aplicações. Introdução aos Grafos

Estruturas de Dados. Organização. Grafos I: Definição. Algumas Aplicações. Conceitos & Aplicações. Introdução aos Grafos Ornizção Estruturs Dos Grfos I: Conitos & Apliçõs Introução os Grfos Dfinição Trminoloi Alums Propris Exmplos Apliçõs Grfos Prof. Riro J. G. B. Cmpllo Prt st mtril é so m ptçõs xtnsõs slis isponívis m

Leia mais

5 Reticulados e sua relação com a álgebra booleana

5 Reticulados e sua relação com a álgebra booleana Nots d ul d MAC0329 (2004) 30 5 Rticuldos su rlção com álgbr booln 5.1 Conjuntos prcilmnt ordndos Sj A um conjunto não vzio. Um rlção binári R sobr A é um subconjunto d A A, isto é, R A A. S (x, y) R,

Leia mais

Uma nota sobre bissetrizes e planos bissetores

Uma nota sobre bissetrizes e planos bissetores Runs Ros Ortg Junior 83 Um not sor isstris pnos isstors Runs Ros Ortg Junior Doutor Curso Mtmáti Univrsi Tuiuti o rná Dprtmnto Mtmáti Univrsi Fr o rná Tuiuti: Ciêni Cutur n 9 FCET 4 pp 83-9 Curiti r 84

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

A Classe de Grafos PI

A Classe de Grafos PI TEMA Tn. Mt. Apl. Comput., 6, No. (005), -4. Um Pulição Soi Brsilir Mtmáti Apli Computionl. A Clss Gros PI S. ALMEIDA, C.P. MELLO, A. GOMIDE, Instituto Computção, UNICAMP, 084-97 Cmpins, SP, Brsil. Rsumo.

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

ESTRATÉGIAS DE BUSCA CEGA

ESTRATÉGIAS DE BUSCA CEGA Bus m Espço Estos Intliêni Artiiil ESTRATÉGIAS DE BUSCA CEGA Um vz o prolm m ormulo... o sto inl v sr uso Em outrs plvrs, v-s usr um métoo us pr sr orm orrt plição os oprors qu lvrá o sto iniil o inl HUEI

Leia mais

Aula 16 p. 1. 1:for Cada v V do 2: Make_Set(v) 3:for cada aresta (u, v) E do. 1:if Find_Set(u)=Find_Set(v)then. 5: Union(u, v)

Aula 16 p. 1. 1:for Cada v V do 2: Make_Set(v) 3:for cada aresta (u, v) E do. 1:if Find_Set(u)=Find_Set(v)then. 5: Union(u, v) Estrutur d Ddos pr Cojutos Aul 16 Estrutur d ddos pr Cojutos Disjutos Prof. Mro Aurélio Stfs mro m dt.ufms.r www.dt.ufms.r/ mro Complxidd srá mdid m fução: úmro d oprçõs Mk_St m úmro totl d oprçõs Mk_St,

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv orrsponnt: 01)

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -II otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação Complta mas imprfita Informação

Leia mais

Geometria Espacial (Exercícios de Fixação)

Geometria Espacial (Exercícios de Fixação) Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo

Leia mais

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda.

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda. ORION 6 Sgun Port USB Hnry Equipmntos Eltrônios Sistms Lt. Ru Rio Piquiri, 400 - Jrim Wissópolis Cóigo Postl: 83.322-010 Pinhis - Prná - Brsil Fon: +55 41 3661-0100 INTRODUÇÃO: Pr orrto unionmnto, é nssário

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS

EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS.) Considere tbel de trefs seguir pr construção de um cs de mdeir: TAREFAS PRÉ-REQUISITOS DIAS. Limpez do terreno Nenhum. Produção e colocção d fundção. Produção

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

Usando a função Etiqueta adesiva imprimível. Usando a tela de edição. Computador. Tablet. ScanNCutCanvas

Usando a função Etiqueta adesiva imprimível. Usando a tela de edição. Computador. Tablet. ScanNCutCanvas SnNCutCnvs Usno unção Etiqut siv imprimívl Voê porá rir tiquts sivs xlusivs usno su imprssor jto tint unção Rortr irto SnNCut. Pr otr inormçõs sor s oprçõs ásis o SnNCutCnvs, onsult Aju. Pr vr Aju, liqu

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

XXIX Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXIX Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXIX Olimpíaa Brasilira Matmátia GABARITO Sguna Fas Soluçõs Nívl Sguna Fas Part A PARTE A Na part A srão atribuíos pontos para aa rsposta orrta a pontuação máxima para ssa part srá 0. NENHUM PONTO vrá

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Geração de Redes de Transistores Otimizadas Utilizando uma Abordagem Baseada em Grafos

Geração de Redes de Transistores Otimizadas Utilizando uma Abordagem Baseada em Grafos Grção Rs Trnsistors Otimizs Utilizno um Aorgm Bs m Grfos Julio S. Domingus Júnior, Viniius N. Possni, Rnto S. Souz, Flip S. Mrqus, Lomr S. Ros Jr. Grupo Arquitturs Ciruitos Intgros GACI Univrsi Frl Plots

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Rsolv os prolms ssinl ltrntiv orrsponnt: Toos os iritos rsrvos. Proii rproução totl ou pril sts págins

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

Código PE-ACSH-2. Título:

Código PE-ACSH-2. Título: CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu

Leia mais

Estatística. 6 - Distribuições de Probabilidade de Variáveis Aleatórias Contínuas

Estatística. 6 - Distribuições de Probabilidade de Variáveis Aleatórias Contínuas Estatística 6 - Distribuiçõs d Probabilidad d Variávis Alatórias Contínuas 06 - Distribuição Uniform Variávl alatória contínua podndo assumir qualqur valors dntro d um intrvalo [a,b] tal qu: f ( x) para

Leia mais

Guarde esse manual ele pode servir para futuras consultas em caso de avarias, lembrando que nossos móveis tem garantia de 2 anos.

Guarde esse manual ele pode servir para futuras consultas em caso de avarias, lembrando que nossos móveis tem garantia de 2 anos. CÔMODA 4 GAVETAS Kaik Madira L.90 / A.93 / P. 50 m 0/0/18 - REV.01 Válido a partir do lot: 18/0043 Guard ss manual l pod srvir para futuras onsultas m aso d avarias, lmbrando qu nossos móvis tm garantia

Leia mais

Eletrônica Digital Moderna e VHDL Volnei A. Pedroni, Elsevier, Soluções dos Exercícios Ímpares dos Capítulos 1 5

Eletrônica Digital Moderna e VHDL Volnei A. Pedroni, Elsevier, Soluções dos Exercícios Ímpares dos Capítulos 1 5 Eltrôni Digitl Morn VHDL Volni A. Proni, Elsvir, 200 Trução (om rvisão, tulizção mplição) Digitl Eltronis n Dsign with VHDL Elsvir / Morgn Kufmnn, USA, 2008 Soluçõs os Exríios Ímprs os Cpítulos 5 Cpítulo

Leia mais

Guarde esse manual ele pode servir para futuras consultas em caso de avarias, lembrando que nossos móveis tem garantia de 2 anos.

Guarde esse manual ele pode servir para futuras consultas em caso de avarias, lembrando que nossos móveis tem garantia de 2 anos. CÔMODA 4 GAVETAS Kaik Madira L.90 / A.93 / P. 50 m 14/0/19 - REV.0 Válido a partir do lot: 19/000 Cliqu aqui para visualizar o manual antrior Guard ss manual l pod srvir para futuras onsultas m aso d avarias,

Leia mais

1 Introdução. Abel Rodolfo Garcia Lozano Universidade do Estado do Rio de Janeiro Universidade do Grande Rio

1 Introdução. Abel Rodolfo Garcia Lozano Universidade do Estado do Rio de Janeiro Universidade do Grande Rio Al Roolo Gri Lozno rglozno@trr.om.r Univrsi o Esto o Rio Jniro Univrsi o Grn Rio Anglo Sntos Siquir nglosiquir@uol.om.r Univrsi Frl o Rio Jniro Univrsi o Grn Rio Rsumo A olorção é um su-ár qu tv su iníio

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

Modelos Determinísticos

Modelos Determinísticos Molos Dtrminísticos osição Instantâna; Pnúria não rmitia. (Em toas as situaçõs assum-s qu a rocura é trminística constant valor, qu não xistm scontos quantia. Nst caso assum-s qu a quantia ncomna é rcbia

Leia mais

Classificação ( ) ( )

Classificação ( ) ( ) Objtios MECÂNIC - DINÂMIC Dinâmica d um Ponto Matrial: Impulso Quantidad d Moimnto Cap. 5 Dsnolr o princípio do impulso quantidad d moimnto. Estudar a consração da quantidad d moimnto para pontos matriais.

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

Segunda Prova de Física Aluno: Número USP:

Segunda Prova de Física Aluno: Número USP: Sgunda Prova d Física 1-7600005 - 2017.1 Aluno: Númro USP: Atnção: i. Não adianta aprsntar contas sm uma discussão mínima sobr o problma. Rspostas sm justificativas não srão considradas. ii. A prova trá

Leia mais

ATENÇÃO: O bloco de exercício que verá a seguir, é um dos 64 que pertencem ao módulo 1 do Curso de Eletroeletrônica Analógica e Digital.

ATENÇÃO: O bloco de exercício que verá a seguir, é um dos 64 que pertencem ao módulo 1 do Curso de Eletroeletrônica Analógica e Digital. ATENÇÃO: O loo d xríio qu vrá a sguir, é um dos 64 qu prtnm ao módulo 1 do Curso d Eltroltrônia Analógia Digital. A partir dl trá uma idéia d ond o trinamnto podrá lh lvar. Voê podrá adquirir o arquivo

Leia mais

Nos itens seguintes, os componentes que constituem o setup serão explicados, enfatizando os elementos de maior relevância para o resultado

Nos itens seguintes, os componentes que constituem o setup serão explicados, enfatizando os elementos de maior relevância para o resultado 4 Construção Configurção o Stup Mis Nst trlho foi mprg téni songm m frquêni pr oltr s informçõs o nl. Est téni ont om o uso o Anlisor Vtoril, um quipmnto qu vrr um trmin fix frquêni rtorn os mplitu fs

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni. Rsolv os prolms

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais