O NÚMERO E O NÚMERO DE OURO: curiosidades, propriedades matemáticas e propostas de atividades didáticas

Tamanho: px
Começar a partir da página:

Download "O NÚMERO 142857 E O NÚMERO DE OURO: curiosidades, propriedades matemáticas e propostas de atividades didáticas"

Transcrição

1 Uiversidade Federal de Juiz de Fora Mestrado Profissioal em Matemática em Rede Nacioal PROFMAT Leadro de Oliveira Sodré O NÚMERO 4857 E O NÚMERO DE OURO: curiosidades, propriedades matemáticas e propostas de atividades didáticas Juiz de Fora 03

2 Leadro de Oliveira Sodré O NÚMERO 4857 E O NÚMERO DE OURO: curiosidades, propriedades matemáticas e propostas de atividades didáticas Dissertação apresetada ao Programa de Pós-graduação PROFMAT (Mestrado Profissioal em Matemática em rede acioal) a Uiversidade Federal de Juiz de Fora, como requisito parcial para obteção do grau de Mestre, a área de Matemática. Orietador: Prof. Dr. Sadro Rodrigues Mazorche Juiz de Fora 03

3 Sodré, Leadro de Oliveira. O úmero 4857 e o úmero de ouro: curiosidades, propriedades matemáticas e propostas de atividades didáticas / Leadro de Oliveira Sodré f. : il. Dissertação (Mestrado Profissioal em Matemática em Rede Nacioal - PROFMAT) Uiversidade Federal de Juiz de Fora, Juiz de Fora, 03.. Matemática Estudo e esio.. Matemática recreativa. I. Título. CDU 5:37.0

4 Leadro de Oliveira Sodré O NÚMERO 4857 E O NÚMERO DE OURO: curiosidades, propriedades matemáticas e propostas de atividades didáticas Dissertação aprovada pela Comissão Examiadora abaixo como requisito parcial para a obteção do título de Mestre em Matemática pelo Mestrado Profissioal em Matemática em rede acioal a Uiversidade Federal de Juiz de Fora. Prof. Dr. Sadro Rodrigues Mazorche (orietador) Mestrado Profissioal em Matemática (PROFMAT) UFJF Prof. Dr. Sergio Guilherme de Assis Vascocelos Mestrado Profissioal em Matemática (PROFMAT) UFJF Prof. Dr. Fraciildo Nobre Ferreira Mestrado Profissioal em Matemática (PROFMAT) UFSJ Juiz de Fora, 09 de março de 03.

5 AGRADECIMENTOS Primeiramete, a Deus, fiel amigo, pela vida da miha filha, Amada, e por ter me dado codições de cocluir este trabalho. A miha esposa, Raquel, que tem me apoiado em miha carreira e compreedido miha ausêcia. A meus pais, irmãos, familiares e amigos, por grade icetivo e apoio. A meus irmãos em Cristo, pelas costates orações. Ao meu grade amigo Alexadre J. Rodrigues, por me idicar o PROFMAT. Aos amigos do PROFMAT, pela amizade e compaheirismo. Aos colegas de trabalho, pela colaboração, paciêcia e icetivo. Ao meu orietador professor Dr. Sadro, pelo material de apoio e sugestões. A CAPES, pelas Bolsas de Estudo que recebi.

6 RESUMO Neste trabalho são apresetadas curiosidades, propriedades matemáticas, aplicações além do campo puramete matemático e um pouco da história de dois úmeros: o úmero 4857 e o Número de Ouro. Além disso, são propostas algumas atividades didáticas para o estudo desses úmeros em aulas de Matemática. O úmero 4857 é chamado de cíclico porque 4857x = 8574, 4857x3 = 4857, 4857x4 = 5748, 4857x5 = 7485 e 4857x6 = 8574 e o Número de Ouro tem aplicações a Botâica, Zoologia, Artes, Egeharia de Materiais e tem muitas relações com a sequêcia de Fiboacci. Palavras-chaves: úmeros cíclicos, Número de Ouro, sequêcia de Fiboacci, atividades didáticas, curiosidades matemáticas.

7 ABSTRACT This work presets curiosities, mathematical properties, applicatios beyod the purely mathematical field ad some of the history of two umbers: the umber 4857 ad the golde umber. I additio, some educatioal activities for the study of these umbers i mathematics classes are proposed. The umber 4857 is called of cyclic because 4857x = 8574, 4857x3 = 4857, 4857x4 = 5748, 4857x5 = 7485 e 4857x6 = 8574 ad the golde umber is applied i botay, zoology, art, materials egieerig ad has may relatioships with the Fiboacci sequece. Keywords: cyclic umbers, golde umber, Fiboacci sequece, educatioal activities, mathematical curiosities.

8 LISTA DE FIGURAS Figura : Esquema cíclico para Figura : Esquema cíclico para Figura 3: Poto C dividido um segmeto AB em média e extrema razão Figura 4: Petágoo regular e Petagrama Figura 5: Retâgulos áureos o dodecaedro e o icosaedro regulares... 3 Figura 6: Petágoo regular Figura 7: Triâgulo formado por duas diagoais e um lado de um petágoo regular.. 33 Figura 8: Como costruir um segmeto de medida igual a ϕ vezes a medida de outro segmeto Figura 9: Divisão de um segmeto em Razão Áurea. 35 Figura 0: Espiral logarítmica Figura : Espiral equiagular Figura : Retâgulo áureo Figura 3: (pseudo) Espiral áurea... 4 Figura 4: Pólo de uma (pseudo) espiral áurea.. 4 Figura 5: Espiral de Fiboacci Figura 6: Triâgulos áureos o petágoo regular Figura 7: (pseudo) Espiral áurea associada a triâgulos áureos Figura 8: O Homem Vitruviao Figura 9: Triâgulo retâgulo associado a um segmeto dividido em Razão Áurea Figura 0: Tilig de Kepler Figura : O Modulor. 48 Figura : Seta e Pipa de Perose.. 50 Figura 3: Paralelogramos de Perose Figura 4: Efeito fractal o petágoo regular... 5 Figura 5: Girassol. 54 Figura 6: Cocha de um Náutilo Figura 7: Cocha do mar associada à divisão de um segmeto em Razão Áurea Figura 8: Imagem de uma galáxia

9 SUMÁRIO. INTRODUÇÃO 0. O INTRIGANTE NÚMERO DEMONSTRAÇÃO DE QUE NÃO EXISTE NÚMERO DE 6 ALGARISMOS, DIFERENTE DE 4857, QUE SEJA CÍCLICO DEMONSTRAÇÃO DE QUE O PERÍODO DE UMA DÍZIMA PERIÓDICA SIMPLES QUE TEM ALGARISMOS, E CUJA GERATRIZ É A FRAÇÃO /, É CÍCLICO ATIVIDADES DIDÁTICAS ϕ : O NÚMERO DE OURO APLICAÇÕES DE ϕ OUTRAS PROPRIEDADES E CURIOSIDADES DE ϕ Potêcias de ϕ Uma iteressate relação etre, ϕ ϕ e ϕ Duas maeiras de se obter ϕ A sequêcia áurea O úmero de acestrais, por geração, de um zagão ATIVIDADES DIDÁTICAS CONCLUSÕES 7 5. APÊNDICE PROVA DE QUE ϕ É IRRACIONAL PROVA DE QUE MÚLTIPLOS DISTINTOS DO ÂNGULO ÁUREO NÃO

10 SERÃO CONGRUENTES ENTRE SI REPRESENTAÇÃO DE ϕ COM 000 CASAS DECIMAIS REFERÊNCIAS 77

11 0. INTRODUÇÃO Os úmeros fazem parte da rotia do ser humao há muitos aos e, desde etão, são objetos de estudo. Para se ter ideia, a tábua matemática chamada Plimpto 3, escrita aproximadamete etre 900 e 600 a.c, cotém 5 lihas divididas em 3 coluas uméricas, uma das quais serve apeas para umerar as lihas; as outras duas coluas apresetam, com uma úica exceção ão justificável, pares de úmeros iteiros que são as medidas das hipoteusas e de um dos catetos de triâgulos retâgulos (EVES, 004, p. 64). Além disso, em O Livro Chiês das Permutações, escrito mais de 000 aos ates de Cristo, já existe uma distição clara etre úmeros pares e ímpares (HOGBEN, 958, p. 49). Os úmeros aturais, em virtude da ecessidade de se cotar objetos e aimais, foram os primeiros a serem icorporados à rotia humaa. Com o estudo de medidas e de comparações etre elas, os racioais positivos surgiram. Os úmeros egativos foram recohecidos por Diofato o século III d.c e usados por Brahmagupta por volta de 630 (BOYER, 996, p. 50). Esses úmeros começaram a ser um pouco mais familiares a ós a partir de 5, quado Fiboacci (75 a 50) iterpretou a raiz egativa de uma equação, que surgiu de um problema fiaceiro, como uma perda e ão como um gaho. Outro avaço em direção ao recohecimeto desses úmeros se deu quado Rafael Bombelli (56 a 57) iterpretou os úmeros como comprimetos de uma liha e as operações elemetares como movimetos ao logo dessa liha. Por fim, apeas quado a subtração foi iterpretada como o iverso da adição é que os úmeros egativos foram aceitos defiitivamete como úmeros (MAOR, 006, p. 4 e 5). Os úmeros irracioais possivelmete foram descobertos a era de Pitágoras (c. 569 a.c a 475 a.c), o século V a.c., e essa descoberta pode estar relacioada à Razão Áurea, como será visto o item 3. Já os úmeros complexos começaram a ser estudados o século XVI, a mesma época em que Girolao Cardao (50 a 576) publicou métodos de resoluções para as equações cúbicas e quárticas, o livro Ars Maga (BOYER, 996, p. 93; MAOR, 006, p. 5). Algus úmeros possuem propriedades particulares que, por vezes, despertam curiosidade em quem os estuda. São exemplos desses úmeros os irracioais π, e e ϕ, os racioais que são dízimas periódicas e os úmeros primos. Nessa dissertação, o item há um estudo das propriedades do úmero 4857, mostrado que ele é um úmero cíclico, ou seja, é um úmero cujos produtos das

12 multiplicações dele pelos aturais de a 6 são úmeros formados pelos mesmos seis algarismos de 4857 e que esses algarismos preservam um ordem relativa etre eles; o item. mostra-se que ão existe outro úmero de seis algarismos que teha essa mesma propriedade; o item. prova-se que se / gera uma dízima periódica simples que tem algarismos o período, esse período é um úmero cíclico; o item.3 cotém propostas de atividades didáticas relacioadas ao estudo das propriedades do úmero O item 3 cotém uma sítese da história do Número de Ouro, que esse texto é represetado pela letra ϕ, e a demostração de algus resultados relacioados a ele; os ites 3. são apresetadas algumas aplicações do Número de Ouro a Aatomia, a Odotologia, a Botâica, a Zoologia e a Astroomia; o item 3. aborda outras propriedades e curiosidades de ϕ; e o item 3.3 atividades didáticas relacioadas ao estudo do Número de Ouro são propostas. No item 4 são apresetadas as coclusões e o item 5 prova-se a irracioalidade de ϕ e que múltiplos distitos do âgulo áureo ão serão cogruetes etre si e é feita uma represetação do úmero de ouro com 000 casas decimais. Os objetivos deste trabalho são: apresetar curiosidades, propriedades matemáticas, aplicações além do campo puramete matemático e um pouco da história dos úmeros e Matemática. 5, e propor atividades didáticas para o estudo desses úmeros em aulas de

13 . O INTRIGANTE NÚMERO 4857 Nesse item faremos um estudo do úmero 4857 e de suas propriedades. Esse úmero é o período da dízima periódica simples gerada ao dividir por 7. Ele tem uma propriedade muito curiosa: ao ser multiplicado por, 3, 4, 5 e 6, os produtos são, respectivamete, 8574, 4857, 5748, 7485 e Não é difícil perceber que esses produtos são formados pelos mesmos algarismos que formam o 4857 e, o mais curioso, que esses algarismos preservam uma ordem circular relativa etre si, ou seja, os produtos são um tipo especial de permutação dos algarismos do úmero Para eteder melhor essa última afirmação, observe a figura a seguir, ode os úmeros assialados os vértices do hexágoo, seguido o setido horário, formam o úmero 4857 e os seus produtos por, 3, 4, 5 e 6, quado se escolhem, respetivamete os úmeros,, 4, 5, 7 e 8 para começar o percurso FIGURA : Esquema cíclico para 4857 Para facilitar a comuicação, vamos defiir o que é uma permutação rígida positiva de um úmero. Defiição: Dado um úmero, uma permutação rígida positiva dele é um outro úmero, formado pelos mesmos algarismos do úmero dado e que preserva a ordem circular relativa etre os algarismos, o setido horário. Para facilitar o etedimeto da defiição, as permutações rígidas positivas de 35, por exemplo, são os úmeros 35, 53 e 53. Além dessa defiição, se os produtos das multiplicações de um úmero de algarismos pelos úmeros aturais de a forem as permutações rígidas positivas dele, etão esse úmero será chamado de cíclico. Assim, 4857 é um exemplo de úmero cíclico.

14 3 É apresetada a seguir uma maeira de descobrir quais são os respectivos úmeros que começam os produtos das multiplicações de 4857 por, 3, 4, 5 e FIGURA : Esquema cíclico para 4857 É fácil ver que x 4857 é um úmero que termia em 4. Observado o polígoo do esquema e respeitado o setido horário, o úmero que termiar em 4 deverá começar com. Assim, a permutação rígida positiva de 4857 que começa com o algarismo (ou o que termia em 4) é Esse é, de fato, o produto x O produto 3 x 4857 tem que termiar em e, cosequetemete, pelo esquema, começar com 4. Portato, o resultado será Já o resultado de 4 x 4857 tem que termiar em 8. Assim, pelo esquema, obtém-se que 4 x 4857 começa com 5 e é igual a Quado multiplicamos 4857 por 5, o resultado tem que termiar em 5. Observado o esquema, coclui-se que 5 x 4857 = Por fim, o produto 6 x 4857 termia em, e, portato, é igual a 8574, resultado que pode ser facilmete obtido através do polígoo do esquema. Claro que ão é ecessário o esquema apresetado para se descobrirem os produtos sem fazer as multiplicações completas. Pode-se pesar, simplesmete, que as permutações rígidas positivas de 4857, em ordem crescete, são 8574, 4857, 5748, 7485 e 8574, ou que os algarismos que compõem 4857, em ordem crescete, são,, 4, 5, 7 e 8, mas o esquema pode ser usado pelo professor quado propuser atividades didáticas a seus aluos (veja item.3). As propriedades desse úmero foram miuciosamete estudadas por Fourrey, E. Lucas, Rouse Ball, Guersey e Legedre, sedo que Fourrey, em seu livro Récréatios Arithmétiques, apreseta o produto 4857 x 3645, que tem a propriedade de as coluas

15 4 dos produtos parciais serem formadas por algarismos iguais, a seguite ordem: (SOUZA, 009, p. 7) x Os produtos de 4857 pelos úmeros x7, x7, 3x7, 4x7, 5x7, 6x7, 7x7, 8x7, 9x7 e 0x7 são, respectivamete, , , , , , , , , e , que apresetam um padrão de formação bem curioso também. Após esses cometários, as seguites pergutas parecem bem aturais: i) Existem outros úmeros cíclicos? ii) Por que 4857 é cíclico? Pode-se mostrar (como feito o item.) que ão existe outro úmero de 6 algarismos que seja cíclico. No etato, ao multiplicar 4857 por úmeros iteiros etre 7 e 70 (com exceções de algus, como o 7, 4, 7 e 3), os produtos terão 7 algarismos e serão iguais a permutações rígidas positivas de 4857 com uma pequea alteração (essa alteração está descrita a págia de curiosidades do sitio Dessa forma, as permutações rígidas positivas de 4857 podem ser chamadas de úmeros quase cíclicos, pois, ao multiplicá-las por algus úmeros iteiros, os produtos serão quase permutações rígidas positivas de 4857 (ou de suas permutações rígidas positivas). Existe um iteressate padrão de formação para os produtos de 4857 pelos úmeros aturais maiores que 7 (veja o livro Aritmética recreativa de Yakov Perelma).

16 5 Souza (009, p. 8) afirma que existem outros úmeros que são, de fato, cíclicos e cita como exemplos os períodos das dízimas obtidas as divisões de por 7 e de por 3. Coforme Garder (985, p. 94), os valores de, meores que 00, para os quais os períodos das dízimas geradas pela fração / sejam cíclicos são: 7, 7, 9, 3, 9, 47, 59, 6 e 97. O mesmo Garder (985, p.94) afirma que William Shaks (8 a 88), o primeiro a calcular corretamete as primeiras 57 casas decimais de π, descobriu que o período de /7389 também é cíclico e calculou corretamete os 7388 algarismos dele. A tabela a seguir mostra os resultados das multiplicações de (período de 7) pelos aturais de a De forma geral, sempre que a fração / gerar uma dízima periódica simples cujo período tiver algarismos, o período da dízima será cíclico (demostrado o item.). Assim, 4857 é cíclico porque ele tem 6 algarismos e é o período da dízima gerada pela fração /7.

17 6.. DEMONSTRAÇÃO DE QUE NÃO EXISTE NÚMERO DE 6 ALGARISMOS, DIFERENTE DE 4857, QUE SEJA CÍCLICO Supoha x um úmero de 6 algarismos que teha a referida propriedade. Pode-se represetar x da seguite forma: x = abcdef. Como x tem 6 algarismos, ecessariamete x < Como 6x tem que ser uma permutação rígida positiva de x, é ecessário que 6x teha 6 algarismos, ou seja, que 6x < Assim sedo, tem-se que < x < 66666, Logo, a represetação de x, tem-se que a =, ou seja, x = bcdef. Além disso, x < Para que as permutações rígidas positivas de x sejam os produtos das multiplicações de x pelos aturais de a 6, ehum dos algarismos de x pode ser igual a zero (para que ehuma das permutações rígidas positivas comece com zero). As permutações rígidas positivas de x são: ) bcdef ) cdefb 3) defbc 4) efbcd 5) fbcde Serão aalisadas as possibilidades de x ser igual a cada uma dessas permutações. Caso Supoha x = bcdef. Imediatamete pode-se perceber que isso é um absurdo, visto que x é par e bcdef é ímpar, pois termia em. Caso Supoha x = cdefb Temos o seguite algoritmo: bcdef x cdefb

18 7 Comparado as dezeas de x e de x, têm-se as possibilidades: e =, e =, e + = ou e + =. As três primeiras possibilidades são absurdas, visto que e é par e e 0. Se e + =, etão e = 5. Assim, comparado as uidades de milhar tem-se que c + = 5 (c = ) ou c + = 5 (c = 7). Como x < , c = 7 é um absurdo. Cosiderado e = 5 e c =, tem-se x = bd5f e x = d5fb, e é ecessário que f = 0 + b (*), d + = 0 + f (**) e b = d (***). Assim, b = 4, f = 7 e d = 4. Portato x = Caso 3 Supoha x = defbc Temos o seguite algoritmo: bcdef x defbc Comparado as ceteas de x e de x, têm-se as possibilidades: d =, d =, d + = ou d + =. Todas elas são absurdas, visto que d é par, d 0 e d < 4 (x < ). Caso 4 Supoha x = efbcd. Temos o seguite esquema: bcdef x efbcd Comparado as uidades de milhar de x e de x, têm-se as possibilidades: c =, c =, c + = e c + =. As três primeiras são absurdas, visto que c é par e c 0.

19 8 Se c + = (c = 5), é ecessário que f = 0 + d. Tem-se, etão, que e + = 5 (e = ) ou e + = 5 (e = 7). Como a seguda possibilidade é absurda, porque x < , tem-se que c = 5, f = 0 + d e e =. Substituido esses valores o algoritmo: b5df x fb5d Assim, é ecessário, aida, que d = 0 + b e b + = f. Dessa forma, Ter-se-ia 7f = 59, o que é um absurdo porque f é algarismo. Caso 5 Supoha x = fbcde. Temos o seguite esquema: bcdef x fbcde Comparado as dezeas de milhar, têm-se as possibilidades: b =, b =, b + = e b + =. As três primeiras são absurdas, porque b é par e b 0. Se b + = (b = 5), comparado as ceteas de milhar, tem-se que f = 3. Assim e = 6, d = e c = 5. Logo, ter-se-ia x = 5563 e x = Mas como.5563 = , tem-se um absurdo! Mostrou-se, assim, que o úico úmero de 6 algarismos cujo produto da multiplicação dele por é igual a uma de suas permutações rígidas positivas é o Dessa forma, sabedo que ele é um úmero cíclico, ele é o úico úmero de 6 algarismos que é cíclico.

20 9.. DEMONSTRAÇÃO DE QUE O PERÍODO DE UMA DÍZIMA PERIÓDICA SIMPLES QUE TEM ALGARISMOS, E CUJA GERATRIZ É A FRAÇÃO /, É CÍCLICO. Ates de mostrar a propriedade euciada, serão demostrados dois Lemas. LEMA : Para que o período de / teha algarismos, é ecessário que os restos parciais da divisão de por percorram todos os aturais de a. Demostração: Na divisão de por, ão se pode ter um resto parcial igual a zero, pois / ão é decimal exato. Além disso, como tem que ser um valor maior que, o primeiro resto parcial (r 0 ) será igual a, e o primeiro algarismo a compor o quociete será 0. Supoha o seguite algoritmo para a divisão de por : 0,q q q 3 q 4...q - r r r 3 r 4... r r Assim, tem-se que: * r i, para i {0,,,..., };

21 0 i * Qi+ 0 ri =, ode Q i = 0,q q q 3 q 4...q i para i {,,..., }; e * q i + r i = 0r i, para i {,,..., }. Supoha r i = r j, para i < j (veremos que isso implicaria q i + q i+... q j ser um período da dízima). Se r i = r j, etão, q i + + r i + = 0r i e q j + + r j + = 0r j = 0r i. Como o quociete e o resto em uma divisão são úicos (imagie 0r i sedo dividido por ), segue que q i + = q j + e r i + = r j +. Com mesmo raciocíio, mostra-se que q i + k = q j + k e r i + k = r j + k, para k {, 3,..., j i } (como i é qualquer, sempre que dois restos parciais forem iguais, os próximos algarismos a comporem o quociete serão iguais, e os ovos restos também serão iguais). Assim, como r j = r i + j i = r j + j i = r j i, tem-se que q j = q j i e r j = r j i. Logo, q j + = q j i + e r j+ = r j i +, e ter-se-ia o seguite algoritmo: 0,q q q 3...q i q i+...q j- q j q i+...q j- q j... r... r i r i+... r j- r i... r j- r i... Assim, q i+...q j- q j é o período da dízima 0,q q q 3 q 4...q - q q q 3 q 4...q -...

22 Logo q q q 3 q 4...q - = q q q 3...q i = q i+...q j- q j. Mas como i <, tem-se um absurdo. Portato r i r j, i < j. Com um raciocíio aálogo, verifica-se que r i, para i {,,... } e que r =. Portato, os restos parciais (r i, i {0,,,..., }) da divisão de por são os úmeros aturais que pertecem ao cojuto {,,.., }, pois de r 0 a r tem-se úmeros diferetes. LEMA : Se / gera uma dízima periódica simples cujo período tem algarismos, etão é primo. Demostração Supoha = pxq com p primo e q >. Assim sedo, pelo que acabou de ser provado, p deve aparecer como resto parcial a divisão de por. Cosidere o algoritmo: = pxq 0,q q q 3 q 4...q - r r r 3 r 4... r i Assim, = Q.p.q+ 0 r, para i {,,..., }, ode Q i = 0, q q q 3 q 4...q i. i i Supoha, etão, r i = p para algum i {,,..., }. Tem-se, etão:

23 i = Q.p.q + 0 p 0 i = Q i.0 i.p.q + p 0 i = p(0 i.q i.q + ) p 0 i p = ou i p = 5 = x.5 y é decimal exato (/ é uma fração decimal). Mas isso é uma cotradição, visto que / gera uma dízima periódica simples. Assim, ão pode ser escrito como produto de um primo por um atural maior que, ou seja, é primo. Com esses dois resultados, podemos fazer a demostração proposta, ou seja, podemos mostrar que, se um úmero de algarismos é o período de uma dízima periódica simples cuja fração geratriz é /, etão esse úmero é cíclico. Uma forma de imagiar esse resultado é pesar que, em algum mometo da divisão de por, faz-se a divisão de r i (r i < ) por e, desse mometo em diate, a divisão de por, pode-se pesar que a operação é a divisão de r i por. Dessa forma r i / é uma dízima cujo período é uma permutação rígida positiva do período de /. Porém, com argumetos mais formais, a demostração é feita a seguir. Cosidere o algoritmo: 0,q q q 3 q 4...q - q q... r r r 3 r 4... r r r... e seja Q i = 0,q q q 3 q 4...q i, com i {,,... }.

24 3 Tem-se, pelo algoritmo da divisão, que = Q.+ 0 r. Assim: i i i i r = Q + i i 0 i 0 i r = 0 Q + i i r i i = 0 Qi. Como = 0, qq...qiqi+...q qq...qi q i..., tem-se: ri i = 0 [(0,qq...q iqi+...q qq...qi q i...) (0,qq...q i )]= ( i q q...qi,qi+...q qq...q i qi...) (qq...q ) = 0,qi +...q qq...qi q iqi+... ri Assim: 0 = qi+...q qq...q i q i,qi+... e r (Q i 0 ) = r (q q i...q ) = ri 0 = 0 ri ri = (q i+...q i q i,q i+...q i q i...) (0,q i+...q i q i...) = q i+...q i q i q i Portato, ri (0 Q ) é uma permutação rígida de 0 Q. Como ri percorre todos os aturais de a, o resultado segue..3. ATIVIDADES DIDÁTICAS A seguir, é proposta uma sequêcia de atividades didáticas que têm como foco o estudo das propriedades/curiosidades do úmero 4857 em sala de aula. O professor ão deve utilizar mais do que três aulas para realizar todas as atividades e, o público alvo delas são aluos do 7º ou 8º aos que estejam estudado úmeros racioais, em especial, as dízimas periódicas. As atividades estão descritas de forma idireta, como orietações ao professor, que, para aplicá-las em sala de aula, pode seguir as seguites etapas:

25 4 ) Pedir aos aluos para dividirem por 7 e pergutar qual a represetação decimal da fração /7. OBSERVAÇÕES: ) O professor pode pedir simplesmete para os aluos obterem a represetação decimal de /7. ) O professor pode optar por pedir aos aluos que utilizem a calculadora, pergutar se aquele resultado é preciso e gerar uma discussão sobre a limitação da calculadora, iclusive mostrado que se eles multiplicarem o resultado por 7 a resposta ão será igual a um. ) Pergutar aos aluos se /7 é um decimal exato, dízima periódica simples ou dízima periódica composta. 3) Após ouvir as respostas e mostrar que é uma dízima periódica simples, pergutar qual é o período e quatos algarismos ele tem. 4) Pedir para os aluos calcularem o dobro de 4857 e, após mostrar que esse valor é 8574, pergutar se existe alguma semelhaça etre o úmero 4857 e o dobro dele. OBSERVAÇÕES: ) A semelhaça está descrita a págia. ) Nessa etapa, o professor pode usar a figura do hexágoo, iscrito a circuferêcia, cujos vértices represetam os algarismos de 4857, para mostrar essa semelhaça (veja págia ). 5) Pedir para os aluos escreverem um úmero que termie em e que teha a mesma semelhaça com 4857 que tem esse úmero e o seu dobro. OBSERVAÇÃO: Esse úmero é 4857 (veja págia ).

26 5 6) Pedir para os aluos calcularem o algarismo das uidades do triplo de ) Pergutar aos aluos se eles acham que a resposta da etapa 5 é o triplo de 4857 e pedir para eles justificarem as respostas e questioar essas respostas. 8) O professor pode, etão, dizer: - Para tirarmos a prova dos ove, vamos calcular 3x4857. OBSERVAÇÃO: Neste mometo, o professor pode explicar o que sigifica a expressão tirar/fazer a prova dos ove e mostrar o sigificado matemático dela. 9) Após mostrar que, de fato, a resposta da etapa 5 é o triplo de 4857, o professor perguta: - Supoha que o resultado de 4x4857, do quádruplo de 4857, também seja semelhate a 4857 da mesma maeira como o dobro e o triplo de 4857 são semelhates a ele. Multiplicado apeas um algarismo por outro, qual seria o resultado de 4x4857? OBSERVAÇÃO: A figura do hexágoo pode ajudar os aluos essa etapa. etapa aterior. 0) Calcular, juto com os aluos, 4x4857 e comparar com o valor sugerido a OBSERVAÇÃO: Nessa etapa, o professor pode defiir para os aluos o que é uma permutação rígida positiva de um úmero, sem mostrar todas as permutações rígidas positivas de 4857, para ão facilitar muito a resposta da etapa seguite. ) Fazer a seguite perguta aos aluos: - Se cotiuarmos multiplicado 4857 pelos úmeros aturais, em sequêcia, ou seja, multiplicarmos 4857 por 5, 6, 7, 8, etc., e se os produtos cotiuarem respeitado a regra válida para os produtos por, 3 e 4, existiria um limite, ou poderemos ir multiplicado idefiidamete?

27 6 OBSERVAÇÃO: Se os aluos tiverem dificuldades para respoder corretamete, o professor pode pergutar quatas permutações rígidas positivas tem 4857 e pedir para os aluos associarem esse úmero com a perguta aterior. ) Após cocluírem que o valor limite é 6, pois 4857 tem 6 algarismos, o professor pode mostrar que 5x4857 e 6x4857 são, de fato, permutações rígidas positivas de ) Falar que, devido a essa propriedade, o úmero 4857 é chamado de úmero cíclico, e pergutar aos aluos se eles acham que existem outros úmeros com essa propriedade. 4) Cometar que, de 6 algarismos, esse é o úico úmero cíclico e que ele é cíclico porque ele tem 6 algarismos e é o período da dízima periódica gerada pela fração /7. 5) Falar que, sempre que / gerar uma dízima periódica simples com algarismos o período, esse período é um úmero cíclico e que sempre é um úmero primo. OBSERVAÇÃO: Depededo da turma e da receptividade dos aluos em relação à atividade, o professor pode fazer a demostração formal dessa proposição (veja item.). 6) Fazer com os aluos a divisão de por 7 para mostrar que o período da dízima tem 6 algarismos e que, portato, é um úmero cíclico. OBSERVAÇÕES: ) Para que os aluos verifiquem, parcialmete, que o período de /7 é cíclico, o professor pode pedir aos aluos para escolherem quaisquer dois úmeros aturais etre e 6 (iclusive qualquer um dos dois) e fazer as multiplicações juto com os aluos (veja tabela a págia 5). ) O professor pode modificar essa etapa pedido aos aluos para tetarem ecotrar um outro úmero cíclico.

28 7 7) Cometar que /7389 é uma dízima periódica simples cujo período tem 7388 algarismos, ou seja, cujo período pode ser multiplicado por, 3, 4, 5, 6,..., 7388 e os produtos serão permutações rígidas positivas dele. Após cumprir essas etapas em sala de aula, o professor estará proporcioado aos aluos a oportuidade de utilizarem a calculadora em sala de aula e descobrirem que ela é limitada, aprederem sobre as dízimas periódicas, praticarem divisões e multiplicações como etapas de costruções de resultados, e ão como objetivo fial, cohecerem as propriedades/curiosidades do úmero 4857 e de estarem estimularem o raciocíio lógico/dedutivo e a capacidade de abstrair. Além disso, é possível (e espera-se) que algus aluos teham o iteresse pela Matemática despertado ou aumetado.

29 8 3. ϕ : O NÚMERO DE OURO Neste item faremos um estudo de outro úmero que também desperta muita curiosidade, surpresa e ecatameto, e que possui propriedades sigulares: é o úmero + 5. Esse úmero está cercado de mistérios e mitos e é cohecido como Número de Ouro, úmero áureo, Razão Áurea e seção ou secção áurea. Em virtude de seu ecatameto por esse úmero, o italiao Luca Pacioli (445 a 57) o chamou de Divia Proporção e usou esse termo como título de um cojuto de três livros que ele publicou em 509. Esse úmero, que este texto será represetado pela letra grega ϕ (fi), é um úmero irracioal (provado o item 5.) cuja represetação até a 30ª casa decimal é, Em 996, foram calculadas 0 milhões de casas decimais de ϕ (LIVIO, 0, p.99), e uma represetação dele, com 000 casas decimais, é apresetada o item 5.3. O primeiro registro histórico relacioado, diretamete, ao Número de Ouro foi feito por Euclides de Alexadria, a coleção Os Elemetos, por volta de 300 a.c (LIVIO, 0, p. 3). Euclides defiiu que um segmeto AB é dividido em média e extrema razão por um AB AC poto C quado =. AC CB A C B FIGURA 3: Poto C dividido um segmeto AB em média e extrema razão Idepedete da medida de AB, a proporção Se AB = a e CB = x, etão, AC = a x. a a x Seja r= =. a x x a Uma maeira de reescrever a igualdade r= é a x AB AC = é igual a ϕ. De fato: AC CB

30 9 a x+ x x r = = + = + a x a x r Assim, tem-se a equação r r = 0, cuja raiz positiva é + 5 ϕ =. A professora e escritora Maria Salett Biembegut, em seu livro Número de Ouro e Secção Áurea: cosiderações e sugestões para sala de aula, chama esse úmero de Número 5 de Ouro, e o seu iverso, =, de secção áurea (pp. 6); o artigo em que Paulo Domigos ϕ Cordaro publicou a Revista do Professor de Matemática (RPM) 43/ cometado esse livro de Biembegut, ele também usa essa omeclatura (esse artigo está dispoível em RPM43/RPM43_.PDF). A maioria dos autores usa os dois termos como siôimos. Além da divergêcia em relação à omeclatura dos úmeros, existem divergêcias em relação à otação que represeta o Número de Ouro. Algus autores (Biembegut, Queiroz, Maor e Livio) usam a letra grega maiúscula fi (φ ) para represetar o Número de Ouro, e outros autores (Souza, Zah e Garcia) usam a mesma letra, só que miúscula (ϕ ), para represetar o mesmo úmero. Lauro usa φ para represetar o Número de Ouro e ϕ para represetar seu iverso. Até o iício do século XX, usava-se, habitualmete, a letra grega tau (τ), que em grego sigifica o corte, para represetar o Número de Ouro (LIVIO, 0, p. 6; EVES, 99, p. 4). Como fi são as primeiras letras do ome Fídias (um escultor e arquiteto grego que viveu aproximadamete etre 490 e 460 a.c e que cotribuiu para a costrução do Parteo, em Ateas), o matemático americao Mark Barr, o iício do século XX, começou a utilizar a letra fi para represetar o Número de Ouro, em homeagem a Fídias (LIVIO, 0, p. 6; LAURO, 005, p. 4). Essa homeagem deve-se ao fato de a fachada do Parteo ser cosiderada iscritível em um retâgulo áureo, ou seja, iscritível em um retâgulo ode a razão etre o comprimeto e a altura é igual ao Número de Ouro (BIEMBENGUT, 996, p. 9; LAURO, 005, p. 4). A afirmação de que a fachada é iscritível em um retâgulo áureo é muito questioada (LIVIO, 0, p. 9). Segudo Markowsky, o adjetivo áureo só começou a ser associado a ϕ recetemete, o século XIX; até etão era comum chamá-lo de razão extrema e média e de divia

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A

Leia mais

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

UM NOVO OLHAR PARA O TEOREMA DE EULER

UM NOVO OLHAR PARA O TEOREMA DE EULER X Ecotro Nacioal de Educação Matemática UM NOVO OLHA PAA O TEOEMA DE EULE Iácio Atôio Athayde Oliveira Secretária de Educação do Distrito Federal professoriacio@gmail.com Aa Maria edolfi Gadulfo Uiversidade

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Uma abordagem histórico-matemática do número pi (π )

Uma abordagem histórico-matemática do número pi (π ) Uma abordagem histórico-matemática do úmero pi (π ) Brua Gabriela Wedpap, Ferada De Bastiai, Sadro Marcos Guzzo Cetro de Ciêcias Exatas e Tecológicas UNIOESTE Cascavel - Pr. E-mail: bruagwedpap@hotmail.com

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito o INSPE INSPE esolvida /ovembro/0 Prova A (Marrom) MATEMÁTICA 7. Cosidere o quadrilátero coveo ABCD mostrado a figura, em que AB = cm, AD = cm e m(^a) = 90º. 8. No plao cartesiao da

Leia mais

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A Questão Em uma pesquisa, foram cosultados 00 cosumidores sobre sua satisfação em relação a uma certa marca de sabão em pó. Cada cosumidor deu uma ota de 0 a 0 para o produto, e a média fial das otas foi

Leia mais

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : cojuto dos úmeros aturais; = {,,, } : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros reais : cojuto dos úmeros complexos i: uidade imagiária, i = z: módulo

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

J. A. M. Felippe de Souza 9 Diagramas de Bode

J. A. M. Felippe de Souza 9 Diagramas de Bode 9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE D TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013 CONCURSO PÚBLICO 01 FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL UFMS MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 16 QUESTÕES POR TÓPICOS Coordeação e Orgaização: Mariae dos Reis 1ª Edição

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

Matemática Em Nível IME/ITA

Matemática Em Nível IME/ITA Caio dos Satos Guimarães Matemática Em Nível IME/ITA Volume 1: Números Complexos e Poliômios 1ª Edição São José dos Campos 007 SP Prefácio O livro Matemática em Nível IME/ITA tem como objetivo ão somete

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

Sistema Computacional para Medidas de Posição - FATEST

Sistema Computacional para Medidas de Posição - FATEST Sistema Computacioal para Medidas de Posição - FATEST Deise Deolido Silva, Mauricio Duarte, Reata Ueo Sales, Guilherme Maia da Silva Faculdade de Tecologia de Garça FATEC deisedeolido@hotmail.com, maur.duarte@gmail.com,

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

O NÚMERO Φ * RESUMO. Melissa da Silva Rodrigues. Marcos Antônio da Câmara

O NÚMERO Φ * RESUMO. Melissa da Silva Rodrigues. Marcos Antônio da Câmara O NÚMERO Φ * Marcos Atôio da Câmara Melissa da Silva Rodrigues Uiversidade Federal de Uberlâdia Av. João Naves de Ávila, Campus Sata Môica 38408-00 Uberlâdia MG Faculdade de Matemática VIII Curso de Especialização

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II Física Aplicada à Egeharia Civil MOMENTOS DE NÉRCA Neste capítulo pretede-se itroduzir o coceito de mometo de iércia, em especial quado aplicado para o caso de superfícies plaas. Este documeto, costitui

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

MATEMÁTICA APLICADA À GESTÃO I

MATEMÁTICA APLICADA À GESTÃO I 00 MATEMÁTICA APLICADA À GESTÃO I TEXTO DE APOIO MARIA ALICE FILIPE ÍNDICE NOTAS PRÉVIAS ALGUNS CONCEITOS SOBRE SÉRIES6 NOTAS PRÉVIAS As otas seguites referem-se ao maual adoptado: Cálculo, Vol I James

Leia mais

CONTEÚDO AOS LEITORES 2. XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA 3 Problemas e Soluções da Primeira Fase

CONTEÚDO AOS LEITORES 2. XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA 3 Problemas e Soluções da Primeira Fase CONTEÚDO AOS LEITORES XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA 3 Problemas e Soluções da Primeira Fase XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA 7 Problemas e Soluções da Seguda Fase XXVI OLIMPÍADA BRASILEIRA

Leia mais

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia.

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia. Resolução -Vestibular Isper 0- Aálise Quatitativa e Lógica Por profa. Maria Atôia Coceição Gouveia.. A fila para etrar em uma balada é ecerrada às h e, quem chega exatamete esse horário, somete cosegue

Leia mais

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Disciplia: Séries e Equações Difereciais Ordiárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Ambiete Virtual de Apredizagem: Moodle (www.ead.ufpb.br) Site do Curso: www.mat.ufpb.br/ead

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

M = 4320 CERTO. O montante será

M = 4320 CERTO. O montante será PROVA BANCO DO BRASIL / 008 CESPE Para a veda de otebooks, uma loja de iformática oferece vários plaos de fiaciameto e, em todos eles, a taxa básica de juros é de % compostos ao mês. Nessa situação, julgue

Leia mais

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de

Leia mais

Juros Simples e Compostos

Juros Simples e Compostos Juros Simples e Compostos 1. (G1 - epcar (Cpcar) 2013) Gabriel aplicou R$ 6500,00 a juros simples em dois bacos. No baco A, ele aplicou uma parte a 3% ao mês durate 5 6 de um ao; o baco B, aplicou o restate

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

RESISTORES E RESISTÊNCIAS

RESISTORES E RESISTÊNCIAS ELETICIDADE CAPÍTULO ESISTOES E ESISTÊNCIAS No Capítulo estudamos, detre outras coisas, o coceito de resistêcia elétrica. Vimos que tal costitui a capacidade de um corpo qualquer se opôr a passagem de

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

SIMULADO DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 2012. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO.

SIMULADO DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 2012. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. SIMULADO DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 Muitas vezes

Leia mais

SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA LINGUAGEM DE PROGRAMAÇÃO JAVA¹

SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA LINGUAGEM DE PROGRAMAÇÃO JAVA¹ SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA RESUMO LINGUAGEM DE PROGRAMAÇÃO JAVA¹ Deis C. L. Costa² Edso C. Cruz Guilherme D. Silva Diogo Souza Robhyso Deys O presete artigo forece o ecadeameto

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

Revisão 01-2011. Exercícios Lista 01 21/02/2011. Questão 01 UFRJ - 2006

Revisão 01-2011. Exercícios Lista 01 21/02/2011. Questão 01 UFRJ - 2006 Aluo(a): Professor: Chiquiho Revisão 0-20 Exercícios Lista 0 2/02/20 Questão 0 UFRJ - 2006 Dois estados produzem trigo e soja. Os gráficos abaixo represetam a produção relativa de grãos de cada um desses

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Uiversidade Federal de Mias Gerais Istituto de Ciêcias Exatas Departameto de Estatística Associação etre Variáveis Qualitativas - Teste Qui-Quadrado, Risco Relativo e Razão das Chaces (Notas de Aula e

Leia mais

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6 Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo

Leia mais

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP Goiâia, 07 a 10 de outubro Mii Curso Tópicos em passeios aleatórios Ms. Valdivio Vargas Júior - Doutorado/IME/USP TÓPICOS EM PASSEIOS ALEATÓRIOS VARGAS JÚNIOR,V. 1. Itrodução Cosidere a seguite situação

Leia mais

defi departamento de física www.defi.isep.ipp.pt

defi departamento de física www.defi.isep.ipp.pt defi departameto de física Laboratórios de Física www.defi.isep.ipp.pt stituto Superior de Egeharia do Porto- Departameto de Física Rua Dr. Atóio Berardio de Almeida, 431 4200-072 Porto. T 228 340 500.

Leia mais

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples.

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples. FACULDADES NTEGRADAS ENSTEN DE LMERA Curso de Graduação em Egeharia Civil Resistêcia dos Materiais - 0 Prof. José Atoio Schiavo, MSc. NOTAS DE AULA Aula : Flexão Pura e Flexão Simples. Objetivo: determiar

Leia mais

alguns belos problemas de matemática discreta

alguns belos problemas de matemática discreta V Bieal da SBM Sociedade Brasileira de Matemática UFPB - Uiversidade Federal da Paraíba 18 a 22 de outubro de 2010 algus belos problemas de matemática discreta rogério ricardo steffeo Neste miicurso serão

Leia mais

Guia do Professor. Matemática e Saúde. Experimentos

Guia do Professor. Matemática e Saúde. Experimentos Guia do Professor Matemática e Saúde Experimetos Coordeação Geral Elizabete dos Satos Autores Bárbara N. Palharii Alvim Sousa Karia Pessoa da Silva Lourdes Maria Werle de Almeida Luciaa Gastaldi S. Souza

Leia mais

CONTRIBUIÇÕES DA MODELAGEM MATEMÁTICA PARA O ENSINO MÉDIO: ÂNGULO DE VISÃO DAS CORES DO ARCO-ÍRIS

CONTRIBUIÇÕES DA MODELAGEM MATEMÁTICA PARA O ENSINO MÉDIO: ÂNGULO DE VISÃO DAS CORES DO ARCO-ÍRIS CONTRIBUIÇÕES DA MODELAGEM MATEMÁTICA PARA O ENSINO MÉDIO: ÂNGULO DE VISÃO DAS CORES DO ARCO-ÍRIS Profª. Drª. Vailde Bisogi UNIFRA vailde@uifra.br Prof. Rodrigo Fioravati Pereira UNIFRA prof.rodrigopereira@gmail.com

Leia mais

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y.

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y. DEPARTAMENTO...: ENGENHARIA CURSO...: PRODUÇÃO DISCIPLINA...: ENGENHARIA ECONÔMICA / MATEMÁTICA FINANCEIRA PROFESSORES...: WILLIAM FRANCINI PERÍODO...: NOITE SEMESTRE/ANO: 2º/2008 Aula 7 CONTEÚDO RESUMIDO

Leia mais

Modelando o Tempo de Execução de Tarefas em Projetos: uma Aplicação das Curvas de Aprendizagem

Modelando o Tempo de Execução de Tarefas em Projetos: uma Aplicação das Curvas de Aprendizagem 1 Modelado o Tempo de Execução de Tarefas em Projetos: uma Aplicação das Curvas de Apredizagem RESUMO Este documeto aborda a modelagem do tempo de execução de tarefas em projetos, ode a tomada de decisão

Leia mais

Fundamentos de Bancos de Dados 3 a Prova

Fundamentos de Bancos de Dados 3 a Prova Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Dezembro de 2007 Duração: 2 horas Prova com cosulta Questão 1 (Costrução de modelo ER - Peso 3) Deseja-se costruir um sistema WEB que armazee

Leia mais

Demonstrações especiais

Demonstrações especiais Os fudametos da Física Volume 3 Meu Demostrações especiais a ) RLAÇÃO NTR próx. e sup. osidere um codutor eletrizado e em equilíbrio eletrostático. Seja P sup. um poto da superfície e P próx. um poto extero

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

Notas de Aula do Curso PGE950: Probabilidade

Notas de Aula do Curso PGE950: Probabilidade Notas de Aula do Curso PGE950: Probabilidade Leadro Chaves Rêgo, Ph.D. 2013.1 Prefácio Estas otas de aula foram feitas para compilar o coteúdo de várias referêcias bibliográficas tedo em vista o coteúdo

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO CURSO DE MATEMÁTICA APLICADA À ECONOMIA E GESTÃO ANÁLISE MATEMÁTICA I ELEMENTOS DE ANÁLISE REAL Volume Por : Gregório Luís I PREFÁCIO O presete teto destia-se a

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Celso Melchiades Dória. Geometria II

Celso Melchiades Dória. Geometria II Celso Melchiades Dória Geometria II Floriaópolis, 007 Uiversidade Federal de Sata Cataria Cosórcio ReDiSul Campus Uiversitário Tridade Caixa Postal 476 CEP 88040-900 Floriaópolis SC Reitor: Lúcio José

Leia mais

CONCURSO PÚBLICO PARA PROVIMENTO DE CARGOS EFETIVOS DA PREFEITURA MUNICÍPIO DE TAIOBEIRAS/MG - EDITAL 1/2014 -

CONCURSO PÚBLICO PARA PROVIMENTO DE CARGOS EFETIVOS DA PREFEITURA MUNICÍPIO DE TAIOBEIRAS/MG - EDITAL 1/2014 - CONCURSO PÚBLICO PARA PROVIMENTO DE CARGOS EFETIVOS DA PREFEITURA MUNICÍPIO DE TAIOBEIRAS/MG - EDITAL 1/014 - ESTE CADERNO DE PROVAS DESTINA-SE AOS CANDIDATOS AOS SEGUINTES CARGOS: Auxiliar de Saúde Soldador

Leia mais

Cálculo Financeiro Comercial e suas aplicações.

Cálculo Financeiro Comercial e suas aplicações. Matemática Fiaceira Uidade de Sorriso - SENAC M, Prof Rikey Felix Cálculo Fiaceiro Comercial e suas aplicações. Método Algébrico Parte 0 Professor Rikey Felix Edição 0/03 Matemática Fiaceira Uidade de

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

Matemática. Resolução das atividades complementares. M5 Análise combinatória

Matemática. Resolução das atividades complementares. M5 Análise combinatória Resolução das atividades complemetares Matemática M Aálise combiatória p. 6 Ao laçarmos um dado duas vezes, quatas e quais são as possibilidades de ocorrêcia dos úmeros? Ao laçarmos um dado duas vezes,

Leia mais

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1 MAC122 Pricípios de Desevolvimeto de Algoritmos EP o. 1 Prof. Dr. Paulo Mirada 1 Istituto de Matemática e Estatística (IME) Uiversidade de São Paulo (USP) 1. Estrutura dos arquivos de images o formato

Leia mais