F A 6. Aplicações à Física e à Engenharia. Aplicações à Física e à Engenharia

Tamanho: px
Começar a partir da página:

Download "F A 6. Aplicações à Física e à Engenharia. Aplicações à Física e à Engenharia"

Transcrição

1 UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplcções à Físc e à Egehr. Pressão hdrostátc e forç Os mergulhdores otm que pressão d águ umet qudo eles mergulhm ms profudmete. Isso ocorre por cus do umeto do peso d águ cm deles. Prof.: Rogéro Ds Dll Rv 4 Aplcções à Físc e à Egehr. Pressão hdrostátc e forç.itrodução.pressão Hdrostátc e Forç.Resolução de Exemplos 4.Mometos e Cetros de Mss 5.Resolução de Exemplos Em gerl, supoh que um plc horzotl f com áre A por metros qudrdos sej sumers em um fludo de desdde ρ qulogrms por metro cúco um profuddde d metros xo d superfíce do fludo, como fgur xo. 5. Itrodução. Pressão hdrostátc e forç Juto com s muts plcções de cálculo tegrl à Físc e à Egehr cosdermos dus qu: forç devdo à pressão d águ e cetros de mss. Como em osss plcções terores à geometrc (áres, volume e comprmetos) e o trlho, oss estrtég é querr qutdde físc em um grde úmero de peques prtes, proxmr cd peque prte, dcor os resultdos, tomr o lmte e etão vlr tegrl resultte. O fludo dretmete cm d plc tem um volume V = Ad, ssm su mss é m = ρv = ρad. A forç exercd pelo fludo plc é, portto: F = mg = ρgad ode g é celerção d grvdde. A pressão P plc é defd como forç por udde de áre: F P = = ρgd A 6

2 . Pressão hdrostátc e forç No Sstem Itercol de Uddes, pressão é medd em ewtos por metro qudrdo, que é chmd pscl ( N/m = P). Como ess é um udde peque, o klopscl (kp) é frequetemete usdo. Por exemplo, um vez que desdde d águ é de ρ =. kg/m, pressão o fudo de um psc de m de profuddde é Exemplo : Um repres tem o formto do trpézo mostrdo fgur segur. A ltur é de m, e lrgur é de 5 m o topo e m o fudo. Clcule forç repres devdo à pressão hdrostátc d águ se o ível d águ está 4 m do topo d repres. P = ρgd =. kg/m 9,8 m/s m P = 9.6 P = 9,6 kp 7. Pressão hdrostátc e forç Um prcípo mportte d pressão de fludos é o fto verfcdo expermetlmete de que em qulquer poto o líqudo pressão é mesm em tods s dreções. Etão, pressão em qulquer dreção um profuddde d em um fludo com desdde ρ é dd por Solução: Escolhemos um exo vertcl x com orgem superfíce d águ, como fgur segur. P = ρgd = δd 8. Pressão hdrostátc e forç Isso os jud determr forç hdrostátc cotr um plc vertcl ou prede de um repres em um fludo. Este ão é um prolem smples, porque pressão ão é costte, ms se elev com o umeto d profuddde. 9 A profuddde d águ é de 6 m; ssm, dvdmos o tervlo [, 6] em sutervlos de gul comprmeto com extremos x e x [x -, x]. A -ésm fx horzotl d repres é proxmd por um retâgulo com ltur x e lrgur w, ode, por smlrdde de trâgulos (ver fgur xo) 6 x = = 6 x x = = 8

3 e ssm w = (5 + ) = (5 + 8 x ) = 46 x Se A é áre d -ésm, etão A = w x = x x (46 ) 6 F = 9.8 x (46 x) (46 ) F = x x x F = 9.8 x 6 7 F = ,4 N 6 6 Se x é peque, etão pressão P -ésm fx é prtcmete costte, e podemos escrever P. 9,8 x Exemplo : Clcule forç hdrostátc o extremo de um tmor clídrco com ro de pés que está sumerso em águ com pés de profuddde. Cosdere δ = 6,5 l/pés. P 9.8 x 4 7 A forç hdrostátc F gdo -ésm fx é o produto d pressão pel áre: F = P A x x x 9.8 (46 ) Solução: Neste exemplo é coveete escolher os exos como fgur xo, de modo que orgem sej colocd o cetro do tmor. Adcodo esss forçs e tomdo o lmte qudo, otemos forç hdrostátc totl repres: lm 9.8 (46 ) = F = x x x 5 8

4 Etão o círculo tem um equção smples x + y = 9. Como o Exemplo, dvdmos regão crculr em fxs horzots de lrgurs gus. D equção do círculo, vemos que o comprmeto d -ésm fx é e ssm su áre é ( y ) 9 ( ) A = 9 y y 9 A segud tegrl é, porque o tegrdo é um fução ímpr [f(-y) = -f(y)]. Portto: F = Lemrdo que y dy u s u u du = u + + C A pressão ess fx é proxmdmete ( y ) δd = 6,5 7 e ssm forç fx é proxmdmete ( ) ( ) δd A = 6,5 7 y 9 y y Teremos y 9 y F = y + s 9 ( ) 9 ( ) F = s 9 9 s 9 9 F = 875 s () s ( ) 9 π 9 π 9π F = 875 = l A forç totl é otd pel som ds forçs em tods s fxs e tomdo-se o lmte ( ) ( ) F = lm 6,5 7 y 9 y y = F = 5 7 y 9 y dy ( ) F = y dy 5 y 9 y dy Outr form de resolver o Exemplo é oservr que áre ser determd correspode à áre de um dsco semcrculr de ro. Portto: πr π () F = 875 = l 4 4

5 mss mss Nosso prcpl ojetvo qu é ecotrr o poto P o qul um f plc de qulquer formto se equlr horzotlmete, como fgur segur. Esse poto é chmdo cetro de mss (ou cetro de grvdde) d plc. Agor supoh que o exo estej sore o exo x com m em x e m em x e o cetro de mss em. Se verfcrmos fgur xo, veremos que d = x x e d = x x 5 8 mss mss Prmero cosdermos stução ms smples mostrd fgur xo, ode dus msss m e m são press um stão de mss desprezível em ldos opostos um poo e dstâcs d e d do poo. 6 Portto m d = m d ( ) = ( ) m x x m x x mx mx = mx mx mx + mx = mx + mx ( ) x m + m = m x + m x m x + m x x = m + m 9 mss mss O exo fcrá em equlíro se m d = m d Esse é um fto expermetl descoerto por Arqumedes e chmdo Le d Alvc. Os úmeros m x e m x são deomdos mometos ds msss m e m (em relção à orgem) e equção teror dz que o cetro de mss é otdo pel som dos mometos ds msss e dvsão pel mss totl m = m + m. 7 5

6 mss mss Em gerl, temos um sstem de prtículs com msss m m,, m loclzds os potos x, x,, x sore o exo x. Podemos mostrr smlrmete que o cetro de mss do sstem está loclzdo em m x m x x = = m = m = = m = m = Por log com o cso udmesol, defmos o mometo do sstem com relção o exo y como y = m x = M e o mometo do sstem com relção o exo x como M x = m y = 4 mss mss ode m é mss totl do sstem, e som dos mometos dvdus M = = m x é chmd mometo do sstem em relção à orgem. Etão pode ser reescrt como mx = M que dz que se mss totl fosse cosderd como cocetrd o cetro de mss, etão seu mometo dever ser o mesmo que o mometo do sstem. Etão M y mede tedêc do sstem grr o redor do exo y e M x mede tedêc de ele grr o redor do exo x. Como o cso udmesol, s coordeds (, ) do cetro de mss são dds em termos dos mometos pels fórmuls x M y = y = m Mx m 5 mss mss Agor cosdere um sstem de prtículs com msss m m,, m os potos (x, y ), (x, y ),, (x, y ) o plo xy como mostrdo fgur xo ode m = m é mss totl. Como mx = M e my = M y x o cetro de mss (, ) é o poto ode um prtícul úc de mss m ter os mesmos mometos do sstem. 6 6

7 Exemplo : Clcule os mometos e os cetros de mss do sstem de ojetos que têm mss, 4 e 8 os potos (-, ), (, -) e (, ). M = ( ) + 4 () + 8 () = 9 y M = () + 4 ( ) + 8 () = 5 x A segur cosdermos um plc pl (deomd lâm) com desdde uforme ρ que ocup um regãor do plo. Desejmos ecotrr o cetro de mss d plc, chmd cetróde (ou cetro geométrco) der. Fzedo sso usmos os segutes prcípos físcos: o prcípo d smetr dz que se R é smétrco o redor d ret l, etão o cetróde de R está em l. 7 4 Como m = = 5, otemos Smetr em relção o exo y M y x = = m 9 5 R 5 y = = 5 Smetr em relção o exo x 8 O cetróde de um retâgulo é o seu cetro 4 9 Etão o cetro de mss é,. 5 Os mometos devem ser defdos de mer que se mss totl d regão está cocetrd o cetro de mss, etão seus mometos permecem lterdos. Tmém, o mometo d uão de dus regões sem terseção deve ser som dos mometos ds regões dvdus

8 Supoh que regão R sej do tpo mostrdo fgur xo; sto é, R estej etre s rets x = e x =, cm do exo x e xo do gráfco de f, ode f é um fução cotíu. Su áre é A = f ( x ) x Assm, su mss é m = ρf ( x ) x O mometo de R o redor do exo y é o produto de su mss pel dstâc de C o exo y, que é. Etão 4 M ( R ) = [ ρf ( x ) x] x = ρx f ( x ) x y 46 Dvdmos o tervlo [, ] em sutervlos com os extremos x, x,, x e lrgurs gus x. Escolhemos o poto de mostrgem x como o poto médo do -ésmo sutervlo, que é = (x - + x )/. Isso determ um proxmção polgol R, mostrd fgur segur. Somdo esses mometos, otemos o mometo d proxmção polgol R e, etão, tomdo o lmte qudo, otemos o mometo do próprorem relção o exo y. M = lm ρx f ( x ) x = ρ xf ( x) y = De mer smlr clculmos o mometo de R em relção o exo x como o produto de su mss e d dstâc de C o exo x: Mx( R ) = [ ρf ( x ) x] f ( x ) = ρ [ f ( x ) ] x Novmete sommos esses mometos e tommos o lmte pr oter o mometo de R o redor do exo x. O cetróde do -ésmo retâgulo proxmdor R é seu cetro C (, ½f[ ]). 45 x = lm ρ [ ( ) ] = ρ [ ( ) ] = M f x x f x 48 8

9 Como o cso do sstem de prtículs, o cetro de mss d plc é defdo de mer que Exemplo 4: Clcule o cetro de mss de um plc semcrculr de ro r. mx = M e my = M y Ms mss d plc é o produto de su desdde por su áre: m = ρa = ρf ( x) x 49 5 e ssm ρ xf ( x) xf ( x) M y x = = = m ρ f ( x) f ( x) ρ [ f ( x)] [ f ( x)] M x y = = = m ρ f ( x) f ( x) 5 Solução: Pr usrmos s fórmuls terores, colocmos o semcírculo como fgur xo de modo que f ( x) = r x = r = r 5 Note o ccelmeto de ρ. A loclzção do cetro de mss depede d desdde. Em resumo, o cetro de mss d plc (ou o cetróde de R) está loclzdo o poto (, ), ode x = xf ( x) y = [ f ( x)] A A Aqu ão há ecessdde de usr fórmul pr clculr porque, pelo prcípo d smetr, o cetro de mss deve estr sore o exo y, e, dess form, =. A áre do semcírculo é A = πr

10 Portto: [ ( )] y = f x A r r ( ) ( ) y = r x = πr πr r r r x r r r x ( r x ) ( r x ) r x r = = = πr πr πr r r 4r = r = = πr πr π 55 Solução: A áre d regão é π ] π A = cos x = se x = 58 O cetro de mss está loclzdo o poto de coordeds 4r, π 56 π x = x cos x A Lemrdo que u dv = uv v du fzemos u = x du = e dv = cos x v = se x. π π π x = x cos x = x se x] se x A π π π π π [ x] [ x] = cos = + cos = 59 Exemplo 5: Determe o cetróde d regão lmtd pels curvs y = cos x, y =, x = e x = π/. π y = [ f ( x ) ] A π π π + cosx = cos x ( cosx ) = = + 4 π π π = x sex 4 + = =

11 O cetróde está loclzdo o poto de coordeds Exemplo 6: Determe o cetróde d regão lmtd pel ret y = x e práol y = x. π π, Se regãorestá etre s curvs y = f(x) e y = g(x), ode f(x) g(x), como mostrdo fgur segur, etão o mesmo tpo de rgumeto que os levou às fórmuls pr determção do cetro de mss pode ser usdo pr mostrr que o cetróde deré(, ). Solução: A regão é esoçd fgur xo. Tommos f(x) = x, g(x) = x, = e = fórmul teror Cálculo d áre: x x A = ( x x ) = = = 6 x = x[ f ( x) g( x) ] y {[ f ( x)] g( x)] } A = A 6 66

12 x = x[ f ( x) g( x) ] A x = ( ) 6 x x x = ( x x ) 6 4 x x x = 6 = = = 4 Agor mostrremos um coexão etre cetródes e volumes de revolução. Teorem de Pppus: Sej R um regão pl que está termete de um ldo de um ret l em um plo. Se R é grd o redor de l, etão o volume do sóldo resultte é o produto d áre A de R e dstâc d percorrd pelo cetróde de R. 67 Esse teorem tem o ome do mtemátco grego Pppus de Alexdr, que vveu o século IV. 7 y = { [ f ( x )] g ( x )] } A 4 4 y = ( ) 6 x x = ( x x ) 6 Prov: Provremos pr o cso especl o qul regão está etre y = f(x) e y = g(x) como fgur xo e ret l é o exo y. 5 x x y = 5 = = = O cetróde está loclzdo o poto de coordeds, 5 V = π x [ f ( x) g( x) ] π x f ( x) g( x) = π xa = π x A = Ad [ ] ( ) ( ) ode d = π é dstâc percorrd pelo cetróde durte um rotção o redor do exo y. 69 7

13 Exemplo 7: Um toro é formdo pel rotção de um círculo de ro r o redor de um ret o plo do círculo que está um dstâc R (> r) do cetro do círculo. Clcule o volume do toro. 7 Solução: O círculo tem áre A = πr. Pelo prcípo de smetr, seu cetróde é seu cetro e, ssm, dstâc percorrd pelo cetróde durte rotção é d = πr. R r 74 Portto, pelo Teorem de Pppus, o volume do toro é ( ) ( ) π π π V = r R = r R 75

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Áre e Teorem Fudmetl

Leia mais

Aplicações à Física e à Engenharia

Aplicações à Física e à Engenharia UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aplicações à Física

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

UNIVERSIDADE ESTADUAL DE GOIÁS UNIDADE UNIVERSITÁRIA DE JUSSARA LICENCIATURA EM MATEMÁTICA CICERO LEITE DE SOUSA

UNIVERSIDADE ESTADUAL DE GOIÁS UNIDADE UNIVERSITÁRIA DE JUSSARA LICENCIATURA EM MATEMÁTICA CICERO LEITE DE SOUSA UNIVERSIDADE ESTADUAL DE GOIÁS UNIDADE UNIVERSITÁRIA DE JUSSARA LICENCIATURA EM MATEMÁTICA CICERO LEITE DE SOUSA CÁLCULO DE ÁREA DE FIGURAS GEOMÉTRICAS PLANAS USANDO INTEGRAIS JUSSARA-GO 0 Ccero Lete de

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

A Integral Definida. A definição da integral definida utiliza a soma de muitos termos. Assim, para expressar tais

A Integral Definida.  A definição da integral definida utiliza a soma de muitos termos. Assim, para expressar tais A Itegrl Defd wwwcttmtr/log Itegrl Defd ou de Rem Notção Sgm A defção d tegrl defd utlz som de mutos termos Assm, pr epressr ts soms, troduzmos otção greg, cujo símolo é que correspode à letr S pr sgfcr

Leia mais

Universidade Federal da Bahia UFBA. Adriano Pedreira Cattai

Universidade Federal da Bahia UFBA. Adriano Pedreira Cattai Uversdde Federl d Bh UFBA Deprtmeto de Mtemátc Cálculo Dferecl e Itegrl II :: 6. Adro Pedrer Ctt http://www.luospgmt.uf.r/droctt/ [clcr Eso ] Itegrl Defd ou de Rem Notção Sgm A defção d tegrl defd utlz

Leia mais

Cálculo de Volumes por Cascas Cilíndricas. Cálculo de Volumes por Cascas Cilíndricas

Cálculo de Volumes por Cascas Cilíndricas. Cálculo de Volumes por Cascas Cilíndricas UNIERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Cálculo de olumes por

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

k 0 4 n NOTAS DE AULA A Integral Definida

k 0 4 n NOTAS DE AULA A Integral Definida NOTS DE UL Itegrl Defd Som de Rem Teorem Fudmetl do Cálulo: Itegrl Defd Áre so um Curv [Eemplos e plções] Comprmeto de um Curv Pl Ls [ou Suve] Teorem do Vlor Médo pr Itegrs SOM DE RIEMNN Notção: k k Eemplos:

Leia mais

Cálculo Diferencial e Integral II Prof. Ânderson Vieira

Cálculo Diferencial e Integral II Prof. Ânderson Vieira CÁLCULO DE ÁREAS Cálculo de áres Cálculo Diferencil e Integrl II Prof. Ânderson Vieir Considere região S que está entre dus curvs y = f(x) e y = g(x) e entre s curvs verticis x = e x = b, onde f e g são

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Exme Ncol de Mtemátc A 07 ( ạ fse) GRUPO I (Versão ). Pretede-se determr qutos úmeros turs de qutro lgrsmos, múltplos de, se podem formr com os lgrsmos de 9. Nests codções, só exste

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista AJUST D CURVAS Até or o polômo de promção o dedo de tl mer cocdr com o vlor d ução dd em potos dedos terpolção m certos tpos de prolems sto pode ão ser desejável em prtculr se os vlores orm otdos epermetlmete

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

MÉTODOS GRÁFICOS 1. INTRODUÇÃO:

MÉTODOS GRÁFICOS 1. INTRODUÇÃO: MÉTODO GRÁFICO. INTRODUÇÃO: Um gráfco é um mer coveete de se represetr um relção etre vlores epermets ou vlores teórcos) de dus ou ms grdezs, de form fcltr vsulzção, terpretção e obteção d fução mtemátc

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica Otmzção Ler curso Mrstel Stos (lgums uls: Mrcos Areles) Solução Gráfc Otmzção Ler Modelo mtemátco c c c ) ( f Mmzr L fução obetvo sueto : m m m m b b b L M L L restrções ( ) 0 0 0. codção de ão-egtvdde

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

d s F = m dt Trabalho Trabalho

d s F = m dt Trabalho Trabalho UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho 1. Itrodução

Leia mais

Aula 11. Regressão Linear Múltipla.

Aula 11. Regressão Linear Múltipla. Aul. Regressão Ler Múltpl.. C.Doughert Itroducto to Ecoometrcs. Cpítulo 6. Buss&Morett Esttístc Básc 7ª Edção Regressão ler smples - Resumo Modelo N E[ ] E[ ] E[ N. Ser como oter fórmuls pr coefcetes de

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 3

Métodos Computacionais em Engenharia DCA0304 Capítulo 3 Métodos Comutcos em Egehr DCA4 Cítulo. Iterolção.. Itrodução Qudo se trblh com sstems ode ão é cohecd um fução que descrev seu comortmeto odemos utlzr o coceto de terolção. Há csos tmbém em que form lítc

Leia mais

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x).

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x). Integrção Muts vezes, conhecemos dervd de um função, y f (x) F(x), e queremos encontrr própr função f(x). Por exemplo, se semos que dervd de um função f(x) é função F(x) 2x, qul deve ser, então, função

Leia mais

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires 3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Uversdde de São ulo Isttuto de Físc FÍSIC MODERN I U 5 rof. Márc de lmed Rzzutto elletro sl 0 rzzutto@f.us.br o. Semestre de 08 ág do curso: htts:edscls.us.brcoursevew.h?d=695 0008 OERDORES OBSERVÁVEIS

Leia mais

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos NTEGRAÇÃO NUMÉRCA Pro. Luc Moter moter@com.ums.r Fculdde de Computção Fcom/UFMS Métodos Numércos tegrção Numérc tegrl ded Aplcções Métodos tegrção Numérc Fórmul ude Newto Cotes oes Método dos Trpézos Método

Leia mais

Conceitos fundamentais. Prof. Emerson Passos

Conceitos fundamentais. Prof. Emerson Passos Cocetos fudmets Prof. Emerso Pssos 1. Espço dos vetores de estdo. Operdores leres. Represetção de vetores de estdo e operdores. 2. Observáves. Autovlores e utovetores de um observável. Medd Mecâc Quâtc.

Leia mais

Índice. 1 Trigonometria e funções trigonométricas. 2 Geometria analítica. 3 Sucessões. 4 Funções reais de variável real.

Índice. 1 Trigonometria e funções trigonométricas. 2 Geometria analítica. 3 Sucessões. 4 Funções reais de variável real. Ídce Trgoometr e uções trgoométrcs Teste de Autovlção Teste de Autovlção Teste de Autovlção Geometr lítc Teste de Autovlção Teste de Autovlção Sucessões Teste de Autovlção Teste de Autovlção 7 Fuções res

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

INTERPOLAÇÃO. Introdução

INTERPOLAÇÃO. Introdução INTERPOLAÇÃO Itrodução A terolção cosste em determr rtr de um cojuto de ddos dscretos um ução ou um cojuto de uções lítcs que ossm servr r determção de qulquer vlor o domío de deção. Pode-se ver terolção

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b].

Considere uma função contínua arbitrária f(x) definida em um intervalo fechado [a, b]. Mtemátic II 9. Prof.: Luiz Gozg Dmsceo E-mils: dmsceo@yhoo.com.r dmsceo@uol.com.r dmsceo@hotmil.com http://www.dmsceo.ifo www.dmsceo.ifo dmsceo.ifo Itegris defiids Cosidere um fução cotíu ritrári f() defiid

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição.

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição. CÁLCULO I Prof Mrcos Diiz Prof Adré Almeid Prof Edilso Neri Prof Emerso Veig Prof Tigo Coelho Aul o : A Itegrl de Riem Objetivos d Aul Deir itegrl de Riem; Exibir o cálculo de lgums itegris utilizdo deição

Leia mais

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ ) RECPITULNDO: Soluções dluíds de polímeros Vsosdde tríse do polímero: 5 N V 5 (4 / 3) R 3 v h π h N v [ η ] v 5 Pode ser obtd prtr de: [ η ] lm η 0 sp / V Equção de rk-houwk-skurd: [η] K ode K e são osttes

Leia mais

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação

Volumes de Sólidos de Revolução. Volumes de Sólidos de Revolução. 1.O método do disco 2.O método da arruela 3.Aplicação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Volumes de Sólidos

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA Ecoometr ANÁLISE DE REGRESSÃO MÚLTIPLA Tópcos osderr otudde do Progrm Mstrdo pelo Prof Alceu Jom Modelo de Regressão Múltpl Aordgem Mtrcl ) Pressupostos; ) Iferêc versão Mtrcl; c) Iferêc o Método de rmmer;

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre

Leia mais

Notas de Aula: Mecânica dos Sólidos I Prof. Willyan Machado Giufrida. Características geométrica das superfícies planas

Notas de Aula: Mecânica dos Sólidos I Prof. Willyan Machado Giufrida. Características geométrica das superfícies planas Nots de ul: Mecânc dos Sóldos I Prof Wllyn Mchdo Gufrd Crcterístcs geométrc ds superfíces plns Nots de ul: Mecânc dos Sóldos I Prof Wllyn Mchdo Gufrd Momento estátco Centro de Grvdde (CG) Momento estátco

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra dos Trapézio. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Itegrção Numéric Regr dos Trpézio Professor Volmir Eugêio Wilhelm Professor Mri Klei Itegrção Defiid Itegrção Numéric Itegrção Numéric Itegrção Defiid Há dus situções em que é impossível

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Proposta de teste de avalação [mao 09] Nome: Ao / Turma: N.º: Data: - - Não é permtdo o uso de corretor. Deves rscar aqulo que pretedes que ão seja classfcado. A prova clu um formuláro. As cotações dos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

Máximos, Mínimos e Pontos de Sela de funções f ( x,

Máximos, Mínimos e Pontos de Sela de funções f ( x, Vsco Smões ISIG 3 Mámos Mímos e otos de Sel de uções ( w). Forms Qudrátcs Chm-se orm qudrátc em Q ) se: ( Q ) ( T ode.. é um vector colu e um mtr qudrd dt mtr d orm qudrátc sto é: Q( ) T [ ] s orms qudrátcs

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h

M M N. Logo: MN = DC = DP + PC DC = AB + AB DC = 2 AB S ABCD = (AB + DC). = (AB + 2 AB). = 3 AB S M N CD = Assim temos que: M'N'CD h QUESTÃO Sejm i, r + si e + (r s) + (r + s)i ( > ) termos de um seqüêci. etermie, em fução de, os vlores de r e s que torm est seqüêci um progressão ritmétic, sbedo que r e s são úmeros reis e i. Sbemos

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Prof. Dr. Amnd Liz Pcífico Mnfrim Perticrrri mnd.perticrrri@unesp.r DEFINIÇÃO. Se f é um função contínu definid em x, dividimos o intervlo, em n suintervlos de comprimentos iguis: x = n Sejm

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds =

(fg) (x + T ) = f (x + T ) g (x + T ) = f (x) g (x) = (fg) (x). = lim. f (t) dt independe de a. f(s)ds. f(s)ds = LISTA DE EXERCÍCIOS - TÓPICOS DE MATEMÁTICA APLICADA (MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios seguir form seleciodos dos livros dos utores G Folld (F, Djiro Figueiredo (D e E

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável; Denir pressão e força exercidas por um uido. CÁLCULO I Aul n o 3: Comprimento de Arco. Trblho. Pressão e Forç Hidrostátic. Objetivos d Aul Denir comprimento de rco; Denir o trblho relizdo por um forç vriável; Denir pressão e forç exercids por um

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS - CCE DEPARTAMENTO DE MATEMÁTICA Cmpus Uiversitário - Viços, MG 657- Telefoe: () 899-9 E-mil: dm@ufv.br 6ª LISTA DE MAT 4 /II SÉRIES NUMÉRICAS.

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

Lista 5. Funções de Uma Variável. Antiderivadas e Integral. e 4x dx. 1 + x 2 dx. 3 x dx

Lista 5. Funções de Uma Variável. Antiderivadas e Integral. e 4x dx. 1 + x 2 dx. 3 x dx List 5 Fuções de Um Vriável Atiderivds e Itegrl O gráfico d fução f é presetdo bio. Idetifique o gráfico d tiderivd de f. i j k l m o p q e cos + e 5 + cos cos + se 7 + sec se Clcule s seguites tiderivds:

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z INSTITTO DE MATEMÁTICA DA FBA DEPARTAMENTO DE MATEMÁTICA A LISTA DE CÁLCLO IV SEMESTRE 00. (Função vetoril de um vriável, curv em R n. Integrl dupl e plicções) ) Determine um função vetoril F: I R R tl

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

Integrais Duplos. Definição de integral duplo

Integrais Duplos. Definição de integral duplo Itegris uplos Recorde-se defiição de itegrl de Riem em : Um fução f :,, limitd em,, é itegrável à Riem em, se eiste e é fiito lim m j 0 j1 ft j j j1. ode P 0,, um qulquer prtição de, e t 1,,t um sequêci

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Eme Nconl de Mtemátc A 06 ( ạ fse) GRUPO I (Versão ). Sbemos que P(A) =, P(B) = e P(A B) = 5 0 6 Assm, P(A B) P(A B) = = 6 P(B) 6 P(A B) = 6 0 P(A B) = 6 0 P(A B) = 0 Tem-se que

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexdde de Algortmos Prof. Dego Buchger dego.uchger@outlook.com dego.uchger@udesc.r Prof. Crsto Dm Vscocellos crsto.vscocellos@udesc.r Aálse de Complexdde de Tempo de Algortmos Recursvos Algortmos Recursvos

Leia mais

Mecânica Geral II Notas de AULA 4 - Teoria - Determinação do Centróide Prof. Dr. Cláudio S. Sartori. Superfície. Triângulo.

Mecânica Geral II Notas de AULA 4 - Teoria - Determinação do Centróide Prof. Dr. Cláudio S. Sartori. Superfície. Triângulo. Mecânc Gerl II ots de U - Teor - Determnção do Centróde rof. Dr. Cláudo S. Srtor BRICETRO E CRREGMETO DISTRIBUÍDO.TREIÇS S E ESCIIS. CETRO CETRÓIDE DE DE GRIDDE UM CORO EM E E DIMESÕES. Introdução ção

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

MATRIZES. pela matriz N = :

MATRIZES. pela matriz N = : MATQUEST MATRIZES PROF.: JOSÉ LUÍS MATRIZES - (CEFET-SP) Se A, B e C são mtres do tpo, e, respectvmente, então o produto A. B. C: ) é mtr do tpo ; é mtr do tpo ; é mtr do tpo ; é mtr do tpo ; não é defndo.

Leia mais

SOCIEDADE PORTUGUESA DE MATEMÁTICA

SOCIEDADE PORTUGUESA DE MATEMÁTICA SOCIEDADE PORTUGUESA DE MATEMÁTICA Propost de Resolução do Exme de Mtemátc A - º ANO Códgo 65 - Fse - 07 - de junho de 07 Grupo I 5 6 7 8 Versão A B D A B C D C Versão D D B C C A B A Grupo II. 0 5 5 5

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Universidade Federal de Rio de Janeiro

Universidade Federal de Rio de Janeiro Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro

Leia mais

Curso: Engenharia Industrial Elétrica

Curso: Engenharia Industrial Elétrica urso: Egehr Idustrl Elétr Aálse de vráves omlexs MAT 6 Turm: Semestre:. Professor: Edmry S. B. Arújo Teor de Itegrção omlex Teor de Itegrção Resodeu Jesus: Em verdde, em verdde te dgo: quem ão ser d águ

Leia mais

1 Integral Indefinida

1 Integral Indefinida Itegrl Idefiid. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Uversdde Federl de Alfes Projeto e Aálse de Algortmos Aul 03 Fudmetos Mtemátos pr PAA humerto@.ufl-mg.edu.r Aul Pssd... Cotexto hstóro: Dedldde; O Teorem de Kurt Gödel; Máqu de Turg; Prolems Trtáves e

Leia mais