Séries de Potências AULA LIVRO
|
|
- Victor Gabriel Fialho Aleixo
- 2 Há anos
- Visualizações:
Transcrição
1 LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias. OBJETIVOS Represetar fuções em séries de potêcias. PRÉ-REQUISITOS Séries Numéricas (Aula 3).
2 Séries de Potêcias. Itrodução Uma série de potêcias de x é uma série da forma a (x x 0 ) = a 0 + a (x x 0 ) + a (x x 0 ) + Observe que esta série pode ser vista como a geeralização de um poliômio. O pricipal objetivo de estudar essas séries é que é possível (veremos a diate) represetar uma fução dada como uma série de potêcias. Você pode imagiar por que queremos expressar uma fução cohecida como uma soma ifiita de termos. Veremos mais tarde que essa estratégia é útil para itegrar fuções que ão têm atiderivadas elemetares e para aproximar as fuções por poliômios. Cietistas fazem isso para simplificar expressões que eles utilizam e para poder represetar as fuções em calculadoras e computadores. Nesta aula, itroduziremos os coceitos de séries de potêcias. Além disso, iiciaremos o estudo de represetação de fuções em séries de potêcias.. Série de Potêcias Seja a, 0, uma seqüêcia umérica dada e seja x 0 um real dado. A série a (x x 0 ) (..) deomia-se série de potêcias, com coeficietes a, em volta de x 0 (ou cetrada em x 0 ). Se x 0 = 0, temos a série de potêcias em volta de zero: a x = a 0 + a x + a x +. (..)
3 Livro de Cálculo II Para cada x fixo, a série de potêcias é uma série de costates que podemos testar sua covergêcia ou divergêcia. Uma série de potêcias pode covergir para algus valores de x e divergir para outros. A soma da série é uma fução de x, cujo domíio é o cojuto de todos os x para os quais a série coverge. Esta fução assemelha a um poliômio. A úica difereça é que f tem ifiitos termos. Exemplo... x! e com coeficietes a =!. é uma série de potêcias em volta de zero Nosso objetivo, de agora em diate, é ecotrar os valores de x para os quais uma série de potêcias é covergete. Teorema.. Se a x for covergete para x = x, com x 0, etão a série covergirá absolutamete para todo x o itervalo aberto ( x, x ). Demostração: que Sedo, por hipótese, a x + = 0. a x covergete, segue Tomado-se ɛ =, existe um N N tal que, para todo N, a x. Como a x = a x x x, resulta que, para todo x e todo N, a x x x. 3
4 Séries de Potêcias Para x < x, a série geométrica do Teste da Comparação que para todo x, com x < x. x x x é covergete. Segue a x coverge absolutamete Exemplo... A série coverge para x =. Pelo Teorema aterior, a série coverge absolutamete para todo x (, ). Para x = a série ão é absolutamete covergete. Exemplo..3. Para quais valores de x a série!x é covergete? Solução: Usamos o Teste da Razão. Se fizermos a, como habitualmete, deotar o -ésimo termo da série, etão a =!x. Se x 0, temos a + + a = + ( + )!x +!x = ( + ) x = + Pelo Teste da Razão, a série diverge quado x 0. Etão, a série coverge apeas quado x = 0. Exemplo..4. Para quais valores de x a série covergete? Solução: Seja a = (x 3). Etão a + + a = (x 3) +! + + (x 3) = + + x 3 = x 3 (x 3) é Pelo Teste da Razão, a série dada é absolutamete covergete, e portato covergete, quado x 3 < e é divergete quado x 3 >. Agora x 3 < < x 3 < < x < 4 4
5 Livro de Cálculo II assim a série coverge quado < x < 4 e diverge quado x < e x > 4. O Teste da Razão ão forece iformação quado x 3 = ; assim, devemos cosiderar x = e x = 4 separadamete. Se colocarmos x = 4 a série, ela se torará, a série harmoica, ( ) que é divergete. Se x =, a série é que é covergete pelo Teste da Série Alterada. Etão a série dada coverge para x < 4. Exemplo..5. Ecotre o domíio da fução defiida por f(x) = x!. Solução: Seja a = x!. Etão a + + a = x + + ( + )!! x = + + x = 0 < para todo x R. Etão pelo Teste da Razão, a série dada coverge para todos os valores de x. fução dada é (, + ) = R. Em outras palavras, o domíio da Para as séries de potêcias que temos vistos até agora, o cojuto de valores de x para os quais a série é covergete tem sempre sido um itervalo (um itervalo fiito os exemplos.. e..4, o itervalo ifiito (, + ) o exemplo..5 e um itervalo colapsado [0, 0] = {0} o exemplo..3). O teorema a seguir, diz que isso, em geral, é verdadeiro. Teorema.. Para uma dada série de potêcias existem apeas três possibilidades: (i) a série coverge apeas quado x = x 0 ; (ii) a série coverge para todo x R; a (x x 0 ) 5
6 Séries de Potêcias (iii)existe um úmero R tal que a série coverge se x x 0 < R e diverge de x x 0 > R. Nos extremos x 0 R e x 0 + R a série poderá covergir ou ão. Demostração: Fazedo u = x x 0 a série obtemos a u, deste modo basta provarmos que (i) a série coverge apeas quado u = 0; a (x x 0 ) (ii) a série coverge para todo u R; (iii)existe um úmero R tal que a série coverge se u < R e diverge de u > R. Nos extremos R e R a série poderá covergir ou ão. Provemos: Seja A o cojuto de todos u 0 para os quais a série coverge.. 0 Caso: A = {0} Se a série covergisse para algum valor u 0, pelo Teorema., covergiria, também, para todo u ( u, u ), que cotradiz a hipótese A = {0}. Logo, se A = {0} a série covergirá apeas para u = Caso: A = (0, + ) = R + Para todo u R, existe u > 0 tal que u < u. Como a série a u é covergete, pelo teorema., a série covergirá absolutamete para todo u, com u < u. Portato, a série coverge absolutamete para todo u Caso: A R + e A {0} 6
7 Livro de Cálculo II Se, para todo r > 0, existisse u > r tal que a u fosse covergete, pelo teorema., a série seria absolutamete covergete para todo u, que cotradiz a hipótese A R +. Portato, se A R +, etão A será itado superiormete; logo, admitirá supremo R : R = sup A. Como A {0}, teremos, evidetemete, R > 0. Sedo R o supremo de A, para todo x com u < R, existe u A, com u < u. Resulta ovamete do teorema., que a série coverge absolutamete para todo u ( R, R). Fica a cargo do leitor verificar que a série diverge para todo u, com u > R. O úmero R que aparece o Teorema aterior é chamado Raio de Covergêcia da série de Potêcia. Por coveção, o raio de covergêcia é R = 0 o caso (i) e R = o caso (ii). Exemplo..6. Ecotre o raio de covergêcia e o itervalo de covergêcia da série (x + ) ( ). = (x + ) Solução: Seja a = ( ). Etão a + + a = ( ) + (x + ) + + ( + ) + ( ) (x + ) = x = x +. Pelo Teste da Razão, a série dada coverge se x + < e di- verge se x + >. Etão, ela é covergete se x + < e 7
8 Séries de Potêcias divergete se x + >. Isso sigifica que o raio de covergêcia é R =. A desigualdade x + < pode ser escrita como 4 < x < 0; assim, testamos a série os extremos 4 e 0. Quado x = 4, a série é ( 4 + ) ( ) = = = que é uma série harmoica e, portato, diverge. Quado x = 0, a série é (0 + ) ( ) = =. ( ). = que coverge pelo Teste das Séries Alteradas. Etão a série coverge apeas quado 4 < x 0, assim, o itervalo de covergêcia é ( 4, 0]. Exemplo..7. Ecotre o raio de covergêcia e o itervalo de covergêcia da série Solução: +!(x ). = Seja a =!(x ). Etão a + a = + ( + )!(x ) +!(x ) = ( + ) x = 0 < + se, e somete se, x = 0, ou seja, x =. Etão, o raio de { } covergêcia é R = 0. E o itervalo de covergêcia é. 8
9 Livro de Cálculo II.3 Represetação de Fuções em Séries de Potêcias Nesta seção aprederemos como represetar certos tipos de fuções como soma de séries de potêcias pela maipulação de séries geométricas ou pela difereciação ou itegração de tais séries. Começaremos com uma equação que vimos ates: x = + x + x + x = x, x < (.3.) Ecotramos essa equação o Exemplo??, ode a obtivemos observado que ela é uma série geométrica com a = e r = x. Mas aqui osso poto de vista é diferete. Agora os referiremos à Equação.3. como uma expressão da fução f(x) = x como uma soma de uma série de potêcias. Uma ilustração geométrica da Equação.3. é mostrada a Figura.. Como a soma de uma série é o ite da seqüêcia de somas parciais, temos ode S = x = S (x) x k é a -ésima soma parcial. Note que, quado k=0 aumeta, S (x) se tora uma aproximação de f(x) para < x <. Exemplo.3.. Expresse f(x) = como a soma de uma + 9x série de potêcias e ecotre o itervalo de covergêcia. Solução: Temos que + 9x = [ (3x) ] 9
10 Séries de Potêcias Figura.: f(x) e algumas somas parciais Trocado x por (3x) a Equação.3., obtemos: + 9x = [ (3x) ] = ( ) 3 x = 3 x x x Como essa é uma série geométrica, ela coverge quado (3x) <, isto é, 9x <, ou seja, x <. Portato o itervalo de covergêcia é 3, ) ( 3. 3 Exemplo.3.. Ecotre a represetação em série de potêcias para f(x) = x +. Solução: Note que + x = ( + x ) = ( x ) Trocado x por x a Equação.3., obtemos: + x = ( x ) = ( ) x + Como essa é uma série geométrica, ela coverge quado x <, isto é, x <. Portato o itervalo de covergêcia é (, ). 0
11 Livro de Cálculo II.4 Resumo Uma série de potêcias de x em volta de x 0 (ou cetrada em x 0 ) é uma série do tipo Seja. A série a (x x 0 ) (.4.) ode a, 0 (coeficietes) é uma seqüêcia umérica dada e x 0 um real dado. Para cada x fixo, a série de potêcias é uma série de costates que podemos testar sua covergêcia ou divergêcia. Uma série de potêcias pode covergir para algus valores de x e divergir para outros. A soma da série é uma fução de x, cujo domíio é o cojuto de todos os x para os quais a série coverge. Dada uma série de potêcias de x, utilizamos pricipalmete o Critério da Razão, visto a Aula 3, para ecotrarmos o domíio da série dada. Vimos uma primeira maeira de represetar fuções em série de potêcias, através da série geométrica que foi estudada com detalhes a Aula 3. Nosso objetivo com essa aula era que você (aluo) apredesse a represetar fuções em séries de potêcias, através da série geométrica. Na próxima aula, estudaremos outras maeiras (mais eficietes) de represetar fuções em séries de potêcias.
12 Séries de Potêcias.5 Atividades 0. Determie o domíio das seguites séries de potêcias de x : (a) x x (b) l = x (c) 3 (d) ( ) 4 x = = (x ) (e) ( ) (f)!(x ) = = 0. Ecotre uma represetação em série de potêcias para Ecotre seu domíio. x 3 x +..6 Cometário das Atividades Essas atividades tem o objetivo de você (aluo) exercitar os coceitos desevolvidos esta aula. A Atividade 0. pede para ecotrar o domíio de algumas séries de potêcias dadas. Para tato, você precisa ecotra o raio de covergêcia (usado o Critério da Razão) e testar a série os extremos do itervalo de covergêcia da série. Na Atividade 0. você deve utilizar a série geométrica para represetar a fução dada em série de potêcias..7 Referêcias GUIDORIZZI, H. L., Um Curso de Cálculo (Vol. e 4). Rio de Jaeiro: LTC Editora, 006. STEWART, J., Cálculo (vol. e ). São Paulo: Pioeira Thomso Learig, 006.
13 Livro de Cálculo II THOMAS, G. B., Cálculo (vol. e ). São Paulo: Addiso Wesley, 00. 3
MATEMÁTICA APLICADA À GESTÃO I
00 MATEMÁTICA APLICADA À GESTÃO I TEXTO DE APOIO MARIA ALICE FILIPE ÍNDICE NOTAS PRÉVIAS ALGUNS CONCEITOS SOBRE SÉRIES6 NOTAS PRÉVIAS As otas seguites referem-se ao maual adoptado: Cálculo, Vol I James
Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br
Disciplia: Séries e Equações Difereciais Ordiárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Ambiete Virtual de Apredizagem: Moodle (www.ead.ufpb.br) Site do Curso: www.mat.ufpb.br/ead
Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries
Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões
2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;
2.1 Dê exemplo de uma seqüêcia fa g ; ão costate, para ilustrar cada situação abaixo: (a) limitada e estritamete crescete; (b) limitada e estritamete decrescete; (c) limitada e ão moótoa; (d) ão limitada
2.2. Séries de potências
Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise
A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br
A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como
VII Equações Diferenciais Ordinárias de Primeira Ordem
VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,
Séquências e Séries Infinitas de Termos Constantes
Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates
Os juros compostos são conhecidos, popularmente, como juros sobre juros.
Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são
EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N
EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.
somente um valor da variável y para cada valor de variável x.
Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor
J. A. M. Felippe de Souza 9 Diagramas de Bode
9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de
Introdução ao Estudo de Sistemas Lineares
Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes
Módulo 4 Matemática Financeira
Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo
ActivALEA. ative e atualize a sua literacia
ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto
O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais
José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,
Uma abordagem histórico-matemática do número pi (π )
Uma abordagem histórico-matemática do úmero pi (π ) Brua Gabriela Wedpap, Ferada De Bastiai, Sadro Marcos Guzzo Cetro de Ciêcias Exatas e Tecológicas UNIOESTE Cascavel - Pr. E-mail: bruagwedpap@hotmail.com
5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA
5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()
CAP. I ERROS EM CÁLCULO NUMÉRICO
CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução
Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2
Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.
Tabela Price - verdades que incomodam Por Edson Rovina
Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros
Capitulo 6 Resolução de Exercícios
FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial
O oscilador harmônico
O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador
Universidade Federal de Ouro Preto Departamento de Matemática MTM123 - Cálculo Diferencial e Integral II Lista 3 - Tiago de Oliveira
Uiversidade Federal de Ouro Preto Departameto de Matemática MTM - Cálculo Diferecial e Itegral II Lista - Tiago de Oliveira. Ecotre uma fórmula para a -ésima soma parcial de cada série e use-a para ecotrar
Lista 9 - Introdução à Probabilidade e Estatística
UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm
A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa
A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.
PG Progressão Geométrica
PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características
O poço de potencial infinito
O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor
Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.
4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita
Capítulo I Séries Numéricas
Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...
CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:
CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada
Os testes da Comparação, Raiz e Razão e Convergência absoluta
Os testes da Comparação, Raiz e Razão e Covergêcia absoluta Prof. Flávia Simões AULA 4 Os testes de Comparação Comparar uma série dada com uma que já sabemos se coverge ou diverge. Usamos geralmete as
INTRODUÇÃO A TEORIA DE CONJUNTOS
INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome
Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:
Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada
Equações Diferenciais (ED) Resumo
Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,
Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan
Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus
Estatística stica para Metrologia
Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta
Até que tamanho podemos brincar de esconde-esconde?
Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor
O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA
O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto
Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física
Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.
APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos
1.5 Aritmética de Ponto Flutuante
.5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.
UM NOVO OLHAR PARA O TEOREMA DE EULER
X Ecotro Nacioal de Educação Matemática UM NOVO OLHA PAA O TEOEMA DE EULE Iácio Atôio Athayde Oliveira Secretária de Educação do Distrito Federal professoriacio@gmail.com Aa Maria edolfi Gadulfo Uiversidade
INTERPOLAÇÃO. Interpolação
INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação
O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li
O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)
Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização
Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado
CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA
CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas
Equivalência entre holomorfia, analiticidade e teorema de Cauchy
Capítulo 6 Equivalêcia etre holomorfia, aaliticidade e teorema de Cauchy 6 Itrodução O resultado cetral deste capítulo é a equivalêcia etre holomorfia, aaliticidade e validade do Teorema de Cauchy Trata-se
FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE
FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES
Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço
4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................
Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu
Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A
Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6
Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo
A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21
Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da
SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4
SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral
CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS
60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de
Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum
Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO
Resposta: L π 4 L π 8
. A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce
Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A
Questão Em uma pesquisa, foram cosultados 00 cosumidores sobre sua satisfação em relação a uma certa marca de sabão em pó. Cada cosumidor deu uma ota de 0 a 0 para o produto, e a média fial das otas foi
+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.
MATEMÁTICA NOTAÇÕES : cojuto dos úmeros aturais; = {,,, } : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros reais : cojuto dos úmeros complexos i: uidade imagiária, i = z: módulo
ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013
ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0
O período do pêndulo: Porque Galileu estava ao mesmo tempo certo e errado
UNIVERSIDADE FEDERAL DE MINAS GERAIS UFMG DEPARTAMENTO DE MATEMÁTICA ICEx MONOGRAFIA PARA OBTENÇÃO DE TÍTULO DE ESPECIALISTA EM MATEMÁTICA COM ÊNFASE EM CÁLCULO O período do pêdulo: Porque Galileu estava
Exercícios de Matemática Polinômios
Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)
a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.
UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital
INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO
INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO CURSO DE MATEMÁTICA APLICADA À ECONOMIA E GESTÃO ANÁLISE MATEMÁTICA I ELEMENTOS DE ANÁLISE REAL Volume Por : Gregório Luís I PREFÁCIO O presete teto destia-se a
e: A HISTÓRIA E APLICAÇÃO DE UM NÚMERO
e: A HISTÓRIA E APLICAÇÃO DE UM NÚMERO Ismaete Maria de Sousa Cuha Uiversidade Católica de Brasília RESUMO Este trabalho é um estudo sobre o Número e, que mostra o seu surgimeto em três épocas distitas.
Cálculo II Sucessões de números reais revisões
Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade
Sistema Computacional para Medidas de Posição - FATEST
Sistema Computacioal para Medidas de Posição - FATEST Deise Deolido Silva, Mauricio Duarte, Reata Ueo Sales, Guilherme Maia da Silva Faculdade de Tecologia de Garça FATEC deisedeolido@hotmail.com, maur.duarte@gmail.com,
Análise no domínio dos tempos de sistemas representados no Espaço dos Estados
MEEC Mestrado em Egeharia Electrotécica e de Computadores MCSDI Guião do trabalho laboratorial º 3 Aálise o domíio dos tempos de sistemas represetados o Espaço dos Estados Aálise o domíio dos tempos de
Séries e aplicações15
Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor
Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.
Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta
SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,
SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u
Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos
DELC - Departameto de Eletrôica e Computação ELC 0 Estudo de Casos em Egeharia Elétrica Solução de Equações Difereciais Ordiárias Usado Métodos Numéricos Versão 0. Giovai Baratto Fevereiro de 007 Ídice
CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013
CONCURSO PÚBLICO 01 FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL UFMS MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 16 QUESTÕES POR TÓPICOS Coordeação e Orgaização: Mariae dos Reis 1ª Edição
Definição 1: Sequência é uma lista infinita de números reais ordenados.
Cálculo I Egeharia Mecâica. Sequêcias Defiição : Sequêcia é uma lista ifiita de úmeros reais ordeados. 2º termo º termo Nome (x ) = (x, x 2, x,..., x,...) º termo º termo N R x Observação: Podemos pesar
1 Formulário Seqüências e Séries
Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam
Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas
Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de
Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa
Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito
Probabilidade e Estatística. Probabilidade e Estatística
Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................
CPV seu Pé Direito no INSPER
CPV seu Pé Direito o INSPE INSPE esolvida /ovembro/0 Prova A (Marrom) MATEMÁTICA 7. Cosidere o quadrilátero coveo ABCD mostrado a figura, em que AB = cm, AD = cm e m(^a) = 90º. 8. No plao cartesiao da
1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples.
FACULDADES NTEGRADAS ENSTEN DE LMERA Curso de Graduação em Egeharia Civil Resistêcia dos Materiais - 0 Prof. José Atoio Schiavo, MSc. NOTAS DE AULA Aula : Flexão Pura e Flexão Simples. Objetivo: determiar
MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II
Física Aplicada à Egeharia Civil MOMENTOS DE NÉRCA Neste capítulo pretede-se itroduzir o coceito de mometo de iércia, em especial quado aplicado para o caso de superfícies plaas. Este documeto, costitui
JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b
JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a
Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.
03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio
Prof. Eugênio Carlos Stieler
http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo
Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo
Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx
Capitulo 9 Resolução de Exercícios
FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;
Problema de Fluxo de Custo Mínimo
Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre
Carteiras de Mínimo VAR ( Value at Risk ) no Brasil
Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica
Notas de Aula do Curso PGE950: Probabilidade
Notas de Aula do Curso PGE950: Probabilidade Leadro Chaves Rêgo, Ph.D. 2013.1 Prefácio Estas otas de aula foram feitas para compilar o coteúdo de várias referêcias bibliográficas tedo em vista o coteúdo
Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais
Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre
Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP
Goiâia, 07 a 10 de outubro Mii Curso Tópicos em passeios aleatórios Ms. Valdivio Vargas Júior - Doutorado/IME/USP TÓPICOS EM PASSEIOS ALEATÓRIOS VARGAS JÚNIOR,V. 1. Itrodução Cosidere a seguite situação
PROFESSOR: SEBASTIÃO GERALDO BARBOSA
UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - 0 - PROFESSOR: SEBASTIÃO GERALDO BARBOSA Setembro/203 UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - - TÓPICOS DE MATEMÁTICA FINANCIEIRA
Secção 9. Equações de derivadas parciais
Secção 9 Equações de derivadas parciais (Farlow: Sec 9 a 96) Equação de Derivadas Parciais Eis chegado o mometo de abordar as equações difereciais que evolvem mais do que uma variável idepedete e, cosequetemete,
4 SÉRIES DE POTÊNCIAS
4 SÉRIES DE POTÊNCIAS Por via da existêcia de um produto em C; as séries adquirem a mesma relevâcia que em R; talvez mesmo maior. Isso deve-se basicamete ao facto de podermos ovamete formular as chamadas
Análise Infinitesimal II LIMITES DE SUCESSÕES
-. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +
MATEMÁTICA FINANCEIRA
MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS
MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1
MAC122 Pricípios de Desevolvimeto de Algoritmos EP o. 1 Prof. Dr. Paulo Mirada 1 Istituto de Matemática e Estatística (IME) Uiversidade de São Paulo (USP) 1. Estrutura dos arquivos de images o formato
onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.
!"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos