CAPÍTULO 8 - Noções de técnicas de amostragem

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 8 - Noções de técnicas de amostragem"

Transcrição

1 INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia que trata da coleta e da iterpretação de dados, ajudado o estabelecimeto de coclusões e de ormas sobre o problema estudado A Estatística atua sobre amostras retiradas de uma população maior Ates, propriamete dito, da coleta dos dados, que represetam a base para as aálises e para a tomada de decisões, é importate estabelecer claramete os objetivos do estudo e os procedimetos que irão ser utilizados para a obteção dos dados Uma boa coleta irá coter somete dados úteis, evitado desperdícios e fugas das metas traçadas Na pesquisa, uma grade quatidade de variedade de dados podem ser coletados, porém quais deles estarão evolvidos para a solução do defiido problema? Mesmo assim, após o plaejameto, simplesmete coletar os dados ão é suficiete A amostra dos dados deve ser represetativa da população dos dados, ou seja, a amostra deve ter características similares às da população de ode foi retirada Ocorre porém, que por mais bem escolhida uma amostra, ela jamais será a represetação perfeita da população Isto quer dizer que a aálise da amostra poderá levar a coclusões erradas sobre a população, ou seja, de aceitar uma população como boa, quado deveria ser rejeitada ou de rejeitar uma população ruim, quado a verdade deveria ser aceita Portato, o mometo da decisão, ão se sabe quais desses egaos se comete ou se, realmete, a decisão é correta Porém, a Estatística permite assegurar que esses egaos ocorram raramete e, ao logo do tempo, ão tragam maiores aborrecimetos A população se refere ao cojuto de todos os dados que podem ser coletados sobre algum feômeo de iteresse e sobre o qual se deseja estabelecer coclusões Muitas vezes, os tamahos das populações são muito grades ou as mesmas ão podem ser medidas itegralmete Portato, é ecessário selecioar um subcojuto desses dados, deomiado de amostra Defiidos os objetivos e a população a ser estudada, deve-se pesar em como será costituída a amostra dos dados e quais as características ou variáveis a serem avaliadas Quado os possíveis resultados de uma variável são úmeros de uma certa escala, diz-se que esta variável é quatitativa Quado os possíveis resultados são atributos, qualidades ou dados categorizados, a variável é dita qualitativa Questioário A costrução de um questioário é uma etapa loga, que deve ser executada com muita cautela e plaejameto Para tato, algus procedimetos devem ser levados em cosideração

2 INF 6 Estatística I JIRibeiro Júior a) Defiir as características a serem avaliadas A decisão de escolha das características depede de vários aspectos, mas o mais importate, é verificar se os resultados das mesmas levam aos objetivos da pesquisa e se são viáveis de serem aplicadas Portato, o questioário deve ser completo, o setido de abrager somete pergutas sobre as características ecessárias para atigir aos objetivos da pesquisa, pois quato maior o questioário, meor tede a ser a qualidade e a cofiabilidade das respostas b) Estabelecer a forma de mesuração das características Para as variáveis quatitativas, devem estar bem defiidas as uidades de medidas (meses, m, kg, etc), que devem acompahar as respostas Para as variáveis qualitativas, deve haver uma lista completa de alterativas, mesmo que seja ecessário icluir categorias como outros, ão tem opiião, etc, com o objetivo de evitar alguma resposta estraha Se uma variável puder ser adequadamete medida sob forma quatitativa, deve-se usar este tipo de mesuração, porque as medidas quatitativas são, em geral, mais iformativas do que as qualitativas Por exemplo, dizer que um fucioário trabalha há 30 aos a empresa é mais iformativo do que dizer que ele trabalha há muito tempo a empresa Porém, em algus casos, quado se teta mesurar uma característica atribuido-lhe uma escala de a 5, pode haver alguma distorção, pois uma ota 3 para um idivíduo pode ão sigificar exatamete o mesmo para outro, já que a escala pode ser etedida de forma difereciada etre os idivíduos etrevistados Neste caso, poderiam ser criadas cico respostas categorizadas, sedo péssimo, ruim, 3 regular, 4 bom e 5 ótimo Caso uma característica seja de difícil medição ou que os idivíduos, por algum motivo, teham receio de respoder, uma opção seria avaliar a mesma idiretamete, através de várias outras que medem esta característica, coforme alguma teoria sobre o assuto c) Elaborar uma ou mais pergutas para cada característica Ao efetuar uma ou mais pergutas, terá para cada perguta, uma e apeas uma resposta, sedo que cada perguta será uma variável A característica grau de satisfação com o trabalho pode ser avaliada com base em várias pergutas, como por exemplo, satisfação com o salário, seguraça o emprego, autoomia de trabalho, etc d) Verificar se a perguta está suficietemete clara As pergutas devem ser formuladas uma liguagem que seja compreesível para todos os idivíduos e, além disso, ão devem deixar dúvidas de iterpretação e) Verificar se a forma da perguta ão está iduzido alguma resposta ou se a resposta da perguta é óbvia Depededo da forma como se realiza a perguta, a resposta poderá ser sempre a mesma Isto pode ocorrer quado os tipos de respostas ão são capazes de detectar as difereças etre os idivíduos etrevistados f) Verificar se o questioário está bom É importate realizar um teste, aplicado o questioário em algus idivíduos com características similares aos da população em estudo Neste teste, pode-se detectar falhas que passaram desapercebidas a elaboração do questioário, como por exemplo, duplicidade de alguma perguta, respostas que ão haviam sido previstas, variabilidade ão adequada de respostas em alguma perguta e outras O teste também serve para estimar o tempo de aplicação do questioário

3 INF 6 Estatística I JIRibeiro Júior 3 Amostragem Para serem cohecidas algumas características de uma população, é comum observar apeas uma amostra de seus elemetos e, a partir dos resultados dessa amostra, obter estimativas para as características de iteresse da população Neste caso, a seleção dos elemetos que irão compor a amostra, deve ser feita por uma metodologia adequada, de tal forma que a mesma seja represetativa, de modo que os resultados sejam cofiáveis para avaliar as características da população Em termos gerais, as razões de se amostrar se devem à ecoomia de custos para se estudar uma população, à redução do tempo e de mão-de-obra para a realização da coleta dos dados, à cofiabilidade e qualidade dos dados e à facilidade a realização dos trabalhos Quado a população é pequea, quado a característica é de fácil mesuração ou quado há ecessidade de alta precisão, pode ão ser iteressate a realização de uma amostragem 3 Amostragem Aleatória Simples A amostragem aleatória simples cosiste em escolher uma amostra de uma população, tal que qualquer item da população teha a mesma probabilidade de ser selecioado Este tipo de amostragem requer que todos os ites da população estejam dispoíveis para serem avaliados a amostra Na maioria das aplicações de cotrole de qualidade, uma vez selecioado um item da população como parte da amostra, esta uidade ão é retorada à população para ser dispoibilizada ovamete para a amostra Esta amostragem é o método mais simples e caracterizada através da seguite defiição operacioal: de um total de N uidades da população, sorteiam-se com iguais probabilidades, uidades 3 Dimesioameto de uma Amostra Aleatória Simples Na amostra, cada uidade é medida, sedo a média e o desvio padrão calculados através das seguites fórmulas, respectivamete: ; i i i ( ) i i s Nas estimativas dos parâmetros de uma população, utilizado-se os resultados de uma amostra, há sempre um erro evolvido, deomiado de erro de amostragem ou erro de estimativa, que aparece porque ão se avaliou toda a população Para cada amostra possível existe um possível erro e, para a população, esse erro é cosiderado ulo Por exemplo, ao se coletar diferetes amostras aleatórias de um mesmo lote, obtém-se diferetes valores para uma determiada característica de qualidade Esta variação é causada pelo erro de amostragem (e), podedo ser estimado através da seguite expressão: 3

4 INF 6 Estatística I JIRibeiro Júior s e t α s() x t α, em que: e erro de estimativa da média da população com base os resultados de uma amostra de tamaho ; t α valor de t que deixa uma probabilidade de α a extremidade da cauda à direita de acordo com o ível de sigificâcia α e 0 graus de liberdade (gl); s desvio padrão de uma amostra piloto de tamaho 0 O erro de amostragem (e) pode ser pré fixado de acordo com os objetivos do estudo, permitido assim, calcular o tamaho de uma amostra ecessária para forecer uma estimativa da média da população de acordo com um ível de sigificâcia α, como segue: t αs e Assim, para que o erro ao estimar o peso médio dos estudates da Uiversidade fosse de, o máximo 3,0 kg, o dimesioameto da amostra poderia ser feito com base uma amostra piloto costituída por 0 0 estudates (75, 8, 94, 66, 8, 77, 68, 98, 84 e 80) Deste modo, com base em α 5%, t α (9),6 e s 0,07, a amostra deveria ter, o míimo:,6 0, ,0 3 Amostragem Sistemática No caso de uma liha de produção, a amostragem para um turo de produção pode ser feita as uidades produzidas a liha de produção Um procedimeto simples é amostrar a cada dez uidades produzidas Esta amostra é extraída ates que a população de iteresse esteja formada A amostra sistemática apreseta características parecidas com a amostra aleatória simples, porém por um processo mais rápido e mais simples Por exemplo, se for retirada uma amostra de 000 fichas de uma população de 5000 fichas, pode-se retirar sistematicamete, uma ficha a cada cico fichas (5000/000 5) 33 Amostragem Aleatória Estratificada Quado a população for heterogêea, ão se deve usar a amostra aleatória simples, devido à baixa precisão das estimativas obtidas Nesta situação, deve-se dividir a população em subpopulações de forma que deto das subpopulações haja homogeeidade Este processo se chama estratificação da população, sedo cada subpopulação um estrato A amostra obtida esse caso, chama-se amostra aleatória estratificada Na prática, a população pode já se apresetar estratificada aturalmete, ou etão depeder da estratificação a ser realizada, utilizado-se critérios baseados os cohecimetos que o pesquisador tem sobre a população Cosiderado que os h estratos estejam devidamete orgaizados, pode-se cosiderar a seguite otação: 4

5 INF 6 Estatística I JIRibeiro Júior N h úmero de elemetos da população o estrato h; h úmero de elemetos da amostra o estrato h; N N h tamaho da população; h h tamaho da amostra h Em cada estrato, trabalha-se como se o processo evolvesse uma amostra aleatória simples Assim, para o estrato h, o estimador da média populacioal µ h é: h hi h h O estimador da variâcia do estrato h é dado por: h ( hi h ) sh h O estimador da média da população µ, chamada de média estratificada, é obtido poderado-se as médias dos estratos, pelo úmero de elemetos do estrato, ou seja: est 33 Exemplo N hh h N Será admitida uma amostra aleatória estratificada ( 5) sorteada de uma população (N 94) composta por cico diferetes forecedores (estratos) de aços utilizados a fabricação de molas, sedo a variável medida, a dureza (B) de molas de aços produzidas por uma idústria de autopeças (tabela ) Tabela Medidas de dureza de molas estratificadas por forecedor Estrato N h h Amostra h s h 60 5,6,0 3,7,4,8,0, ,9 7,3 8, 4,5 5,9 7,6 7,07, , 7,8 5,0,4 4,0 4,6 4,7 5, ,3 9,7 7,0,0 8,50 30, ,0 6,0 75,0 54,0 68,5 58, ,43 Neste exemplo, fica claro que a estratificação permitiu o recohecimeto de uma importate característica do problema viveciado pela idústria e o direcioameto do estudo das medidas corretivas que deverão ser adotados para a sua solução Na etapa de idetificação do problema, foi defiido o seguite problema: aumeto do úmero de molas devolvidas por apresetarem dureza fora das especificações Além das difereças de médias, percebe-se também a grade difereça de variabilidade etre os estratos A estimativa da média da população é obtida por: 60, , , , ,5 est 6,

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Capítulo 2 Análise Descritiva e Exploratória de Dados

Capítulo 2 Análise Descritiva e Exploratória de Dados UNIVERSIDADE FEDERAL DE SÃO CARLOS C E N T R O D E C I Ê N C I A S E X A T A S E D E T E C N O L O G I A D E P A R T A M E N T O D E E S T A T Í S T I C A INTRODUÇÃO AO PLANEJAMENTO E ANÁLISE ESTATÍSTICA

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

Sistema Computacional para Medidas de Posição - FATEST

Sistema Computacional para Medidas de Posição - FATEST Sistema Computacioal para Medidas de Posição - FATEST Deise Deolido Silva, Mauricio Duarte, Reata Ueo Sales, Guilherme Maia da Silva Faculdade de Tecologia de Garça FATEC deisedeolido@hotmail.com, maur.duarte@gmail.com,

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO MESTRADO/UFMG 2008. são fixos (não aleatórios), α e β são parâmetros desconhecidos e os εi

PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO MESTRADO/UFMG 2008. são fixos (não aleatórios), α e β são parâmetros desconhecidos e os εi PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO MESTRADO/UFMG 008 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque

Leia mais

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing Profa. Regia Maria Sigolo Berardielli Estatística Gestão Fiaceira / Gestão de Recursos Humaos / Logística / Marketig REGINA MARIA SIGOLO BERNARDINELLI ESTATÍSTICA Esio a Distâcia E a D Revisão 09/008 LISTA

Leia mais

Pesquisa Operacional

Pesquisa Operacional Faculdade de Egeharia - Campus de Guaratiguetá esquisa Operacioal Livro: Itrodução à esquisa Operacioal Capítulo 6 Teoria de Filas Ferado Maris fmaris@feg.uesp.br Departameto de rodução umário Itrodução

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Uiversidade Federal de Mias Gerais Istituto de Ciêcias Exatas Departameto de Estatística Associação etre Variáveis Qualitativas - Teste Qui-Quadrado, Risco Relativo e Razão das Chaces (Notas de Aula e

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com

Leia mais

5 Proposta de Melhoria para o Sistema de Medição de Desempenho Atual

5 Proposta de Melhoria para o Sistema de Medição de Desempenho Atual 49 5 Proposta de Melhoria para o Sistema de Medição de Desempeho Atual O presete capítulo tem por objetivo elaborar uma proposta de melhoria para o atual sistema de medição de desempeho utilizado pela

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2 SUMÁRIO 1. CORRELAÇÃO... 1.1. Itrodução... 1.. Padrões de associação... 3 1.3. Idicadores de associação... 3 1.4. O coeficiete de correlação... 5 1.5. Hipóteses básicas... 5 1.6. Defiição... 6 1.7. Distribuição

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

SISTEMA DE MEDIÇÃO DE DESEMPENHO

SISTEMA DE MEDIÇÃO DE DESEMPENHO CAPÍTULO 08 SISTEMA DE MEDIÇÃO DE DESEMPENHO Simplificação Admiistrativa Plaejameto da Simplificação Pré-requisitos da Simplificação Admiistrativa Elaboração do Plao de Trabalho Mapeameto do Processo Mapeameto

Leia mais

O uso de questionários em trabalhos científicos

O uso de questionários em trabalhos científicos 1. Itrodução O uso de questioários em trabalhos cietíficos Um questioário é tão somete um cojuto de questões, feito para gerar os dados ecessários para se verificar se os objetivos de um projeto foram

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

ESTATÍSTICA DESCRITIVA

ESTATÍSTICA DESCRITIVA COORDENADORIA DE MATEMÁTICA ESTATÍSTICA DESCRITIVA Vitória - ES CAPÍTULO I 1-UM BREVE HISTÓRICO Pesquisas arqueológicas idicam que há 3000 aos A.C. já se faziam cesos a Babilôia, Chia e Egito. Até mesmo

Leia mais

Matemática Em Nível IME/ITA

Matemática Em Nível IME/ITA Caio dos Satos Guimarães Matemática Em Nível IME/ITA Volume 1: Números Complexos e Poliômios 1ª Edição São José dos Campos 007 SP Prefácio O livro Matemática em Nível IME/ITA tem como objetivo ão somete

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA IM 317 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA IM 317 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA IM 37 METODOLOGIA PARA PLANEJAMENTO EXPERIMENTAL E ANÁLISE DE RESULTADOS PROF. DR. SÉRGIO

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

Instituto de Engenharia de Produção & Gestão

Instituto de Engenharia de Produção & Gestão UNIFEI - Uiversidade Federal de Itajubá Istituto de Egeharia de Produção & Gestão Notas compiladas por PEDRO PAULO BALESTRASSI ANDERSON PAULO DE PAIVA Itajubá/007 CAPÍTULO - ESTATÍSTICA. - Do que trata

Leia mais

REGRESSÃO MÚLTIPLA: FERRAMENTA DE APOIO À DECISÃO NAS PESQUISAS MARKETING INSTITUCIONAL

REGRESSÃO MÚLTIPLA: FERRAMENTA DE APOIO À DECISÃO NAS PESQUISAS MARKETING INSTITUCIONAL REGRESSÃO MÚLTIPLA: FERRAMENTA DE APOIO À DECISÃO NAS PESQUISAS MARKETING INSTITUCIONAL CHARLES THIBES SARMENTO RESUMO Tecioa-se aalisar a regressão múltipla como auxílio às políticas istitucioais as pesquisas

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

GESTÃO DA CADEIA DE SUPRIMENTOS E A SEGURANÇA DO ALIMENTO: UMA PESQUISA EXPLORATÓRIA NA CADEIA EXPORTADORA DE CARNE SUÍNA

GESTÃO DA CADEIA DE SUPRIMENTOS E A SEGURANÇA DO ALIMENTO: UMA PESQUISA EXPLORATÓRIA NA CADEIA EXPORTADORA DE CARNE SUÍNA GESTÃO DA CADEIA DE SUPRIMENTOS E A SEGURANÇA DO ALIMENTO: UMA PESQUISA EXPLORATÓRIA NA CADEIA EXPORTADORA DE CARNE SUÍNA Edso Talamii CEPAN, Uiversidade Federal do Rio Grade do Sul, Av. João Pessoa, 3,

Leia mais

1. GENERALIDADES 2. CHEIA DE PROJETO

1. GENERALIDADES 2. CHEIA DE PROJETO Capítulo Previsão de Echetes. GENERALIDADES Até agora vimos quais as etapas do ciclo hidrológico e como quatificá-las. O problema que surge agora é como usar estes cohecimetos para prever, a partir de

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

CONTRIBUIÇÕES DA MODELAGEM MATEMÁTICA PARA O ENSINO MÉDIO: ÂNGULO DE VISÃO DAS CORES DO ARCO-ÍRIS

CONTRIBUIÇÕES DA MODELAGEM MATEMÁTICA PARA O ENSINO MÉDIO: ÂNGULO DE VISÃO DAS CORES DO ARCO-ÍRIS CONTRIBUIÇÕES DA MODELAGEM MATEMÁTICA PARA O ENSINO MÉDIO: ÂNGULO DE VISÃO DAS CORES DO ARCO-ÍRIS Profª. Drª. Vailde Bisogi UNIFRA vailde@uifra.br Prof. Rodrigo Fioravati Pereira UNIFRA prof.rodrigopereira@gmail.com

Leia mais

Modelo Matemático para Estudo da Viabilidade Econômica da Implantação de Sistemas Eólicos em Propriedades Rurais

Modelo Matemático para Estudo da Viabilidade Econômica da Implantação de Sistemas Eólicos em Propriedades Rurais Modelo Matemático para Estudo da Viabilidade Ecoômica da Implatação de Sistemas Eólicos em Propriedades Rurais Josiae Costa Durigo Uiversidade Regioal do Noroeste do Estado do Rio Grade do Sul - Departameto

Leia mais

Lista de Exercícios #4. in Noções de Probabilidade e Estatística (Marcos N. Magalhães et al, 4ª. edição), Capítulo 4, seção 4.4, páginas 117-123.

Lista de Exercícios #4. in Noções de Probabilidade e Estatística (Marcos N. Magalhães et al, 4ª. edição), Capítulo 4, seção 4.4, páginas 117-123. Uiversidade de São Paulo IME (Istituto de Matemática e Estatística MAE Profº. Wager Borges São Paulo, 9 de Maio de 00 Ferado Herique Ferraz Pereira da Rosa Bach. Estatística Lista de Exercícios #4 i Noções

Leia mais

AULA: Inferência Estatística

AULA: Inferência Estatística AULA: Iferêcia Estatística stica Prof. Víctor Hugo Lachos Dávila Iferêcia Estatística Iferêcia Estatística é um cojuto de técicas que objetiva estudar uma oulação através de evidêcias forecidas or uma

Leia mais

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica Cálculo das Probabilidades e Estatística I Departameto de Estatistica Versão - 2013 Sumário 1 Itrodução à Estatística 1 1.1 Coceitos básicos de amostragem..................................... 2 1.1.1

Leia mais

Esta Norma estabelece o procedimento para calibração de medidas materializadas de volume, de construção metálica, pelo método gravimétrico.

Esta Norma estabelece o procedimento para calibração de medidas materializadas de volume, de construção metálica, pelo método gravimétrico. CALIBRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO NORMA N o 045 APROVADA EM AGO/03 N o 01/06 SUMÁRIO 1 Objetivo 2 Campo de Aplicação 3 Resposabilidade 4 Documetos Complemetes 5 Siglas

Leia mais

Capítulo 1. Teoria da Amostragem

Capítulo 1. Teoria da Amostragem Capítulo 1 Teoria da Amostragem 1.1 Itrodução A amostragem e em particular os processos de amostragem aplicam-se em variadíssimas áreas do cohecimeto e costituem, muitas vezes, a úica forma de obter iformações

Leia mais

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE D TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013 CONCURSO PÚBLICO 01 FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL UFMS MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 16 QUESTÕES POR TÓPICOS Coordeação e Orgaização: Mariae dos Reis 1ª Edição

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS

UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS UM ESTUDO DO MODELO ARBITRAGE PRICING THEORY (APT) APLICADO NA DETERMINAÇÃO DA TAXA DE DESCONTOS Viícius Atoio Motgomery de Mirada e-mail: vmotgomery@hotmail.com Edso Oliveira Pamploa e-mail: pamploa@iem.efei.rmg.br

Leia mais

Guia do Professor. Matemática e Saúde. Experimentos

Guia do Professor. Matemática e Saúde. Experimentos Guia do Professor Matemática e Saúde Experimetos Coordeação Geral Elizabete dos Satos Autores Bárbara N. Palharii Alvim Sousa Karia Pessoa da Silva Lourdes Maria Werle de Almeida Luciaa Gastaldi S. Souza

Leia mais

M = 4320 CERTO. O montante será

M = 4320 CERTO. O montante será PROVA BANCO DO BRASIL / 008 CESPE Para a veda de otebooks, uma loja de iformática oferece vários plaos de fiaciameto e, em todos eles, a taxa básica de juros é de % compostos ao mês. Nessa situação, julgue

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

Análise de Dados. Introdução às técnicas de Amostragem Introdução à Estimação Introdução aos testes Métodos não paramétricos

Análise de Dados. Introdução às técnicas de Amostragem Introdução à Estimação Introdução aos testes Métodos não paramétricos Aálise de Dados Itrodução às técicas de Amostragem Itrodução à Estimação Itrodução aos testes Métodos ão paramétricos Maria Eugéia Graça Martis Faculdade de Ciêcias da Uiversidade de Lisboa Março 009 ÍNDICE

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de

Leia mais

LAYOUT CONSIDERAÇÕES GERAIS DEFINIÇÃO. Fabrício Quadros Borges*

LAYOUT CONSIDERAÇÕES GERAIS DEFINIÇÃO. Fabrício Quadros Borges* LAYOUT Fabrício Quadros Borges* RESUMO: O texto a seguir fala sobre os layouts que uma empresa pode usar para sua arrumação e por coseguite ajudar em solucioar problemas de produção, posicioameto de máquias,

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

Incertezas de Medição e Ajuste de dados

Incertezas de Medição e Ajuste de dados Uiversidade Federal do Rio Grade do Sul Escola de Egeharia Egeharia Mecâica Icertezas de Medição e Ajuste de dados Medições Térmicas - ENG0308 Prof. Paulo Scheider www.geste.mecaica.ufrgs.br pss@mecaica.ufrgs.br

Leia mais

PROTÓTIPO DE MODELO DE DIMENSIONAMENTO DE ESTOQUE

PROTÓTIPO DE MODELO DE DIMENSIONAMENTO DE ESTOQUE ROTÓTIO DE MODELO DE DIMENSIONAMENTO DE ESTOQUE Marcel Muk E/COE/UFRJ - Cetro de Tecologia, sala F-18, Ilha Uiversitária Rio de Jaeiro, RJ - 21945-97 - Telefax: (21) 59-4144 Roberto Citra Martis, D. Sc.

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemática Ficha de Trabalho Probabilidades 12º ao FT4 Arrajos completos (arrajos com repetição) Na liguagem dos computadores usa-se o código biário que é caracterizado pela utilização de apeas dois algarismos,

Leia mais

RESISTORES E RESISTÊNCIAS

RESISTORES E RESISTÊNCIAS ELETICIDADE CAPÍTULO ESISTOES E ESISTÊNCIAS No Capítulo estudamos, detre outras coisas, o coceito de resistêcia elétrica. Vimos que tal costitui a capacidade de um corpo qualquer se opôr a passagem de

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.)

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.) Testes χ 2 de ajustameto, homogeeidade e idepedêcia Testes χ 2 (cot.) Os testes χ 2 cosiderados este último poto do programa surgem associados a dados de cotagem. Mais cocretamete, dados que cotam o úmero

Leia mais

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.

Leia mais

Ficha Técnica. TÍTULO Instituto Nacional de Aviação Civil, I.P. Desempenho Económico e Financeiro do Segmento de Manutenção de Aeronaves [2011-2013]

Ficha Técnica. TÍTULO Instituto Nacional de Aviação Civil, I.P. Desempenho Económico e Financeiro do Segmento de Manutenção de Aeronaves [2011-2013] Ficha Técica TÍTULO Istituto Nacioal de Aviação Civil, I.P. Desempeho Ecoómico e Fiaceiro do Segmeto de Mauteção de Aeroaves [2011-2013] EDIÇÃO INAC Istituto Nacioal de Aviação Civil, I.P. Rua B Edifícios

Leia mais

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO AULA 14 RESOLUÇÕES FINAIS DA LISTA DE QUESTÕES Olá, amigos! Espero que estejam todos bem! Apreseto-lhes, hoje, as vite e duas últimas resoluções da lista origial do osso Curso! Com elas, cocluímos o osso

Leia mais

A AUTO-AVALIAÇÃO DE INSTITUIÇÕES DE ENSINO SUPERIOR: UMA IMPORTANTE CONTRIBUIÇÃO PARA A GESTÃO EDUCACIONAL

A AUTO-AVALIAÇÃO DE INSTITUIÇÕES DE ENSINO SUPERIOR: UMA IMPORTANTE CONTRIBUIÇÃO PARA A GESTÃO EDUCACIONAL A AUTO-AVALIAÇÃO DE INSTITUIÇÕES DE ENSINO SUPERIOR: UMA IMPORTANTE CONTRIBUIÇÃO PARA A GESTÃO EDUCACIONAL Adré Luís Policai Freitas Uiversidade Estadual do Norte Flumiese, Brasil. INTRODUÇÃO Os úmeros

Leia mais

4 Teoria da Localização 4.1 Introdução à Localização

4 Teoria da Localização 4.1 Introdução à Localização 4 Teoria da Localização 4.1 Itrodução à Localização A localização de equipametos públicos pertece a uma relevate liha da pesquisa operacioal. O objetivo dos problemas de localização cosiste em determiar

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

J. A. M. Felippe de Souza 9 Diagramas de Bode

J. A. M. Felippe de Souza 9 Diagramas de Bode 9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de

Leia mais

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y.

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y. DEPARTAMENTO...: ENGENHARIA CURSO...: PRODUÇÃO DISCIPLINA...: ENGENHARIA ECONÔMICA / MATEMÁTICA FINANCEIRA PROFESSORES...: WILLIAM FRANCINI PERÍODO...: NOITE SEMESTRE/ANO: 2º/2008 Aula 7 CONTEÚDO RESUMIDO

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON PUCPR- Potifícia Uiversidade Católica Do Paraá PPGIA- Programa de Pós-Graduação Em Iformática Aplicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ATRAVÉS DA PROJEÇÃO DO DISCRIMINANTE LINEAR DE FISHER SOBRE O

Leia mais

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP Goiâia, 07 a 10 de outubro Mii Curso Tópicos em passeios aleatórios Ms. Valdivio Vargas Júior - Doutorado/IME/USP TÓPICOS EM PASSEIOS ALEATÓRIOS VARGAS JÚNIOR,V. 1. Itrodução Cosidere a seguite situação

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Fundamentos de Bancos de Dados 3 a Prova

Fundamentos de Bancos de Dados 3 a Prova Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Dezembro de 2008 Duração: 2 horas Prova com cosulta Questão (Costrução de modelo ER) Deseja-se projetar uma base de dados que dará suporte a

Leia mais

Greg Horine Rio de Janeiro 2009

Greg Horine Rio de Janeiro 2009 Greg Horie Rio de Jaeiro 2009 Sumário Resumido Itrodução...1 Parte I Dado partida ao gereciameto de projeto...5 1 Paorama de Gereciameto de Projeto...7 2 O Gerete de Projeto...19 3 Elemetos esseciais para

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

Matemática Financeira. Ernesto Coutinho Puccini

Matemática Financeira. Ernesto Coutinho Puccini Matemática Fiaceira Eresto Coutiho Puccii Sumário Uidade 1 Coceitos fudametais, juros simples e compostos 1.4 Objetivos... 1.5 Coceitos fudametais... 1.6 Agete ecoômico, Capital... 1.8 Operação fiaceira...

Leia mais

INFERÊNCIA ESTATÍSTICA

INFERÊNCIA ESTATÍSTICA Uiversidade Federal da Bahia Istituto de Matemática Departameto de Estatística Estatística IV (MAT027) e Itrodução à Estatística (MAT050) NOTAS DE AULA UNIDADE III INFERÊNCIA ESTATÍSTICA 1 1 INTRODUÇÃO

Leia mais

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição

Avaliação da Confiabilidade de Itens com Testes Destrutivos - Aplicação da Estimação da Proporção em uma População Finita Amostrada sem Reposição Avaliação da Cofiabilidade de Ites com Testes Destrutivos - Alicação da Estimação da roorção em uma oulação Fiita Amostrada sem Reosição F. A. A. Coelho e Y.. Tavares Diretoria de Sistemas de Armas da

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais