Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Tamanho: px
Começar a partir da página:

Download "Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:"

Transcrição

1 Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada em sua carteira.. Cofira se o úmero do gabarito deste cadero correspode ao costate da etiqueta fixada em sua carteira. Se houver divergêcia, avise, imediatamete, o fiscal. 3. É proibido folhear o Cadero de Questões ates do sial, às 9 horas. 4. Após o sial, verifique se este cadero cotém 0 questões objetivas e/ou qualquer tipo de defeito. Qualquer problema, avise, imediatamete, o fiscal. 5. O tempo míimo de permaêcia a sala é de horas e 30 miutos após o iício da resolução da prova. 6. No tempo destiado a esta prova (4 horas), está icluso o de preechimeto da Folha de Respostas. 7. Trascreva as respostas deste cadero para a Folha de Respostas. A resposta será a soma dos úmeros associados às alterativas corretas. Para cada questão, preecha sempre dois alvéolos: um a colua das dezeas e um a colua das uidades, coforme o exemplo ao lado: questão 3, resposta 09 (soma das proposições 0 e 08). 8. Este Cadero de Questões ão será devolvido. Assim, se desejar, trascreva as respostas deste cadero o para Aotação das Respostas, costate abaixo, e destaque-o, para recebê-lo hoje, o horário das 3h5mi às 3h30mi. 9. Ao térmio da prova, levate o braço e aguarde atedimeto. Etregue ao fiscal este cadero, a Folha de Respostas e o para Aotação das Respostas. 0. São de resposabilidade do cadidato a leitura e a coferêcia de todas as iformações cotidas o Cadero de Questões e a Folha de Respostas. Corte a liha potilhada.... RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS PROVA 3 VERÃO 03 N ọ DE ORDEM: NOME: UEM Comissão Cetral do Vestibular Uificado

2 MATEMÁTICA Formulário Trigoo metria (se x) + (cos x) = se( x + y) = se x cos y+ se y cos x Geometria Plaa, Espacial e Aalítica Área do triâgulo: bh A = Área do círculo A=π r Volume do troco de coe: V = π h 3 ( R + Rr+ r ) Volume do cilidro: V =π r h Distâcia etre potos: d= (x -x ) +(y -y ) 0 0 Área do triâgulo: x y A= det x y x y 3 3 Elipse: a = b + c ( x x ) ( y y ) ( x x ) ( y y ) + = ou + = a b b a Hipérbole: c = b + a ( x x ) ( y y ) ( x x ) ( y y ) = ou + = a b b a e = c a Biômio de Newto ( ) a b a a b a b ab + = b 0 Fuções Progressões Fução quadrática x v y v = b a = 4a Progressão Aritmética (P. A.): a =a + (-)r S =(a +a ) Vestibular de Verão 03 Prova 3

3 MATEMÁTICA Questão 0 Com base os cohecimetos de geometria plaa, assiale o que for correto. 0) O maior âgulo itero de um triâgulo qualquer uca possui medida iferior a 60 o. 0) Se r, s e t são retas cotidas em um mesmo plao e r é paralela a s e s é paralela a t, etão r é paralela a t. 04) Se r, s e t são retas cotidas em um mesmo plao e r é perpedicular a s e s é perpedicular a t, etão r é perpedicular a t. 08) Dois triâgulos semelhates com razão de semelhaça são sempre cogruetes. 6) O perímetro de um polígoo regular de lados iscrito em uma circuferêcia de raio R é igual a R π se( ). Questão 0 Um aluo desehou, em um plao cartesiao, duas côicas (elipse ou hipérbole), uma de excetricidade 0,8 e outra de excetricidade,4, tedo ambas como foco o par de potos (, 0) e (,0). Assiale o que for correto. 0) A côica de excetricidade 0,8 é uma hipérbole. 0) A côica de excetricidade,4 passa pelo poto (5,0). 04) As côicas descritas possuem quatro potos em comum. 08) x y + = é uma equação para a côica de 5 8 excetricidade 0,8. 6) A côica de excetricidade 0,8 passa pelo poto (0,9). Vestibular de Verão 03 Prova 3 3

4 Questão 03 Em relação à sequêcia ifiita de úmeros iteiros, cujo -ésimo termo é obtido pela fórmula a = 3+ 6, para todo iteiro positivo, assiale o que for correto. 0) Essa sequêcia é uma progressão aritmética de razão 3. 0) Todos os termos dessa sequêcia são múltiplos de 3. 04) a = ) Para todo iteiro positivo, o termo a divide o termo a ) Para todo iteiro >, vale a seguite igualdade a + a + + a + a = Questão 04 A superfície de uma piscia tem o formato de um círculo de raio 4 metros. A profudidade abaixo de cada poto a superfície da piscia é descrita pela fução x + 3 se 0 x 3 px ( ) = 3 3 se 3< x 4 em que x é a distâcia, em metros, do poto a superfície da piscia até a borda da piscia. Assiale o que for correto. 0) A profudidade da piscia em um poto que está a metros da borda é de,5 metros. 0) Uma pessoa que ão deseje ir a uma parte da piscia que teha profudidade acima de,5 metro pode afastar-se, o máximo,,5 metro da borda. 04) Se dois potos estão a distâcias distitas da borda da piscia, etão as profudidades abaixo deles também são distitas. 08) O sólido que descreve a piscia é a uião de dois cilidros com um troco de coe. 6) O volume de água que cabe detro da piscia 4 π m. é 3 Vestibular de Verão 03 Prova 3 4

5 Questão 05 Cosidere, o plao cartesiao, a circuferêcia λ de raio uidade de comprimeto com cetro o poto Q de coordeadas (,0). Sedo O a origem dos eixos coordeados e A o poto de coordeadas (,0), assiale o que for correto. 0) O poto de coordeadas (, 3 3) pertece a λ. 0) Todo poto P de coordeadas ( x, y ) pertecete à circuferêcia e, com y positivo, satisfaz a equação y = ( x ). 04) A área do círculo delimitado pela circuferêcia λ é de π uidades de área. 08) Os potos P da circuferêcia para os quais o triâgulo APO possui a maior área são aqueles de abscissa (coordeada x) igual a. 6) Para qualquer poto P de coordeadas ( x, y ) pertecete à circuferêcia e com y 0, o triâgulo APO é retâgulo. Questão 06 Muitos problemas podem ser mais bem compreedidos se utilizarmos médias apropriadas. Algumas das médias comumete utilizadas etre dois úmeros reais positivos a e b são as seguites: Média Aritmética: A = a+ b ; Média Geométrica: G= a b ; Média Harmôica: H = ; + a b Média Quadrática: Q = a + b. Sobre essas médias, para quaisquer dois úmeros reais a e b, é correto afirmar que 0) G A. 0) A H. 04) Q A. 08) Q G. 6) todas as médias coicidem, se a = b. Vestibular de Verão 03 Prova 3 5

6 Questão 07 Em relação às fuções reais f e g defiidas por x f ( x) = x + x e gx= ( ), para todo x real, assiale o que for correto. 0) A fução g é ijetora. 0) Para todo x real, ( g f )( x). 4 04) ( f g )( x ) = x + x, para todo x real. 08) f ( ) = 3. 6) g( ) = 4. Questão 08 Cosidere o sistema liear com 3 equações e com 3 icógitas represetado matricialmete por AX = B, ode A 3 6 =, X x = y z e B =. 3 Sobre essas matrizes e o sistema liear associado, assiale o que for correto. 0) O produto da trasposta da matriz A pela matriz A é 0 0 igual à matriz idetidade, isto é, At. A= ) A matriz A ão possui iversa. 04) O produto da trasposta da matriz A pela matriz B é uma matriz cujas etradas forecem a úica solução do sistema AX = B. 08) Se a matriz B tivesse todas as etradas iguais a zero, etão o sistema AX = B ão teria solução. 6) O determiate da matriz A é igual a 0. Vestibular de Verão 03 Prova 3 6

7 Questão 09 Com base os cohecimetos sobre as propriedades de úmeros reais, assiale o que for correto. 0) ( x3 y3) = ( x y) 3, para quaisquer x e y reais. 0) 5 ( )( + ) = ) Se a > 0 e a < a, etão a > a. 08) O resultado da soma de um úmero racioal por um irracioal é sempre um irracioal. 6) Para todo real a, a equação x = a possui solução real. Questão 0 Uma sequêcia ifiita de quadrados é costruída da seguite forma: dado um quadrado Q, costrói-se outro i quadrado Q i +, cujos vértices estão sobre os lados de Q i e de tal forma que a distâcia de qualquer vértice de Q i + ao vértice de Q mais próximo dele é igual a /3 do lado i de Q. i Sobre essa sequêcia de quadrados, assiale o que for correto. 0) O lado do quadrado Q i + é igual a 5/9 do lado do quadrado Q. i 0) A área do terceiro quadrado costruído é meor do que a metade da área do primeiro quadrado. 04) A sequêcia formada pelas áreas dos quadrados costruídos dessa forma é uma progressão geométrica de razão 5/9. 08) A sequêcia formada pelos lados dos quadrados costruídos é uma progressão aritmética de razão 53. 6) As diagoais de todos os quadrados costruídos se itersectam o mesmo poto. Vestibular de Verão 03 Prova 3 7

8 Questão Dados os iteiros ão egativos e k, sedo k, defie-se o símbolo! =. Para cada iteiro k k!( k)! >, cosidere p ( x ) como sedo o poliômio x x x x Assiale o que for correto. 0) p ( x) = x + 4x + 6x + 4x+. 0) Para todo iteiro positivo, o poliômio p ( x ) admite raízes ão reais. 04) Para todos os valores de, o poliômio p ( x ) é divisível por x +. 08) Para todo iteiro >, existem dois úmeros racioais distitos, a e b, para os quais p ( x ) é divisível por x a e por x b. 6) Para cada iteiro positivo, a soma de todos os coeficietes de p ( x ) é. Vestibular de Verão 03 Prova 3 8

9 Questão Três lojas, A, B e C, vedem um mesmo produto cujo preço é R$ 900,00, mas oferecem formas de pagameto diferetes, coforme descrito abaixo. Loja A Dá um descoto de 0 % para pagameto a vista. Loja B Parcela o valor em meses, sem juros, com o primeiro pagameto para mês após a compra. Loja C Dá um descoto de 0 % em metade do valor, que deve ser pago a vista, e deixa o pagameto da outra metade para mês após a compra. João tem exatamete R$ 900,00 depositados em uma aplicação que lhe rede 0 % ao mês. Supoha que João preteda utilizar esse diheiro para comprar tal produto e que, feita a escolha da loja, ele irá realizar saques mesais da sua aplicação o dia de vecimeto e o valor exato da parcela que deve pagar. Nessa situação, assiale o que for correto. 0) Se João comprar a loja A, etão, meses após a compra, ele terá R$ 0,00 aplicados. 0) Se João comprar a loja B, etão, exatamete após efetuar o primeiro pagameto, ele terá R$ 540,00 aplicados. 04) Se João comprar a loja C, etão, logo após termiar de pagar pelo produto, restarão a ele R$ 94,50 aplicados. 08) Se comprar a loja B, João levará mais tempo para pagar o produto, mas, para ele, essa opção é fiaceiramete melhor do que comprar a loja C. 6) Fiaceiramete, a melhor opção de compra é sempre pagar a vista com descoto, idepedetemete de como se pode aplicar o diheiro. Vestibular de Verão 03 Prova 3 9

10 Questão 3 O desempeho de um time de futebol em cada partida depede do seu desempeho o jogo aterior. A tabela abaixo apreseta as probabilidades de esse time gahar, empatar ou perder um jogo, tedo em vista o resultado do jogo aterior. PROBABILIDADE DE GANHAR EMPATAR PERDER RESULTADO GANHOU 0,5 0,3 0, DO JOGO EMPATOU 0, 0,6 0, ANTERIOR PERDEU 0,3 0,3 0,4 Cosidere P a matriz formada pelas etradas da tabela de probabilidades dada acima e assiale o que for correto. 0) As etradas da diagoal da matriz P represetam as probabilidades de o time coseguir, o jogo atual, o mesmo resultado (vitória, empate ou derrota) do jogo aterior. 0) A probabilidade de o time gahar o seu terceiro jogo ão depede do resultado do primeiro jogo. 04) A probabilidade de o time gahar o terceiro jogo, tedo perdido o primeiro, é de 30 %. 08) Se o time tem 50 % de chace de gahar o primeiro jogo e 40 % de chace de empatá-lo, etão a probabilidade de ele perder o segudo jogo é de %. 6) As etradas da matriz P (multiplicação de P por P) represetam as probabilidades de cada resultado do time o terceiro jogo (vitória, empate ou derrota), tedo em vista o resultado do primeiro jogo. Questão 4 Cosidere z = a+ ib um úmero complexo, com a e b reais e ão ulos, e z = a ib o seu cojugado. Sobre esses úmeros complexos e a sua represetação o plao complexo, assiale o que for correto. 0) O produto z z é um úmero real positivo cuja raiz quadrada forece a distâcia de z e de z até a origem. 0) O poto do plao complexo que represeta z é obtido do poto que represeta z fazedo uma rotação de 80º em toro da origem. 04) Se z = i, etão ( z) = i. 08) Se w é um úmero complexo que está à mesma distâcia de z e de z, etão w é um úmero real. 6) O quociete z é um úmero real. z Vestibular de Verão 03 Prova 3 0

11 Questão 5 Quize cadidatos a uma vaga foram submetidos a um teste seletivo que costa de 5 questões de múltipla escolha com cico alterativas cada (de (a) a (e)), sedo que, em cada questão, há apeas uma alterativa correta. A potuação de cada cadidato a prova correspode ao úmero de questões que ele acertou. Sabedo que dois cadidatos zeraram a prova, quatro cadidatos obtiveram ota, três cadidatos obtiveram ota, três cadidatos obtiveram ota 3, um cadidato obteve ota 4 e dois cadidatos obtiveram ota 5, assiale o que for correto. 0) Escolhedo um cadidato ao acaso, a probabilidade de se escolher um que obteve ota superior a 3 é de 5. 0) A média das otas foi,. 04) A mediaa das otas foi 3. 08) Se um cadidato respode às 5 questões de forma equilibrada, isto é, escolhedo alterativas distitas para questões distitas, e se o gabarito também estiver equilibrado, etão a probabilidade de ele acertar exatamete 4 questões é. 4! 6) O úmero total de maeiras possíveis de se escolher exatamete uma alterativa de cada questão é 5!. Questão 6 Represetar um úmero atural a forma biária sigifica escrevê-lo somado potêcias de da seguite forma: = a k + k 0, k a + + k a + a em que 0 cada coeficiete a i, com 0 i k, pode ser 0 ou e a 0. Nesse caso, diz-se que k aa aa k k 0 é a represetação biária de e que os coeficietes a são os i algarismos dessa represetação. Sobre a represetação biária, assiale o que for correto. 0) A represetação biária do úmero três é []. 0) [0] + [] = [00]. 04) ( ) [00] = [000]. 08) O úmero 03, quado represetado a forma biária, tem 0 algarismos. 6) Se o úmero atural, quado represetado a forma biária, tem k algarismos, etão k log < k. Vestibular de Verão 03 Prova 3

12 Questão 7 Cosidere um triâgulo ABC retâgulo em A, a circuferêcia λ que passa pelos potos A, B e C e cosidere D o poto de BC de modo que AD é uma altura do triâgulo ABC. Sedo o poto O o cetro de λ, assiale o que for correto. 0) A mediaa relativa ao lado BC mede metade do comprimeto do lado BC. 0) O comprimeto do lado BC é igual à soma dos comprimetos dos lados AB e AC. 04) Os triâgulos ABC, DBA e DAC são semelhates. 08) O segmeto BC é um diâmetro da circuferêcia λ. 6) Se o triâgulo ABC é isósceles, sua área correspode a mais de um terço da área do círculo delimitado por λ. Questão 8 Cosidere as retas r, s e t o plao cujas equações são r: x+ y =, s:x+ y = 0, t: x y=. Sobre essas retas, assiale o que for correto. 0) A iterseção das retas r e s é o poto (,), das retas r e t é o poto (,0) e das retas s e t é o poto (/5, /5). 0) As retas s e t são perpediculares. 04) O poto de iterseção das retas r e t está a uma distâcia igual a 5 da reta s. 5 08) A área do triâgulo delimitado por essas retas é 6/5. 6) A tagete do âgulo agudo formado pelas retas r e s é 3. Vestibular de Verão 03 Prova 3

13 Questão 9 Com base os cohecimetos de trigoometria, assiale o que for correto. 0) Para todo x pertecete ao itervalo 0, π 4, se x > cos x. 0) Não existe solução para a equação se x = se x o itervalo [0,3]. 04) Para todo x real, se x cos π ( x) =. 08) Existe x 0, π satisfazedo a desigualdade x < se x. 6) Para todo x real, (se x)(cos x). Questão 0 Em um dia, em uma determiada região plaa, o Sol asce às 7 horas e se põe às 9 horas. Um observador, essa região, deseja comparar a altura de determiados objetos com o comprimeto de suas sombras durate o trascorrer do dia. Para isso, ele observa que o âgulo de icidêcia dos raios solares a região varia de 0º (o ascer do Sol) a 80º (o pôr do Sol) e aumeta de modo proporcioal ao tempo trascorrido desde o ascer do Sol. Sobre essa situação, assiale o que for correto. 0) Às horas, o âgulo de icidêcia dos raios solares a região é igual a 60º. 0) O âgulo de icidêcia dos raios solares é reto exatamete às horas. 04) Às 0 horas da mahã, o comprimeto da sombra de qualquer objeto essa região é igual à sua altura. 08) No iício do dia, o comprimeto das sombras é iversamete proporcioal à tagete do âgulo de icidêcia. 6) O comprimeto da sombra de um prédio com 0 metros de altura, às 9 horas da mahã, é 0 3 metros. Vestibular de Verão 03 Prova 3 3

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir

Leia mais

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : cojuto dos úmeros aturais; = {,,, } : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros reais : cojuto dos úmeros complexos i: uidade imagiária, i = z: módulo

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A Questão Em uma pesquisa, foram cosultados 00 cosumidores sobre sua satisfação em relação a uma certa marca de sabão em pó. Cada cosumidor deu uma ota de 0 a 0 para o produto, e a média fial das otas foi

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito o INSPE INSPE esolvida /ovembro/0 Prova A (Marrom) MATEMÁTICA 7. Cosidere o quadrilátero coveo ABCD mostrado a figura, em que AB = cm, AD = cm e m(^a) = 90º. 8. No plao cartesiao da

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

SIMULADO DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 2012. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO.

SIMULADO DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 2012. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. SIMULADO DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 Muitas vezes

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

MATEMÁTICA APLICADA À GESTÃO I

MATEMÁTICA APLICADA À GESTÃO I 00 MATEMÁTICA APLICADA À GESTÃO I TEXTO DE APOIO MARIA ALICE FILIPE ÍNDICE NOTAS PRÉVIAS ALGUNS CONCEITOS SOBRE SÉRIES6 NOTAS PRÉVIAS As otas seguites referem-se ao maual adoptado: Cálculo, Vol I James

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Matemática. Resolução das atividades complementares. M5 Análise combinatória

Matemática. Resolução das atividades complementares. M5 Análise combinatória Resolução das atividades complemetares Matemática M Aálise combiatória p. 6 Ao laçarmos um dado duas vezes, quatas e quais são as possibilidades de ocorrêcia dos úmeros? Ao laçarmos um dado duas vezes,

Leia mais

TC DE MATEMÁTICA (REVISÃO) / 3ª SÉRIE E EXTENSIVO. PROFESSOR Fabrício Maia ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

TC DE MATEMÁTICA (REVISÃO) / 3ª SÉRIE E EXTENSIVO. PROFESSOR Fabrício Maia ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: TC DE MATEMÁTCA (REVSÃO) / ª SÉRE E EXTENSVO PROESSOR abrício Maia ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGO: OSG 98/0. Os valores de b para os quais a parábola y + b tem um úico poto em comum com a

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples:

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples: PEDRO ORBERTO JUROS COMPOSTOS Da capitalização simples, sabemos que o redimeto se dá de forma liear ou proporcioal. A base de cálculo é sempre o capital iicial. o regime composto de capitalização, dizemos

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt:

1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt: Proposta de Resolução do Exame de Matemática Aplicada às Ciêcias Sociais Cód. 835-2ª 1ª Fase 2014 1.1 Comecemos por determiar a distribuição de represetates por aplicação do método de Hodt: Divisores PARTIDOS

Leia mais

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE D TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013 CONCURSO PÚBLICO 01 FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL UFMS MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 16 QUESTÕES POR TÓPICOS Coordeação e Orgaização: Mariae dos Reis 1ª Edição

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,

Leia mais

Capitulo 3 Resolução de Exercícios

Capitulo 3 Resolução de Exercícios S C J J C i FORMULÁRIO Regime de Juros Compostos S C i C S i S i C S LN C LN i 3.7 Exercícios Propostos ) Qual o motate de uma aplicação de R$ 00.000,00 aplicados por um prazo de meses, a uma taxa de 5%

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

M = 4320 CERTO. O montante será

M = 4320 CERTO. O montante será PROVA BANCO DO BRASIL / 008 CESPE Para a veda de otebooks, uma loja de iformática oferece vários plaos de fiaciameto e, em todos eles, a taxa básica de juros é de % compostos ao mês. Nessa situação, julgue

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

Juros Simples e Compostos

Juros Simples e Compostos Juros Simples e Compostos 1. (G1 - epcar (Cpcar) 2013) Gabriel aplicou R$ 6500,00 a juros simples em dois bacos. No baco A, ele aplicou uma parte a 3% ao mês durate 5 6 de um ao; o baco B, aplicou o restate

Leia mais

J. A. M. Felippe de Souza 9 Diagramas de Bode

J. A. M. Felippe de Souza 9 Diagramas de Bode 9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de

Leia mais

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior. 0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão

Leia mais

UM NOVO OLHAR PARA O TEOREMA DE EULER

UM NOVO OLHAR PARA O TEOREMA DE EULER X Ecotro Nacioal de Educação Matemática UM NOVO OLHA PAA O TEOEMA DE EULE Iácio Atôio Athayde Oliveira Secretária de Educação do Distrito Federal professoriacio@gmail.com Aa Maria edolfi Gadulfo Uiversidade

Leia mais

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples.

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples. FACULDADES NTEGRADAS ENSTEN DE LMERA Curso de Graduação em Egeharia Civil Resistêcia dos Materiais - 0 Prof. José Atoio Schiavo, MSc. NOTAS DE AULA Aula : Flexão Pura e Flexão Simples. Objetivo: determiar

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6 Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo

Leia mais

CONTEÚDO AOS LEITORES 2. XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA 3 Problemas e Soluções da Primeira Fase

CONTEÚDO AOS LEITORES 2. XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA 3 Problemas e Soluções da Primeira Fase CONTEÚDO AOS LEITORES XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA 3 Problemas e Soluções da Primeira Fase XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA 7 Problemas e Soluções da Seguda Fase XXVI OLIMPÍADA BRASILEIRA

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia.

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia. Resolução -Vestibular Isper 0- Aálise Quatitativa e Lógica Por profa. Maria Atôia Coceição Gouveia.. A fila para etrar em uma balada é ecerrada às h e, quem chega exatamete esse horário, somete cosegue

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

PROFESSOR: SEBASTIÃO GERALDO BARBOSA

PROFESSOR: SEBASTIÃO GERALDO BARBOSA UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - 0 - PROFESSOR: SEBASTIÃO GERALDO BARBOSA Setembro/203 UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - - TÓPICOS DE MATEMÁTICA FINANCIEIRA

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

PROVA DE MATEMÁTICA 2 a FASE

PROVA DE MATEMÁTICA 2 a FASE PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um

Leia mais

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com Aalise de Ivestimetos e Custos Prof. Adilso C. Bassa email: adilsobassa@adilsobassa.com JUROS SIMPLES 1 Juro e Cosumo Existe juro porque os recursos são escassos. As pessoas têm preferêcia temporal: preferem

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a

Leia mais

Capitulo 9 Resolução de Exercícios

Capitulo 9 Resolução de Exercícios FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

CONTEÚDO AOS LEITORES 2. XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA 4 Problemas e Soluções da Primeira Fase

CONTEÚDO AOS LEITORES 2. XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA 4 Problemas e Soluções da Primeira Fase CONTEÚDO AOS LEITORES XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA 4 Problemas e Soluções da Primeira Fase XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA 7 Problemas e Soluções da Seguda Fase XXV OLIMPÍADA BRASILEIRA

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS -- VESTIIBULAR DE VERÃO 00 N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme

Leia mais

Propostas de Resolução

Propostas de Resolução Propostas de Resolução Eercícios de MATEMÁTICA A. ao Como utilizar este ficheiro e localizar rapidamete a resolução pretedida? Verifique se a Barra de Ferrametas deste documeto eiste a caia de pesquisa

Leia mais

Capitulo 10 Resolução de Exercícios

Capitulo 10 Resolução de Exercícios FORMULÁRIO Ivestimetos com Cláusulas de Correção Moetária, com pricipal e juros simples corrigidos S C i I Ivestimetos com Cláusulas de Correção Moetária, com apeas o pricipal corrigido e juros simples.

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS -- VESTIIBULAR DE VERÃO 00 N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme

Leia mais

Prova 3 Física. N ọ DE INSCRIÇÃO:

Prova 3 Física. N ọ DE INSCRIÇÃO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REAIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que costa a etiqueta

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

Esta Norma estabelece o procedimento para calibração de medidas materializadas de volume, de construção metálica, pelo método gravimétrico.

Esta Norma estabelece o procedimento para calibração de medidas materializadas de volume, de construção metálica, pelo método gravimétrico. CALIBRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO NORMA N o 045 APROVADA EM AGO/03 N o 01/06 SUMÁRIO 1 Objetivo 2 Campo de Aplicação 3 Resposabilidade 4 Documetos Complemetes 5 Siglas

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS -- VESTIIBULAR DE VERÃO 00 N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme

Leia mais

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n. Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que costa a etiqueta

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

Capitulo 2 Resolução de Exercícios

Capitulo 2 Resolução de Exercícios FORMULÁRIO Regime de Juros Simples S C J S 1 C i J Ci S C (1 i) S 1 C i Juro exato C i 365 S C 1 i C i 360 Juro Comercial 2.7 Exercícios Propostos 1 1) Qual o motate de uma aplicação de R$ 100.000,00 aplicados

Leia mais

Uma abordagem histórico-matemática do número pi (π )

Uma abordagem histórico-matemática do número pi (π ) Uma abordagem histórico-matemática do úmero pi (π ) Brua Gabriela Wedpap, Ferada De Bastiai, Sadro Marcos Guzzo Cetro de Ciêcias Exatas e Tecológicas UNIOESTE Cascavel - Pr. E-mail: bruagwedpap@hotmail.com

Leia mais

ERROS ERRO DE ARREDONDAMENTO

ERROS ERRO DE ARREDONDAMENTO ERROS Seja o valor aproimado do valor eacto. O erro de deie-se por ε ε erro absoluto de Aálise N um érica 4 ERRO DE ARREDONDAENTO Seja o valor aproimado do valor eacto tedo eactamete k dígitos após o poto

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais