Interpolação-Parte II Estudo do Erro

Tamanho: px
Começar a partir da página:

Download "Interpolação-Parte II Estudo do Erro"

Transcrição

1 Iterpolação-Parte II Estudo do Erro. Estudo do Erro a Iterpolação. Iterpolação Iversa 3. Grau do Poliômio Iterpolador 4. Fução Splie em Iterpolação 4. Splie Liear 4. Splie Cúbica

2 .Estudo do Erro a Iterpolação O erro em aproimar a fução f() por um poliômio iterpolador p (), de rau meor ou iual a, é: E ()f()-p () para todo de [, ]. Estudar o erro a iterpolação siifica saber o quão próimo f() está de p ().

3 .Estudo do Erro a Iterpolação Iterpolação liear de f () e f () f() p () f ( ) f ( )p ( ) f () f ( ) f ( )p ( ) f ()

4 .Estudo do Erro a Iterpolação Iterpolação liear de f () e f () por p (). O mesmo poliômio p () iterpola f () e f () em e. O erro E ()f ()-p () > E () f ()- p () para todo de (, ). O erro depede da cocavidade da curva, ou seja, de f () e f ().

5 .Estudo do Erro a Iterpolação Teorema : < < <... <, ( ) Sejam potos. Seja f() com derivadas até ordem () para todo em [, ]. Seja p () o poliômio iterpolador de f() os potos,,,...,. Etão, em qualquer poto do itervalo [, ] o erro é dado por E ()f()-p () (- )(- )...(- ) ξ (, ) ode. ( ξ ) ( ) f ( )!

6 .Estudo do Erro a Iterpolação Demostração:Teorema o Note que i para i,,..,, seue que G() (- )(- )...(- ) E (), loo a fórmula do erro está correta para i. o Defiido a fução H(t) E ()G(t)- E (t)g(), com, t, ( ) e i. Etão, H(t) tem derivadas e pelo meos zeros. Note que,,.., e são zeros de H(t). o Aplicado o Teorema de Rolle sucessivamete, vezes, demostra-se o teorema.

7 .Estudo do Erro a Iterpolação Teorema : Sejam potos. Seja p () o poliômio iterpolador de f() os potos,,,...,. Da forma de Newto E ()f()-p () (- )(- )...(- ) f[,,,...,,]. Portato, f [ < < <... <, ( ),, com. ( ),, ξ,...,, ] ( ξ ) ( ) f ( )! Demostração imediata.

8 .Estudo do Erro a Iterpolação Corolário: Estimativa do Erro. Sob as ipóteses dos teoremas e, temos que ode ( )! ) )...( )( ( ) ( ) ( ) ( M p f E ( ) ( )., com ) ( ma f M

9 .Estudo do Erro a Iterpolação Corolário: Estimativa do Erro. Sob as ipóteses dos teoremas e, temos que ode ( )! ) )...( )( ( ) ( ) ( ) ( M p f E ( )., com ],,...,, [ ma )! ( f M

10 Estimativa para o erro f () Seja dada a tabela: f() a) Obter f (.47) usado um poliômio de rau. b) Ecotrar uma estimativa para o erro.

11 Tabela de difereças Ordem Ordem Ordem Ordem

12 Estimativa para o erro Escoledo.4,.5,.6 p ( ) f ( ) ( ) f [, ] ( )( ) f [,, ].7 (.4) (.667) (.4)(.5) (.45) a) p(.47).78 f (.47) b) E(.47) (.47.4)(.47.5)(.47.6) 8.49 E(.47) p(.47).78 ±.9

13 . Iterpolação iversa f () Seja dada a tabela: f() Obter tal que f().3365 e ecotrar uma estimativa para o erro. Este é o problema da iterpolação iversa.

14 . Iterpolação iversa Solução versão : Obtea p () que iterpola f().3365 e determie. Problema: ão temos como estimar o erro cometido!!!!!!! Solução versão : Se f() for mootoicamete crescete ou decrescete o itervalo cosiderado, etão ela pode ser ivertida. Etão faça a iterpolação da fução iversa e calcule o erro.

15 Tabela de difereças divididas - Versão y Ordem Ordem Ordem Ordem y y y

16 Estimativa para o erro Escoledo,, p ( ) f ( y ) ( y y ) f [ y, y] ( y y )( y y) f [ y, y, y ]. ( y.4)(.778) ( y.4)( y.3494)(.78) a) p(.365).7487 b) E(.787) (.787.4)( )( ).994 E(.787) ±.

17 3. Grau do poliômio iterpolador Para a escola do rau do poliômio iterpolador: ) Costruir a tabela de difereças divididas; ) Eamiar as difereças a viziaça do poto de iteresse; Se as difereças de ordem forem praticamete costate, ou se as difereças de ordem variarem em toro de zero, o poliômio de rau será o que melor aproimará a fução a reião cosiderada.

18 3. Grau do poliômio iterpolador Seja f ( ) com os valores da tabela: f() Um poliômio de rau é uma boa aproimação para f ( )

19 3. Grau do poliômio iterpolador Ordem Ordem Ordem f ( )

20 3. Feômeo de Rue Questão: A seqüêcia {p ()} covere para f() o itervalo [a,b] se {,,..., } pertecem a {a,b] e tede ao ifiito? Iterpolado a fução f ( ) 5 o itervalo [-,] com i i para i,,..,.

21 3. Feômeo de Rue Iterpolação liear de f () e f () com P () f() - Solução : Utilizar Iterpolação Spie - Coverêcia aratida!!!!

22 4. Fução Splie em Iterpolação Feômeo de Rue é superado pela fução Splie. () Defiição: Seja tabelada para < < <... <. A fução S p () é deomiada splie de rau se: a) Em cada subitervalo [ i, i ], para i,,,..,( ), s p () é um poliômio de rau p. S p () b) é cotíua e tem derivadas cotíuas até ordem ( p ) em [ a, b]. c). f S p ( i ) f ( i ) para i,,..., p

23 4. Fução Splie Liear A fução splie liear iterpolate de f(), ou seja S () os ós,,...,, pode ser escrita em cada subitervalo [ i, i ] como s Note que S () é poliômio de rau o itervalo. s () é cotíua em todo itervalo Nos potos ós i i. [, ] i i i ( ) f ( i ) f ( i ) i i i i i s ( ) Loo, S () é a splie liear iterpolate de f(). f ( ) [, ] i i i

24 4. Fução Splie Liear Acar a fução splie liear que iterpola f() f ( ) Da defiição: s ( ) Aaloamete: f ( ) f ( ) s( ) s s ( ) ( 4) [,5] 3 ( ) [,] ( ) [ 5,7] 3

25 4. Fução Splie Liear Graficamete f() f() s () s () s 3 () 5 7

26 4. Fução Splie Quadrática As splie quadráticas tem derivadas cotíuas até ordem e portato a curvatura de S () ão é suave os ós. Seja a fução f ( ) para para [,3] [,] Note que a fução e sua derivada primeira são cotíuas em. Cotudo, sua derivada seuda, em, ão é cotíua.

27 4. Fução Splie Quadrática Graficamete

28 4. Fução Splie Quadrática Graficamete, vemos a descotiuidade da derivada seuda (curvatura). Cosidere aora a situação em que f() e sua derivada primeira são cotíuas em, cotudo ocorre mudaça de sial da derivada seuda em Esta é situação que ocorre o ajuste de splie quadrática. f ( ) 8 5 para para [,] [,3]

29 4. Fução Splie Quadrática Graficamete 8 5

30 4. Fução Splie Cúbica As splies cúbicas são as mais usadas. Uma splie cúbica S 3 () é uma fução poliomial por partes, cotíua, ode cada parte s () é um poliômio de rau 3 os itervalos [ -, ]. S 3 () tem derivadas primeira e seuda cotíuas, loo ão tem bicos e ão troca abruptamete a curvatura os ós.

31 4. Fução Splie Cúbica - Costrução A fução splie cúbica iterpolate de f(), ou seja S 3 (), os ós,,...,, pode ser escrita em cada subitervalo como poliômios de rau 3. Deotada por s () para,,...,, deve satisfazer:. S3 ( ) s ( ) para [, ],,,...,.. S3 ( i ) f ( i ) para i,,...,. 3. s ( ) s ( ) para,,...,. 4. s '( ) s '( ) para,,...,. 5. s ''( ) s ''( ) para,,...,.

32 4. Fução Splie Cúbica - Costrução Sejam as parte da splie cúbica dadas por 3 ( - ) b ( - ) c ( - ) d,,,...,. s ( ) a S 3 ( ) a, b, c, d, a, b, c, d O Cálculo de evolve a determiação de 4 coeficietes:,..., a Codições : satisfeitas por costrução. Codições : () codições os ós. Codições 3: (-) codições de cotiuidade de S 3 os ós. Codições 4: (-) codições de cotiuidade de S 3 os ós. Codições 5: (-) codições de cotiuidade de S 3 os ós. Total de 4- codições. Restam duas codições em aberto!!!, b, c, d.

33 4. Fução Splie Cúbica - Costrução Notação: Impodo as codições: ( ) ( )., '', y f s ( ) y y y y y y c y d b a 6 6,, 6.,..,, equações para que o sistema liear tem ( -) Note

34 4. Fução Splie Cúbica - Costrução Resta impor mais duas codições. Alterativas : Camada splie atural ( ) e S ''( ) S3 '' 3 Alterativa : Camada splie parabólica. e Alterativa 3: Impor icliações os etremos. ( ) A e S '( ) B S 3 ' 3 Geralmete quado temos iformações físicas do problema

35 4. Fução Splie Cúbica - Eemplo Acar a splie cúbica atural que iterpola f(.5) dada Temos 4 subitervalos iuais. Dadas resolvedo o sistema liear para f() ) ( ), ( ), ( ), ( 4 3 s s s s ( ) ( ) ( ) codições splie atural y y y y y y y y y ( ) 3 pois 3,

36 4. Fução Splie Cúbica - Eemplo Substituido os valores de resolvemos o sistema liear obtedo: y f ( ) e , 4., Calculamos a, b, c, d, e s( ), s ( ), s3 ( ), s4 ( ) Como queremos f(.5) fazemos f(.5) s(.5) s (.5) Sedo a 3 (.5 - ) b (.5 - ) c (.5 - ).5 s (.5).5348 d

37 5. EXERCÍCIOS Faça os seuites eercícios do capítulo 5 do livro teto. Eercícios: 9, e projeto páia 66.

Interpolação. Interpolação Polinomial

Interpolação. Interpolação Polinomial Iterpolação Iterpolação Poliomial Objetivo Iterpolar uma fução f(x) cosiste em aproximar essa fução por uma outra fução g(x), escolhida etre uma classe de fuções defiidas (aqui, usaremos poliômios). g(x)

Leia mais

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador.

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador. 44- Forma de Newto-Gregory para o poliômio iterpolador No caso em que os ós da iterpolação x 0, x,, x são igualmete espaçados, podemos usar a orma de Newto-Gregory para obter p (x Estudaremos iicialmete

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Interpolação

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Interpolação INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Iterpolação Itrodução A tabela abaio relacioa calor especíico da água e temperatura: temperatura C calor especíico 5 3 35 4 45 5.9997.9985.9986.9988.9988.99849.99878 o

Leia mais

TE231 Capitulo 4 Interpolação Polinomial. Prof. Mateus Duarte Teixeira

TE231 Capitulo 4 Interpolação Polinomial. Prof. Mateus Duarte Teixeira TE3 Capitulo 4 Iterpolação Poliomial Pro. Mateus Duarte Teieira . Itrodução A tabela abaio relacioa calor especíico da água com a temperatura: Deseja-se por eemplo saber: a o calor especíico da água a

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

Aula 16. Integração Numérica

Aula 16. Integração Numérica CÁLCULO NUMÉRICO Aula 6 Itegração Numérica Itegração Numérica Aula 6 Itegração Numérica Cálculo Numérico 3/4 Itegração Numérica Em determiadas situações, itegrais são diíceis, ou mesmo impossíveis de se

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Trabalho sobre Spline Cúbico Natural

Trabalho sobre Spline Cúbico Natural Uiversidade Tecolóica Federal do Paraá Prof: Lauro Cesar Galvão Campus Curitiba Departameto Acadêmico de Matemática Etrea: Ver quadro abaio. Atividades Práticas Supervisioadas APS Trabalo sobre Splie Cúbico

Leia mais

CCI-22 CCI-22. 5) Interpolação. Matemática Computacional

CCI-22 CCI-22. 5) Interpolação. Matemática Computacional CCI- CCI- atemátia Computaioal 5 Iterpolação Carlos Alerto Aloso Saes Poliômios iterpoladores, Formas de Lagrage, de Newto e de Newto-Gregory Itrodução Forma de Lagrage Forma de Newto CCI- Forma de Newto-Gregory

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Professor Mauricio Lutz LIMITES

Professor Mauricio Lutz LIMITES LIMITES ) Noção ituitiva de ites Seja a fução f ( ) +. Vamos dar valores de que se aproimem de, pela sua direita (valores maiores que ) e pela esquerda (valores meores que ) e calcular o valor correspodete

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Ajuste de Curvas Itrodução No capítulo aterior vios ua fora de trabalhar co ua fução defiida por ua tabela de valores, a iterpolação polioial. Cotudo, e sepre a iterpolação

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

RESOLUÇÃO DE SISTEMAS NÃO LINEARES

RESOLUÇÃO DE SISTEMAS NÃO LINEARES 87 RESOLUÇÃO DE SISTEMAS NÃO LINEARES Uma equação que coteha uma epressão do tipo, -,,, se(), e +z, z etc, é chamada ão-liear em,, z,, porque ela ão pode ser escrita o que é uma equação liear em,, z, a

Leia mais

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA CAP. VI DIFRNCIAÇÃO INGRAÇÃO NUÉRICA 6. DIFRNCIAÇÃO NUÉRICA m muitas circustâcias tora-se diícil obter valores de derivadas de uma ução: derivadas que ão são de ácil obteção; emplo (calcular a ª derivada:

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

12. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação.

12. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação. Egearia Mecâica. Taa de variação Muitos coceitos e feômeos físicos, ecoômicos, biológicos, etc. estão relacioados com taa de variação. Defiição : Taa de variação média. Cosidere variável idepedete e y

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e CAPÍTULO 3 Eercícios 3 3 Seja a equação y y 0 B Como o Eercício ( item (e, yabl B y( Bl A 0 B B B B y(! y(! B 4 4 4 l A0! A( l A solução procurada é y ( l 4 l $ % 4 Pela ª Lei de Newto, m dv dt dv v dt

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

(def) (def) (T é contração) (T é contração)

(def) (def) (T é contração) (T é contração) CAPÍTULO 5 Exercícios 5 (def) (T é cotração) a) aa Ta ( ) Ta ( 0) aa0, 0 Portato, a a aa0 (def) (def) (T é cotração) b) a3a Ta ( ) Ta ( ) TTa ( ( ) TTa ( ( 0)) (T é cotração) Ta ( ) Ta ( ) 0 aa0 Portato,

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

INTEGRAÇÃO NUMÉRICA. b a

INTEGRAÇÃO NUMÉRICA. b a INTEGRAÇÃO NUMÉRICA No cálculo, a itegral de uma ução oi criada origialmete para determiar a área sob uma curva o plao cartesiao. Ela também surge aturalmete em dezeas de problemas de Física, como por

Leia mais

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial. DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à

Leia mais

Lista de Exercícios Método de Newton

Lista de Exercícios Método de Newton UNEMAT Uiversidade do Estado de Mato Grosso Campus Uiversitário de Siop Faculdade de Ciêcias Eatas e Tecológicas Curso de Egeharia Civil Disciplia: Cálculo Diferecial e Itegral I Lista de Eercícios Método

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

FUNÇÕES CONTÍNUAS Onofre Campos

FUNÇÕES CONTÍNUAS Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos oofrecampos@bol.com.br Vamos estudar aqui uma ova classe de

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 2- Resolução de Sistemas Não-lieares. 2.- Método de Newto. 2.2- Método da Iteração. 2.3- Método do Gradiete. 2- Sistemas Não Lieares de Equações Cosidere

Leia mais

Método dos Mínimos Quadrados. Julia Sawaki Tanaka

Método dos Mínimos Quadrados. Julia Sawaki Tanaka Método dos Míimos Quadrados Julia Sawaki Taaka Diagrama de Dispersão iterpolação ajuste ou aproximação O Método dos Míimos Quadrados é um método de aproximação de fuções. É utilizado quado: Cohecemos potos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Derivadas Cálculo Diferencial e Integral I

Derivadas Cálculo Diferencial e Integral I Uidade G Derivadas Cálculo Diferecial e Itegral I Tecologia em Costrução de Edifícios IFRS CAMPUS RIO GRANDE PROFª DÉBORA BASTOS 4. Taa de variação Muitos coceitos e feômeos físicos, ecoômicos, biológicos,

Leia mais

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar. Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO DOMÍNIO: Fuções Reais de Variável Real 1. Seja f a fução real de variável real defiida por f Qual das seguites epressões defie uma sucessão lim f u? (A) u (C) u

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO LIMITES. Itrodução: Usamos a palavra ite o osso cotidiao para idicar, geericamete, um poto que pode ser evetualmete

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

Raízes de equações. O Problema. Equações. Algébricas Transcendentes

Raízes de equações. O Problema. Equações. Algébricas Transcendentes Raízes de equações Algébrias Trasedetes O roblema É frequete em problemas ietífios e de egeharia a eessidade de se determiar o valor para que satisfaça uma dada fução f isto é f. O úmero é hamado de zero

Leia mais

. Dessa forma, quanto menor o MSE, mais a imagem

. Dessa forma, quanto menor o MSE, mais a imagem Uiversidade Federal de Perambuco CI / CCEN - Área II 1 o Exercício de Cálculo Numérico ( 18 / 06 / 2014 ) Aluo(a) 1- Questão 1 (2,5 potos) Cosidere uma imagem digital como uma matriz bidimesioal de dimesões

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

δ de L. Analogamente, sendo

δ de L. Analogamente, sendo Teoremas fudametais sobre sucessões Teorema das sucessões equadradas Sejam u, v e w sucessões tais que, a partir de certa ordem p, u w v lim u = lim v = L (fiito ou ão), a sucessão w também tem limite,

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Uiversidade Federal do Rio de Jaeiro Istituto de Matemática Departameto de Matemática Disciplia: Cálculo Diferecial e Itegral IV Uidades: Escola Politécica e Escola de Quimica Código: MAC 248 Turmas: Egeharias

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

A tangente como posição limite da secante

A tangente como posição limite da secante A taete como posição ite da secate 7.5 7 6.75 6.5 6.5 6 5.75 5.5 5.5 5 4.75 4.5 4.5 4 3.75 3.5 3.5 3.75.5.5.75.5.5.75.5.5 P Q -.5.5.5.75.5.5.75.5.5.75 3 3.53.53.75 4 4.54.54.75 5 5.55.55.75-5 A taete como

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição;

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição; CÁLCULO I Prof Edilso Neri Júior Prof Adré Almeida Aula o 9: A Itegral de Riema Objetivos da Aula Deir a itegral de Riema; Exibir o cálculo de algumas itegrais utilizado a deição; Apresetar fuções que

Leia mais

DERIVADA DE FUNÇÕES REAIS DE UMA VARIÁVEL REAL

DERIVADA DE FUNÇÕES REAIS DE UMA VARIÁVEL REAL DERIVADA DE FUNÇÕES REAIS DE UMA VARIÁVEL REAL Editora da Uiversidade Estadual de Marigá Reitor: Prof Dr Gilberto Cezar Pavaelli Vice-Reitor: Prof Dr Agelo Priori Pró-Reitora de Pesquisa e Pós-Graduação:

Leia mais

PROVA DE MATEMÁTICA 2 a FASE

PROVA DE MATEMÁTICA 2 a FASE PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para um resultado, ão

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL

CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL CODIFICAÇÃO DE CANAL PARA SISTEMAS DE COMUNICAÇÃO DIGITAL CÓDIGOS CÍCLICOS Eelio M. G. Ferádez - Códios Cíclicos: Defiição Um códio de bloco liear é um códio cíclico se cada deslocameto cíclico das palaras-códio

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

Ajuste de Curvas. Lucia Catabriga e Andréa Maria Pedrosa Valli

Ajuste de Curvas. Lucia Catabriga e Andréa Maria Pedrosa Valli 1-27 Ajuste de Curvas Lucia Catabriga e Adréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempeho (LCAD) Departameto de Iformática Uiversidade Federal do Espírito Sato - UFES, Vitória, ES,

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta

CAPÍTULO 8. Exercícios Inicialmente, observamos que. não é série de potências, logo o teorema desta CAPÍTULO 8 Eercícios 8 Iicialmete, observamos que 0 ão é série de otêcias, logo o teorema desta seção ão se alica Como, ara todo 0, a série é geométrica e de razão, 0, etão a série coverge absolutamete

Leia mais

a) n tem raio de convergência 1=L.

a) n tem raio de convergência 1=L. 3. SÉRIES DE OTÊNCIAS SÉRIES & EDO - 7. 3.. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS. Falso (F) ou Verdadeiro (V)? Justi que. (a) Se a série c diverge em = ; etão ela diverge em = 3. (b) Se

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I Associação de Professores de Matemática Cotactos: Rua Dr. João Couto,.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Uma série de potências depende de uma variável real e apresenta constantes C k. + C k. k=0 2 RAIO E INTERVALO DE CONVERGÊNCIA

Uma série de potências depende de uma variável real e apresenta constantes C k. + C k. k=0 2 RAIO E INTERVALO DE CONVERGÊNCIA 1 Uma série de potêcias depede de uma variável real e apreseta costates, chamadas de coeficietes. Ela se apreseta da seguite forma: Quado desevolvemos a série, x permaece x, pois é uma variável! O que

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere AUTO AVALIAÇÃO CAPÍTULO I. Assiale com V as proposições que cosidere verdadeiras e com F as que cosidere falsas : a. Sedo A e B cojutos disjutos, ambos majorados, os respectivos supremos ão podem coicidir

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

MÉTODO DE NEWTON RESUMO

MÉTODO DE NEWTON RESUMO MÉTODO DE NEWTON Iácio de Araujo Machado Roaldo Ribeiro Alves RESUMO Este trabalho teve por objetivo apresetar o método iterativo de Newto bastate importate por sua fácil aplicabilidade. O objetivo pricipal

Leia mais

Prof. Celso Módulo 12 Resposta em freqüência-diagrama de Nyquist RESPOSTA EM FREQÜÊNCIA-DIAGRAMA DE NYQUIST

Prof. Celso Módulo 12 Resposta em freqüência-diagrama de Nyquist RESPOSTA EM FREQÜÊNCIA-DIAGRAMA DE NYQUIST Prof. Celso Módulo Resposta em freqüêcia-diagrama de Nyquist RESPOSTA EM FREQÜÊNCIA-DIAGRAMA DE NYQUIST O diagrama de Nyquist ou diagrama polar é um gráfico do módulo de G pelo âgulo de fase de G em coordeadas

Leia mais

Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb)

Cálculo Diferencial e Integral I 1 o Exame - (MEMec; MEEC; MEAmb) Soluções da prova. Cálculo Diferecial e Itegral I o Eame - MEMec; MEEC; MEAmb de Juho de 00-9 horas I val.. i!! u!! do teorema das sucessões equadradas vem u 0 dado que ±!! 0. v / + l + / + l + /6 l Para

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

TESTE GLOBAL 12.º ANO

TESTE GLOBAL 12.º ANO Novo Ípsilo Matemática A.º ao TESTE GLOBAL.º ANO NOME: N.º: TURMA: ANO LETIVO: / AVALIAÇÃO: PROFESSOR: EN. EDUAÇÃO: DURAÇÃO DO TESTE: 90 MINUTOS O teste é costituído por dois grupos. O Grupo I é costituído

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e MATEMÁTICA CADERNO CURSO E FRENTE ÁLGEBRA Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, etão: I) = b ac = + = b

Leia mais