A desigualdade de Kraft e correlatos

Tamanho: px
Começar a partir da página:

Download "A desigualdade de Kraft e correlatos"

Transcrição

1 A desguadade de Kraft e correatos Defções remares Códgo ão sguar: símboos dferetes s são reresetados or códgos dferetes c ; Códgo uvocamete decodfcáve: se símboos cocateados (s s s 3... s k) são reresetados or um códgo ão sguar cocateado (c c c 3... c k); Códgo statâeo (ref code): se ehum códgo é refo de outro códgo (estes códgos cada aavra códgo ode ser decodfcada assm que recebda). A fgura abao ustra a deedêca etre estas casses. Todos códgos ão sguar uvocamete decodfcáve statâeo Desguadade de Kraft Um códgo statâeo com aavras de códgo de comrmeto,,..., este se e somete se. Ates da demostração forma aresetam-se agus eemos ara uma mehor arecação. Símboos da fote Códgo A Códgo B Códgo C Códgo D Códgo E Códgo F Códgo G s s s s 0 0 Códgo - Eceto o códgo, todos os códgos são ão sguares, assm o códgo será descosderado de quaquer cometáro adcoa; - O códgo D ão é uívocamete decodfcáve (recebdo o códgo 0, or eemo, ão se sabe ser s segudo de s ou s 3); dem ara os códgos E (obtdo de D ea suressão de um 0 em s ) e F; estes códgos oderam ser usados com vrgua o que reresetara um acréscmo o comrmeto do códgo; - O códgo G é uvocamete decodfcáve, mas ão é statâeo (ote que o bt 0 rereseta o íco da aavra semre; orém, recebdo 0, or eemo, ão é ossíve decodfcar medatamete os ão se sabe se vrá mas um ou dos s em seguda); - O códgo B é statâeo orém súerfuo os o símboo s odera ter o códgo 0 (mas curto como em C); - Os códgos A, B e C são statâeos.

2 - A somatóra a desgudade de Kraft ara os város códgos os forece Códgo A Códgo B Códgo C Códgo D Códgo E Códgo F Códgo G Códgo 0,875,5,5 0,9375,75 O que a desgudade de Kraft garate é que estem códgos statâeos com os comrmetos dos códgos A, B, C, D e G, mas ão ara os de comrmeto como os códgos E, F e. os casos eemfcados como D e G (que são ão statâeos) a desguadade os garate que com estes comrmetos estem codgos statâeos. ote que o caso D os comrmetos são guas aos de C (que é statâeo) e o caso G ode-se costrur um códgo statâeo, com o mesmo comrmeto das aavras orgas, smesmete vertedo-se as codfcações dos símboos s a s. Códgo G A róma questão que surge é: qua destes códgos é mas curto? Para sso recsa-se saber as robabdades de ocorrêca dos símboos. Seam, or eemo, as segutes robabdades ara os símboos - Os comrmetos médos m (s) Símboos (s ) da fote s / s / s 3 /8 s /8, em bts, dos város códgos aresetados são Códgo Códgo Códgo Códgo Códgo Códgo Códgo Códgo A B C D E F G m,75,875,65,5,875,5 - O que também será demostrado adate é que a etroa da fote é o mte feror ara o comrmeto médo das aavras de códgo utzadas ara codfcar os símboos da fote, sto é, m (s). este caso artcuar a etroa da fote é dada or (s) (s )og (s,75 bts e observa-se etão que, dos eemos dados, aeas o códgo C ) é ta que seu comrmeto médo é umercamete gua à etroa da fote.

3 - Será demostrado ada que a codfcação ótma, o setdo de mmzação do comrmeto médo das aavras de códgo statâeas, é ta que og. Observa-se etão que, estas crcustâcas, ode-se escrever m og (s) e sso acotece, os eemos dados, aeas o códgo C (deomado códgo de uffma). Com esta trodução ode-se agora fazer as demostrações. Teorema (desguadade de Kraft) Um códgo statâeo com aavras de códgo de comrmeto,,..., este se e somete se. Demostração Para a codção ecessára sea uma codfcação em árvore bára como abao ustrado Cada aavra códgo é reresetada or uma termação desta árvore (o caso da fgura, or eemo, temos aavras códgos 000, 0, 0 e ). Um códgo ser statâeo sgfca que ehuma aavra códgo é refo de outra aavra códgo. Assm cada aavra códgo ema todos seus descedetes a árvore como caddatas a aavras códgo. Sea o comrmeto da aavra códgo mas oga. Uma aavra códgo o íve tem os coutos que formam os descedetes são dsutos, ode-se escrever descedetes. Como e ortato. Para a codção de sufcêca demostra-se que dadas aavras códgo de comrmetos,,..., que satsfazem a desguadade de Kraft ode-se semre costrur um códgo statâeo em árvore. Parte-se de uma árvore cometa ode todos os ramos têm comrmeto. Assume-se, sem erda de geeradade, que os comrmetos são escohdos em ordem crescete. Ache um códgo de comrmeto e eme todos seus descedetes. Faça o mesmo ara, etc até que todos esteam todos fados. É óbvo que ode ser achado. Para que o agortmo fucoe deve haver em cada asso termações vres de comrmeto. Mas o úmero de termações vres é dado or ( ) > ( ) 0 ode usou-se o fato dos comrmetos satsfazerem a desguadade de Kraft. Isto mostra que estem termações vres em cada asso e assm, ode-se costrur um códgo em árvore statâeo com os comrmetos das aavras códgo dadas. O resutado ode ser esteddo ara códgos uvocamete decodfcáves (quado etão assa a deomar-se desguadade de Kraft-McMa) e, adcoamete, geerazado ara sstemas de codfcação ão bára D. Para estas duas demostrações vde ref. [] e [].

4 Teorema O comrmeto médo das aavras de códgo de códgos statâeos é mtado suerormete ea etroa da fote, sto é, og (s) com a guadade ocorredo se e aeas se og. m Demostração Sea a dfereça (s) (s) m m og [og ] [og og ] og ode utzou-se o fato de que - e a desguadade de Kraft. ( ) 0 e ortato (s) 0 Famete, ote que com og revaece a guadade m (s) (como o eemo do códgo C aresetado aterormete). Uma outra forma ateratva ara a dedução desta útma codção é resovedo o robema de mmzação do comrmeto médo da aavra sueto à desguadade de Kraft, sto é Mmzar m Sueto à restrção Probemas desta casse odem ser resovdos com o uso dos mutcadores de Lagrage. Sea etão J + λ Dervado J em reação a cada e guaado a zero tem-se J λ 0 que forece etão. λ Da restrção mosta tem-se dode vem etão que ou og. λ λ Observação adcoa: Do teorema ercebe-se que ode acotecer do comrmeto ão resutar tero. este caso deve-se adotar o meor tero maor que og ; mas ara tato, camete, é og, deotado aqu como ecessáro verfcar se ada obedece à desguadade de Kraft. ( og ) ( og ). A esta costrução deoma-se codfcação de Shao-Fao. m Para esta costrução a aavra de códgo terá um comrmeto o tervao og og e cacuado a + eseraça desta eressão vem que E[ og ] E[ ] E[ og ] e ortato (s) m (s) +. +

5 Teorema 3 Dado ta que <0,5 e a fução ) [ og + ( )og ( ) ] Demostração Ω é váda a desguadade ( Ω () ( + ( ) ) ( ) ( ) ( ) a rmera desguadade fo usado um trucameto e os termos desrezados são semre ostvos; a seguda desguadade utzou-se o fato de /(-) ser semre meor do que um, com a restrção de ser meor que 0,5, e que assm otêcas sucessvas de /(-) vão dmudo (evdecou-se o útmo que é o meor). Assm Assm tem-se que ( ) ( ) () () Ω Mas, or outro ado, [ ( ) ] og + og ( ) [ og + ( )og ( ) ] () Assm Ω () og () Ω () ( ), de ode sa etão que. Esta desguadade é utzada a demostração da caacdade de caas. Observação fa A descrção deste aeo ão é cometa e sm comemeta o aresetado o vro teto [3]. Referêcas Bbográfcas [] Eemets of Iformato Theory, Thomas M. Cover ad Joy A. Thomas, 006. [] Iformato Theory ad Codg, orma Abramso, 963. [3] Moder Dgta ad Aaog Commucato Systems, B. P. Lath, 998. PJEJ 0/08/07

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

5 Aplicação do GFMM no BEM

5 Aplicação do GFMM no BEM 38 5 Apação do GFMM o BEM esse apítuo os desevovmetos apresetados o apítuo 4 são apados ao BEM pea expasão das souções fudametas utzadas as tegrações sobre os segmetos do otoro. É apresetada a formuação

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Ex: Cálculo da média dos pesos dos terneiros da fazenda Canoas-SC, à partir dos dados originais: x = 20

Ex: Cálculo da média dos pesos dos terneiros da fazenda Canoas-SC, à partir dos dados originais: x = 20 . MEDIDAS DE TENDÊNCIA CENTRAL (OU DE POSIÇÃO) Coceto: São aquelas que mostram o alor em toro do qual se agrupam as obserações.. MÉDIA ARITMÉTICA ( ) Sea (x, x,..., x ), uma amostra de dados: Se os dados

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

tica ou tica como Rui Vilela Mendes CMAF, ICC, CFN dos TPC s

tica ou tica como Rui Vilela Mendes CMAF, ICC, CFN dos TPC s O oder da matemátca tca ou A matemátca tca como metáfora Ru Vlela Medes CMAF, ICC, CFN Soluções dos TPC s Curso o Mestrado de Comlexdade,, ISCTE, Ivero 007 07-03 03-007 TPC Dados ( I(I(,,, N ( I(/N, /N,,,

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito.

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito. PMR 40 Mecâca Computacoal Método Implícto No método mplícto as dfereças são tomadas o tempo ao vés de tomá-las o tempo, como o método explícto. O método mplícto ão apreseta restrção em relação ao valor

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

MÉTODO DA RIGIDEZ DIRETA PARA MODELOS ESTRUTURAIS LINEARES E ELÁSTICOS

MÉTODO DA RIGIDEZ DIRETA PARA MODELOS ESTRUTURAIS LINEARES E ELÁSTICOS MÉTOO A RIGIEZ IRETA PARA MOELOS ESTRUTURAIS LINEARES E ELÁSTICOS CAPÍTULOS a Luz Ferado Martha Potfíca Uversdade Catóca do Ro de Jaero PUC-Ro epartameto de Egehara Cv Rua Marquês de São Vcete, - Gávea

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

(c) Para essa nova condição de operação, esboce o gráfico da variação da corrente no tempo.

(c) Para essa nova condição de operação, esboce o gráfico da variação da corrente no tempo. CONVERSÃO ELETROMECÂNICA DE ENERGIA Lsta de exercícos sobre crcutos magétcos Questão A fgura 1(a mostra um acoador projetado para produzr força magétca. O mesmo possu um úcleo em forma de um C e uma armadura

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares 1. 1.A Dê exemlo de uma seqüêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada

Leia mais

MÉTODO DUAL SIMPLEX COM A REGRA STEEPEST-EDGE PARA RESOLVER PROBLEMAS LINEARES CANALIZADOS

MÉTODO DUAL SIMPLEX COM A REGRA STEEPEST-EDGE PARA RESOLVER PROBLEMAS LINEARES CANALIZADOS A esusa Oeracoal e os Recursos Reováves 4 a 7 de ovembro de 3, atal-r MÉODO DUAL SIMPLEX COM A REGRA SEEPES-EDGE PARA RESOLVER PROLEMAS LIEARES CAALIZADOS Rcardo Slvera Sousa Marcos ereu Areales Deartameto

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais Exstêca e Ucdade de Soluções de Equações Dferecas Ordáras Regaldo J Satos Departameto de Matemátca-ICEx Uversdade Federal de Mas Geras http://wwwmatufmgbr/ reg 10 de ulho de 2010 2 1 INTRODUÇÃO Sumáro

Leia mais

MODELOS DE REGRESSÃO NÃO LINEARES

MODELOS DE REGRESSÃO NÃO LINEARES M. Mede de Olvera Excerto da ota peoa obre: MODELOS DE REGRESSÃO NÃO LINEARES Obervação No modelo de regreão dto leare, a varável depedete é exprea como fução lear do coefcete de regreão. É rrelevate,

Leia mais

Capítulo 3. Interpolação Polinomial

Capítulo 3. Interpolação Polinomial EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 3 Iterpolação Polomal Teorema de Weerstrass: se f( é uma fução cotíua em um tervalo fechado [a, b], etão para cada >,

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares Exercícos - Sequêcas de Números Reas (Solução Prof Carlos Alberto S Soares 1 Dscuta a covergêca da sequẽca se(2. Calcule, se exstr, lm se(2. Solução 1 Observe que se( 2 é lmtada e 1/ 0, portato lm se(2

Leia mais

Física 3 Óptica.

Física 3 Óptica. www.fisicaaveia.com.br www.fisicaaveia.com.br/cei Refração: asectos gerais DEFINIÇÃO REFRAÇÃO Mudaça de meio de roagação da luz, com cosequete mudaça de velocidade. A refração ão é o desvio, é a mudaça

Leia mais

NOTA BREVE SOBRE O CONCEITO DE MÉDIA 1

NOTA BREVE SOBRE O CONCEITO DE MÉDIA 1 NOTA BREVE SOBRE O CONCEITO DE MÉDIA O coceto de méda surge de modo abudate a dscla de Métodos Estatístcos, resete em mutos cursos de lcecatura de sttuções de eso sueror. Surge, de gual modo, em domíos

Leia mais

Determinação dos fatores associados à sobrevida de mulheres com câncer de mama via modelos de longa duração Weibull Modificado

Determinação dos fatores associados à sobrevida de mulheres com câncer de mama via modelos de longa duração Weibull Modificado Determação dos fatores assoados à sobrevda de muheres om âer de mama va modeos de oga duração Webu Modfado. Itrodução Ceyto Zaardo de Overa CER, DEs, UFCar 3 Gerso Hrosh Yoshar Júor FMRP/UP 2 4 Ge da va

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica Otmzção Ler curso Mrstel Stos (lgums uls: Mrcos Areles) Solução Gráfc Otmzção Ler Modelo mtemátco c c c ) ( f Mmzr L fução obetvo sueto : m m m m b b b L M L L restrções ( ) 0 0 0. codção de ão-egtvdde

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Problemas de Contagem

Problemas de Contagem Problemas de Cotagem Cotar em semre é fácil Pricíio Fudametal de Cotagem Se um certo acotecimeto ode ocorrer de 1 maeiras diferetes e se, aós este acotecimeto, um segudo ode ocorrer de 2 maeiras diferetes

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 }

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 } 5. Fções teste Até agora estvemos tratado tesvamete com a tegração. Uma cosa qe temos vsto é qe, cosderado espaços das, podemos pesar as fções como fcoas. Vamos rever brevemete esta déa. osdere a bola

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://www.uemat.br/eugeo Estudar sem racocar é trabalho 009/ TAXA INTERNA DE RETORNO A taa tera de retoro é a taa que equalza o valor presete de um ou mas pagametos (saídas de caa) com o valor presete

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

3. TESTES DE QUALIDADE DE AJUSTAMENTO

3. TESTES DE QUALIDADE DE AJUSTAMENTO Testes da qualdade de ajustameto 3 TESTES DE QULIDDE DE JUSTMENTO 3 Itrodução formação sobre o modelo da população dode se extra uma amostra costtu, frequetemete, um problema estatístco forma da dstrbução

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Índice. Exemplo de minimização de estados mais complexo. estados

Índice. Exemplo de minimização de estados mais complexo. estados Sumáro Método da tabela de mplcações para mnmzar estados. Atrbução de códgos aos estados: métodos baseados em heurístcas. Índce Exemplo de mnmzação de estados mas complexo Método da tabela de mplcações

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados Eercícos e Cálculo Numérco Iterpolação Polomal e Métoo os Mímos Quaraos Para a ução aa, seja,, 6 e, 9 Costrua polômos e grau, para apromar, 5, e ecotre o valor o erro veraero a cos b c l Use o Teorema

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

CAPÍTULO 7 INTERVALO DE CONFIANÇA E TESTES DE HIPÓTESES

CAPÍTULO 7 INTERVALO DE CONFIANÇA E TESTES DE HIPÓTESES CAPÍTULO 7 INTERVALO DE CONFIANÇA E TESTES DE HIPÓTESES 7. Itervalo de cofaça A cada aos (ormalmete), os acostumamos a acomahar as esqusas eletoras. Geralmete elas são mostradas assm: Caddato Iteção de

Leia mais

CAMPUS DE GUARATINGUETÁ Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev.

CAMPUS DE GUARATINGUETÁ Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev. uesp CAMUS DE GUARATINGUETÁ Computação e Cálculo Numérco: Elemetos de Cálculo Numérco ro. G.J. de Sea - Depto. de Matemátca Rev. 5 CAÍTUO 4 INTEROAÇÃO 4. INTRODUÇÃO Cosdere a segute tabela relacoado calor

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

MODELAGEM COMPUTACIONAL DETERMINÍSTICA DO FENÔMENO DE DECAIMENTO RADIOATIVO

MODELAGEM COMPUTACIONAL DETERMINÍSTICA DO FENÔMENO DE DECAIMENTO RADIOATIVO 007 Iteratoal uclear Atlatc Coferece - IAC 007 Satos, SP, Brazl, September 30 to October 5, 007 ASSOCIAÇÃO BRASILEIRA DE EERGIA UCLEAR - ABE ISB: 978-85-994-0- ODELAGE COPUTACIOAL DETERIÍSTICA DO FEÔEO

Leia mais

Aula Condições para Produção de Íons num Gás em Equilíbrio Térmico

Aula Condições para Produção de Íons num Gás em Equilíbrio Térmico Aula 2 Nesta aula, remos formalzar o coceto de plasma, rever osso etedmeto sobre temperatura de um gás e falmete, cohecer algus processos de ozação. 1.3 Codções para Produção de Íos um Gás em Equlíbro

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

Capítulo 2 Circuitos Resistivos

Capítulo 2 Circuitos Resistivos EA53 Crcutos Elétrcos I DECOMFEECUICAMP Caítulo Crcutos esstos EA53 Crcutos Elétrcos I DECOMFEECUICAMP. Le de Ohm esstor: qualquer dsosto que exbe somete uma resstêca. a resstêca está assocada ao úmero

Leia mais

Teoria das Comunicações

Teoria das Comunicações Teora das Comucações.6ª Revsão de robabldade rof. dré Noll arreto rcíos de Comucação robabldade Cocetos áscos Eermeto aleatóro com dversos resultados ossíves Eemlo: rolar um dado Evetos são cojutos de

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Interpolação-Parte II Estudo do Erro

Interpolação-Parte II Estudo do Erro Iterpolação-Parte II Estudo do Erro. Estudo do Erro a Iterpolação. Iterpolação Iversa 3. Grau do Poliômio Iterpolador 4. Fução Splie em Iterpolação 4. Splie Liear 4. Splie Cúbica .Estudo do Erro a Iterpolação

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no estudo da quadratura de Gauss.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no estudo da quadratura de Gauss. CAÍTULO QUADRATURA DE GAUSS Mutos dos tegras que é eessáro alular o âmbto da aplação do Método dos Elemetos Ftos (MEF) ão são trvas,.e., ou a prmtva da ução tegrada ão exste expltamete, ou é demasado omplada

Leia mais

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador.

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador. 44- Forma de Newto-Gregory para o poliômio iterpolador No caso em que os ós da iterpolação x 0, x,, x são igualmete espaçados, podemos usar a orma de Newto-Gregory para obter p (x Estudaremos iicialmete

Leia mais

Aula 5 de Bases Matemáticas

Aula 5 de Bases Matemáticas Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas

Leia mais

Apêndice 1-Tratamento de dados

Apêndice 1-Tratamento de dados Apêdce 1-Tratameto de dados A faldade deste apêdce é formar algus procedmetos que serão adotados ao logo do curso o que dz respeto ao tratameto de dados epermetas. erão abordados suctamete a propagação

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A) Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

CAPÍTULO IV SÉRIES DE TERMOS REAIS

CAPÍTULO IV SÉRIES DE TERMOS REAIS CAPÍTULO IV SÉRIES DE TERMOS REAIS. Itrodução A oeração de adição de úmeros reais é uma oeração biária suostamete bem cohecida do leitor: a cada ar de úmeros reais (a b) a oeração de adição associa a resectiva

Leia mais

Caracterização de Partículas. Prof. Gerônimo

Caracterização de Partículas. Prof. Gerônimo Caracterzação de Partículas Prof. Gerômo Aálse Graulométrca de partículas Tabela: Sére Padrão Tyler Mesh Abertura Lvre (cm) âmetro do fo () 2 ½ 0,7925 0,088 0,6680 0,070 ½ 0,56 0,065 4 0,4699 0,065

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

CADERNOS DO IME Série Estatística

CADERNOS DO IME Série Estatística CADERNOS DO IME Sére Estatístca Uversdade do Estado do Ro de Jaero - UERJ ISSN mpresso 43-90 / ISSN o-e 37-4535 - v.4, p.5-9, 06 DOI: 0.957/cadest.06.753 ESTIMAÇÃO DO GRAU DE ASTIGMATISMO PELO MÉTODO SUPPORT

Leia mais

Estatística 15 - Comparação entre Duas Populações

Estatística 15 - Comparação entre Duas Populações Etatítca 5 - Comaração etre Da Polaçõe 5- Comaração de Méda de Da Polaçõe µ Méda da olação µ Méda da olação Tete µ - µ µ - µ > µ - µ µ - µ < µ - µ µ - µ. Dado Emarelhado EemloVte cobaa bmetda drate ma

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

Estimação pontual, estimação intervalar e tamanho de amostras

Estimação pontual, estimação intervalar e tamanho de amostras Estmação potual, estmação tervalar e tamaho de amostras Iferêca: por meo das amostras, cohecer formações geras da população. Problemas de ferêca, em geral, se dvdem em estmação de parâmetros e testes de

Leia mais