Estatística stica para Metrologia

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Estatística stica para Metrologia"

Transcrição

1 Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta afirmação é chamada de hipótese estatística e o procedimeto de tomada de decisão é um teste de hipóteses. Muitos problemas reais podem ser formulados aturalmete como testes de hipóteses. Existe uma coexão muito próxima etre Itervalos de Cofiaça e. 2 Objetivo geral Iferir sobre os parâmetros descohecidos de uma população usado uma amostra (de tamaho possivelmete reduzido). Testar hipóteses é um problema que evolve a tomada de uma decisão. Evetualmete, após recolhermos (ou processarmos) a iformação cotida uma amostra, devemos chegar a uma coclusão sobre parâmetros ão observáveis relacioados à população que gerou aquela amostra. Qual o teste ideal? É aquele que sempre toma a decisão correta. É claro que isso é uma abstração, e ão existe a realidade. Na prática... Procuraremos limitar a probabilidade de um certo tipo de erro, mas ão se pode descartálo totalmete. 3 4

2 O Teste de ipóteses é um procedimeto em que procuramos testar uma hipótese iicial cotra uma alterativa. A primeira hipótese (hipótese iicial) é deomiada hipótese ula e represetada por. A seguda hipótese é chamada hipótese alterativa e represetada por a ou. Em geral a hipótese alterativa represeta uma cojectura ova a ser testada, e a hipótese ula represeta a situação usual, o "status quo". A partir dos dados observados, como podemos decidir sobre qual hipótese (ula ou alterativa) deverá ser rejeitada? A rejeição da hipótese ula implica a aceitação da hipótese alterativa e vice-versa. Não é possível aceitar (ou rejeitar) ambas as hipóteses simultaeamete. 5 6 O que é um teste de hipóteses? É qualquer regra usada para os levar à decisão sobre qual hipótese devemos aceitar. Podemos criar um úmero ifiito de testes de hipóteses, o problema é idetificar quais são os bos testes, e tetar obter um "algoritmo" para criar bos testes em diversas situações. Aqui estaremos cocetrados em obter testes de hipóteses para a média de distribuições. Costrução de um Teste de ipóteses Teste se T(x), uma fução apropriada dos X i s da amostra, está uma região especificada R. Do cotrário, se T(x) ão está a região R, ão rejeitamos a hipótese ula. A região R é chamada de região de rejeição ou região crítica. 7 8

3 Erros do Tipo I e II A partir do que foi observado a amostra podemos tomar a decisão de aceitar ou rejeitar e esta decisão ão é ecessariamete correta, como mostra a tabela a seguir. Decisão tomada Aceitar () (Aceitar ) Estado da realidade é verdadeira DECISÃO CORRETA Erro do tipo I () ( é falsa) é verdadeira ( é falsa) Erro do tipo II (β) DECISÃO CORRETA Erros do Tipo I e II A eficiêcia do teste pode ser medida através das probabilidades dos erros de tipo I e II. Idealmete gostaríamos que a probabilidade de icorrermos em qualquer tipo de erro fosse zero, mas isto ão é possível. Para um tamaho de amostra fixo também ão é possível fixarmos ambos os erros de tipo I e II. 9 Erros do Tipo I e II = Probabilidade de erro do tipo I = Pr{ rejeitar é verdadeira } = Pr{ T(x) a região crítica é verdadeira } é chamado de tamaho do teste ou ível de sigificâcia do teste. β = Probabilidade de erro do tipo II β = Pr{ aceitar éfalsa } β = Pr{ T(x) fora da região crítica éfalsa } Potêcia de um Teste Potêcia do teste (ou poder do teste) - β = - Probabilidade de erro do tipo II - β = Pr{ rejeitar éfalsa } Ou seja, a potêcia do teste é a probabilidade de uma decisão correta! Idealmete, a potêcia de um teste seria sempre alta, mas isso ão é sempre verdade. 2

4 Fução Potêcia Defie-se a fução potêcia como: K(θ) ) = Pr{ rejeitar o valor do parâmetro é θ} O que é uma boa fução potêcia? Se θ está a região da hipótese ula, a fução potêcia deve ser pequea (pois ão queremos rejeitar quado ela é verdadeira). Ao cotrário, se θ estiver a região ode a hipótese alterativa é válida, gostaríamos que a fução potêcia fosse alta. Fução Característica de Operação (OCC) É defiida como: J(θ) = K(θ) = Pr{ aceitar o valor do parâmetro é θ } Note que, ambas K(θ) e J(θ) são probabilidades, e portato limitadas ao itervalo [,]. A OCC é muito utilizada em Cotrole de Qualidade, mas ão falaremos mais dela aqui este curso ituição Supoha que temos uma amostra de tamaho 25 de uma Normal com variâcia cohecida e desejamos testar as seguites hipóteses: : μ = 2 : μ > 2 O que a ossa ituição os diz? A média amostral, X, é um bom estimador de μ, e portato deve trazer evidêcia sobre qual hipótese ( ou ) é verdadeira. Imagie que observamos X = 5. Dados os parâmetros ( = 25 e variâcia ), este parece um úmero bem exagerado, e etão deve ser falsa. Logo, a ossa ituição parece apotar para a seguite regra de decisão: - ituição Devemos rejeitar se X é grade. Ou seja, a região crítica tem a forma: R = { X k} A questão que surge agora é: como escolher a costate k? Uma possibilidade é arbitrar o máximo erro do tipo I, ou seja, a maior probabilidade de rejeitar quado é verdadeira. 5 6

5 - ituição Mas, esta probabilidade pode ser escrita em termos da fução potêcia. Supoha que FIXAMOS, a probabilidade do erro do tipo I, isto é: = { é Verdadeiro} = Por exemplo: Pr = Pr{ X k μ = 2} = Pr k 2 = Φ 2 k z (da N(,)) % % % X 2 / 25 k 2 / 25 = k a tabela ao lado é o valor a partir do qual rejeita-se a hipótese ula 7 - ituição Vamos ver a fução potêcia em cada um dos casos ateriores % 9% 8% 7% 6% 5% 4% 3% 2% % % Fuções Potêcia para Diversos Valores de Alfa k(mu) - alfa = % k(mu) - alfa = 5% k(mu) - alfa = % 8 - ituição Coclusões Se é muito pequeo (erro do tipo I muito pequeo, p.ex., %), a região de rejeição exige um valor de k muito grade para rejeitar a hipótese ula este caso, e a fução potêcia demora muito a crescer. À medida que passamos a aceitar erros do tipo I maiores (por ex, 5% ou %, a fução potêcia já começa a rejeitar a hipótese ula com mais facilidade, pois o valor de k dimiui. - ituição Coclusões A título de exemplo, se o valor de μ fosse 5 (e a hipótese ula decididamete falsa!), as probabilidades de rejeição usado as fuções potêcia do exemplo seriam 2.4%,44.8% e 58.7% respectivamete. 9 2

6 ui-caudais E agora, o que acotece se estedemos o osso teste de hipótese para: : μ 2 : μ > 2 A resposta é: basicamete ada! Por que? Cosidere a fução potêcia para valores de μ detro da hipótese ula estes valores estarão abaixo do especificado. O próximo gráfico mostra esta idéia para a fução potêcia com k = 5.29 (isto é, = 5%) 2 ui-caudais.% 95.% 9.% 85.% 8.% 75.% 7.% 65.% 6.% 55.% 5.% 45.% 4.% 35.% 3.% 25.% 2.% 5.%.% 5.%.% A partir deste poto a hipótese ula começa a ser falsa - logo, alfa = 5% é o MAIOR erro do tipo I cometido quado a hipótese ula é verdadeira Fução Potêcia com alfa = 5% mu 22 ui-caudais Geeralização Supoha que desejamos testar as seguites hipóteses: : μ μ : μ > μ O teste tem exatamete a forma descrita ates, em que a região de rejeição é: R = { X k} ui-caudais Como escolher k? Através do erro do tipo I (), previamete especificado, que leva às seguites receitas de bolo : se: X μ σ > z X > μ + z σ cohecido σ X μ > z s X > μ + z s σ descohecido e usado a hipótese de uma amostra grade, o que possibilita o uso da Normal 23 24

7 ui-caudais O ível de sigificâcia de um teste () é defiido como a maior probabilidade de rejeição de quado é verdadeira. Ou seja, o ível de sigificâcia é o maior erro do tipo I cometido pelo teste. No exemplo aterior, é apeas o valor da fução potêcia em μ = 2. ui-caudais Supoha que agora desejamos testar as seguites hipóteses: : μ μ : μ < μ Pelos mesmos argumetos que o teste aterior, faz setido rejeitar a hipótese ula quado a média amostral for pequea. O que é um valor pequeo? Vai depeder do ível de sigificâcia especificado para o teste, ou seja, do erro máximo do tipo I ui-caudais Receita de Bolo se: X σ X s μ μ < z X < μ. < z X z < μ z. σ s σ cohecido σ descohecido Estes testes são válidos para amostras Normais com variâcia cohecida ou para amostras ão ecessariamete Normais de tamaho GRANDE e σ descohecido. Note que estamos usado z, que é um poto obtido da tabela N(,). 27 ui-caudais Exemplo Uma empresa produz café em pó em embalages de kg. O gerete de produção deseja saber se as embalages realmete possuem em média kg do produto e decidiu realizar um teste. Ele retirou uma amostra de 5 embalages e obteve uma um peso médio de,985 kg de produto. Iformações ateriores a respeito da quatidade de produto por embalagem idicaram um desviopadrão de,75 kg. O gerete deseja saber, com um ível de sigificâcia de % se o coteúdo de cada embalagem é de, o míimo, kg. 28

8 Teste de ipóteses ui-caudais Teste de ipóteses ui-caudais Solução: As hipóteses ula e alterativa para o teste são: a : μ : μ < Para = %, o valor de z é (a partir da tabela ormal) de A região de rejeição é: se X μ z σ.75. X =.975 Como a média m amostral (,985) ão é meor que.975, a hipótese ula ão pode ser rejeitada. Se σ ão fosse cohecido, deveríamos utilizar o desvio-padrão da amostra s. 29 A região crítica do teste aterior é: se X.975 A fução potêcia deste teste é etão: K( μ ) = ( a média é μ ) = = Pr ( X <.975 μ ) = Pr Z < = Φ Pr = Pr.975 μ 5 = Φ.75 ( 94.28(.975 μ )) X μ.975 μ 5 < 5 = μ.975 μ 5 = Φ 5 = Teste de ipóteses ui-caudais Valor de p ( p( p value ) Pela magitude dos úmeros evolvidos (tamaho da amostra grade e desvio padrão pequeo) é ituitivo perceber que qualquer pequea variação a média amostral levará a grades oscilações da fução potêcia, o que pode ser cofirmado o próximo gráfico. % 95% Fução Potêcia - Alfa = % Muitos softwares estatísticos calculam e exibem o p-value, que é a probabilidade de que a estatística de teste teha valor pelo meos tão extremo (muito grade ou muito pequeo) quato o valor ecotrado a amostra. 9% 85% 8% 75% 7% 65% 6% 55% O valor-p (p-value) idica o meor ível de sigificâcia que levaria à rejeição da hipótese ula. 5% 45% 4% 35% 3% 25% 2% 5% % 5% % Por exemplo, se o p-value é.4, a hipótese seria rejeitada com ível 5%, mas ão com ível %

9 ui-caudais Uma outra forma para realizar o teste de hipótese é através do p value. A hipótese ula é rejeitada se essa probabilidade ( p value ) for meor que o ível de sigificâcia defiido para o teste se "p value" < Agora vamos desevolver um teste de hipótese bi-caudal, para uma amostra grade ( 3) e σ da população cohecido a : μ = μ : μ μ O ível de sigificâcia é tal que, se a hipótese ula for falsa, queremos ter uma probabilidade máxima m de aceitá-la, isto é,, queremos cometer uma probabilidade especificada de erro do tipo I Mas, ituitivamete, qual a cara da região crítica? Devemos rejeitar quado estivermos loge de μ, ou seja, quado o módulo da média amostral estiver muito distate de μ. Supoha iicialmete que a hipótese ula seja verdadeira. Para uma amostra grade, podemos cosiderar a distribuição da média amostral como praticamete Normal (pelo teorema cetral do limite). Agora, dado um ível de sigificâcia, devemos cosiderar dois valores de Z Um, abaixo do qual há uma probabilidade /2 da média de uma amostra estar localizada ( z /2 ) Outro, acima do qual há uma probabilidade /2 da média de uma amostra estar localizada (z /2 ) A regra de rejeição é: X μ se Z = < z / 2 ou Z > z σ /

10 Ou seja, em termos da média amostral, a região crítica pode ser descrita como: σ σ se X < μ z / 2 ou se X > μ + z / 2 Isto é, rejeita-se a hipótese ula se a média amostral estiver loge de μ. Note que, aalogamete ao teste ui-caudal, é o ível de sigificâcia do teste, isto é, o maior erro do tipo I. 37 Mas, como aqui rejeita-se a hipótese ula dos dois lados, o poto usado da Normal éz /2 e ão z (que era usado os testes ui- caudais), de tal forma que Pr(Z > z /2 ) = /2. Receita de Bolo potos percetuais da distribuição N(,) para testes bi-caudais Testes Bi-caudais z % %.96 % Exemplo Um fabricate de autopeças utiliza esferas de aço a fabricação de rolametos. Essas esferas devem ter um diâmetro de 2 mm, caso cotrário os rolametos ão atigem as especificações exigidas. Uma amostra de 3 rolametos escolhidos ao acaso foreceu um diâmetro médio de,45 mm e um desvio-padrão de mm. Pode-se dizer que o diâmetro médio m dos rolametos utilizados é igual a 2 mm com um ível de sigificâcia de 5%? 39 Solução: este é um teste de hipótese bi-caudal, com =.5, ode: : μ = 2 : μ 2 a Para =,5, z /2 =,96 Para X =,45mm, temos: X μ.45 2 Z = = = 3. σ / / 3 E portato podemos rejeitar a hipótese ula. Note que rejeitar a hipótese ula para Z < -,96 é completamete equivalete à rejeitá-la para: X <

11 A região crítica este exemplo é: se X < 2.96 ou se X > 2 3 Isto é, rejeitar se : X <.64 ou X > 2.36 A fução potêcia é, este caso (verifique!): % 95% 9% 85% 8% 75% 7% 65% Fução Potêcia - Teste bi-caudal K ( μ ) = Φ ( ) 2 μ.96 + Φ ( 2 μ ) O gráfico desta fução potêcia é mostrado a próxima págia. Note que a potêcia (probabilidade de rejeitar a hipótese ula) cresce à medida que os afastamos de μ = 2 e, em μ = 2, o valor da fução potêcia é exatamete o erro do tipo I, estipulado em 5%. 3 6% 55% 5% 45% 4% 35% 3% 25% 2% 5% % 5% % Teste de hipótese amostra pequea Até o mometo, cosideramos o caso de uma amostra grade ( 3) Para < 3 existem as seguites possibilidades: A população é Normal e σ é cohecido: utilizamos o mesmo procedimeto que para o caso de 3, com σ cohecido (use a distribuição Normal) A população é ormalmete distribuída e σ ão é cohecido: utilizamos o mesmo procedimeto que para o caso de 3, utilizado s como estimador de σ e a distribuição t ao ivés da Normal A população ão é ormalmete distribuída: aumetamos o tamaho da amostra pois ão é possível usar uma aproximação Normal. 43 Teste de hipótese amostra pequea Exemplo Uma revista decidiu realizar uma pesquisa sobre a qualidade de serviço em grades aeroportos ao redor do mudo. O ível de serviço de um aeroporto é cosiderado superior se a ota obtida é igual ou superior a 7. Para o aeroporto de eathrow, em Lodres, foram etrevistadas 2 pessoas que atribuíram as seguites otas: 7, 8,, 8, 6, 9, 6, 7, 7, 8, 9, e 8. Determie, com um ível de sigificâcia de 5%, se o serviço do aeroporto de eathrow pode ser cosiderado superior. Supoha que a população é ormalmete distribuída. 44

12 Teste de hipótese amostra pequea Solução: As hipóteses ula e alterativa para o teste são: : μ < 7 a : μ 7 Com uma população ormal, < 3 e σ descohecido, utilizaremos s e a distribuição t com graus de liberdade para o teste. A média da amostra é 7,75 e s =,25 O valor de t para o teste é,796 A regra de rejeição é: x μ 7,75 7 Rejeita se t = > t t = = 2,4 > t =,796 s,25 2 Logo, existe evidêcia para rejeitar a hipótese ula! 45 Teste de hipótese amostra pequea Exemplo istoricamete, a comissão média paga por pessoas físicas para operações em bolsa de valores através de iteret uma corretora é R$5. Neste mês você fez uma pesquisa com 6 clietes da corretora e otou que a comissão média foi de R$ e o desvio padrão R$ 6. Com ível de sigificâcia %, há evidêcia para afirmar que a comissão este mês foi mais baixa que historicamete? E com ível de sigificâcia 5%? Supoha que os valores pagos são Normalmete distribuídos. 46 Teste de hipótese amostra pequea Desejamos testar as hipóteses: : μ = 5 : μ < 5 A região crítica tem a forma: rejeitar se a média amostral é pequea, e como o tamaho da amostra é pequeo devemos usar a distribuição t de Studet. s μ Ou seja : se X se X 5 -t se X 5 t t,, 5,. 6 (.5) Teste de hipótese amostra pequea Do Excel: Para o teste com ível 5% usamos t 5,.5 = INVT(.,5) =.753 Para o teste com ível % usamos t 5,. = INVT(.2,5) = 2.62 Região crítica a 5%: s μ Ou seja : se X se X 5 -t se X 5 t t,, 5,. 6 (.5) 48. 6

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD

Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD Teste de ióteses VÍCTOR UGO LACOS DÁVILAD Teste De ióteses. Exemlo. Cosidere que uma idustria comra de um certo fabricate, ios cuja resistêcia média à rutura é esecificada em 6 kgf (valor omial da esecificação).

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste 7 o SEMESTRE 5/6 Data: Sábado, 7 de Jaeiro de 6 Duração: 9:3 às :3 Tópicos de Resolução. O úmero

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2 SUMÁRIO 1. CORRELAÇÃO... 1.1. Itrodução... 1.. Padrões de associação... 3 1.3. Idicadores de associação... 3 1.4. O coeficiete de correlação... 5 1.5. Hipóteses básicas... 5 1.6. Defiição... 6 1.7. Distribuição

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

AULA: Inferência Estatística

AULA: Inferência Estatística AULA: Iferêcia Estatística stica Prof. Víctor Hugo Lachos Dávila Iferêcia Estatística Iferêcia Estatística é um cojuto de técicas que objetiva estudar uma oulação através de evidêcias forecidas or uma

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA IM 317 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA IM 317 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA IM 37 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS PROF. DR. SÉRGIO

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

Sistema Computacional para Medidas de Posição - FATEST

Sistema Computacional para Medidas de Posição - FATEST Sistema Computacioal para Medidas de Posição - FATEST Deise Deolido Silva, Mauricio Duarte, Reata Ueo Sales, Guilherme Maia da Silva Faculdade de Tecologia de Garça FATEC deisedeolido@hotmail.com, maur.duarte@gmail.com,

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

Juros Simples e Compostos

Juros Simples e Compostos Juros Simples e Compostos 1. (G1 - epcar (Cpcar) 2013) Gabriel aplicou R$ 6500,00 a juros simples em dois bacos. No baco A, ele aplicou uma parte a 3% ao mês durate 5 6 de um ao; o baco B, aplicou o restate

Leia mais

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA Resumo Itervalos de Cofiaça ara médias e roorções com alicações a Egeharia. Ferado Mori Prof.fmori@gmail.com Itervallos de Cofiiaça ara Médiias e Proorções

Leia mais

RESISTORES E RESISTÊNCIAS

RESISTORES E RESISTÊNCIAS ELETICIDADE CAPÍTULO ESISTOES E ESISTÊNCIAS No Capítulo estudamos, detre outras coisas, o coceito de resistêcia elétrica. Vimos que tal costitui a capacidade de um corpo qualquer se opôr a passagem de

Leia mais

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.)

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.) Testes χ 2 de ajustameto, homogeeidade e idepedêcia Testes χ 2 (cot.) Os testes χ 2 cosiderados este último poto do programa surgem associados a dados de cotagem. Mais cocretamete, dados que cotam o úmero

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

Fundamentos de Bancos de Dados 3 a Prova

Fundamentos de Bancos de Dados 3 a Prova Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Dezembro de 2008 Duração: 2 horas Prova com cosulta Questão (Costrução de modelo ER) Deseja-se projetar uma base de dados que dará suporte a

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Equações Diferenciais (ED) Resumo

Equações Diferenciais (ED) Resumo Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,

Leia mais

J. A. M. Felippe de Souza 9 Diagramas de Bode

J. A. M. Felippe de Souza 9 Diagramas de Bode 9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de

Leia mais

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt:

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt: Proposta de Resolução do Exame de Matemática Aplicada às Ciêcias Sociais Cód. 835-2ª 1ª Fase 2014 1.1 Comecemos por determiar a distribuição de represetates por aplicação do método de Hodt: Divisores PARTIDOS

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

INFERÊNCIA ESTATÍSTICA

INFERÊNCIA ESTATÍSTICA Uiversidade Federal da Bahia Istituto de Matemática Departameto de Estatística Estatística IV (MAT027) e Itrodução à Estatística (MAT050) NOTAS DE AULA UNIDADE III INFERÊNCIA ESTATÍSTICA 1 1 INTRODUÇÃO

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

PROFESSOR: SEBASTIÃO GERALDO BARBOSA

PROFESSOR: SEBASTIÃO GERALDO BARBOSA UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - 0 - PROFESSOR: SEBASTIÃO GERALDO BARBOSA Setembro/203 UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - - TÓPICOS DE MATEMÁTICA FINANCIEIRA

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6 Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA 1. (2,5) Um provedor de acesso à iteret está moitorado a duração do tempo das coexões

Leia mais

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger Tópicos de Mecâica Quâtica I Equações de Newto e de Hamilto versus Equações de Schrödiger Ferado Ferades Cetro de Ciêcias Moleculares e Materiais, DQBFCUL Notas para as aulas de Química-Física II, 010/11

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005 PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 005 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque todas alterativas).

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples.

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples. FACULDADES NTEGRADAS ENSTEN DE LMERA Curso de Graduação em Egeharia Civil Resistêcia dos Materiais - 0 Prof. José Atoio Schiavo, MSc. NOTAS DE AULA Aula : Flexão Pura e Flexão Simples. Objetivo: determiar

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

SOLUÇÕES e GASES- EXERCÍCIOS RESOLVIDOS

SOLUÇÕES e GASES- EXERCÍCIOS RESOLVIDOS rof. Vieira Filho SOLUÇÕES e GSES- EXERCÍCIOS RESOLVIDOS SOLUÇÕES. em-se 500g de uma solução aquosa de sacarose (C O ), saturada a 50 C. Qual a massa de cristais que se separam da solução, quado ela é

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

Notas de Aula do Curso PGE950: Probabilidade

Notas de Aula do Curso PGE950: Probabilidade Notas de Aula do Curso PGE950: Probabilidade Leadro Chaves Rêgo, Ph.D. 2013.1 Prefácio Estas otas de aula foram feitas para compilar o coteúdo de várias referêcias bibliográficas tedo em vista o coteúdo

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais