Demonstrações especiais

Tamanho: px
Começar a partir da página:

Download "Demonstrações especiais"

Transcrição

1 Os fudametos da Física Volume 3 Meu Demostrações especiais a ) RLAÇÃO NTR próx. e sup. osidere um codutor eletrizado e em equilíbrio eletrostático. Seja P sup. um poto da superfície e P próx. um poto extero e ifiitamete próximo de P sup.. Demostremos que próx. sup. Vamos dividir as cargas elétricas em excesso em duas partes: a parte: cargas elétricas que se situam o elemeto de área A e que cotém P sup. a parte: demais cargas elétricas. A P it. O poto P it. é itero e ifiitamete próximo a P sup. P próx. P sup. ampo devido à primeira parte de cargas m P próx. e em P it. os campos diferem apeas em setido. m P sup. o campo é ulo, pois P sup. é o cetro desta pequea distribuição de cargas. P sup. P próx. P it. ampo devido à seguda parte de cargas Os potos P próx., P sup. e P it. podem ser cosiderados coicidetes, relativamete a esta seguda parte de cargas. Portato, o campo produzido os três potos é o mesmo. ampo total P sup. P it. P próx. No poto P it., o campo é ulo. Logo: 0 No poto P sup., temos: sup. No poto P próx., temos: próx.

2 Os fudametos da Física Volume 3 Demostrações especiais Mas de, vem: próx. De e : próx. sup. m módulo, temos: próx. sup. a ) FLUXO LÉTRIO TORMA D GAUSS. Fluxo ϕ de um campo elétrico uiforme através de uma superfície plaa de área A sse fluxo ϕ é por defiição a gradeza escalar: ϕ A cos α em que α é o âgulo etre o vetor campo elétrico e o versor, perpedicular à superfície plaa de área A (figura I). Uidade de fluxo do campo elétrico o Sistema Iteracioal: N m ou V m b a b a α d A c Vista em perspectiva Figura I α c d Vista de frete Nas figuras IIa e IIb, aalisamos algumas situações particulares. Da figura IIa otamos que o fluxo é máximo, pois α 0 e cos 0 (ϕ máx. A) e máximo é o úmero de lihas de força que atravessa a superfície. Da figura IIb otamos que o fluxo é ulo, pois α 90 e cos 90 0 (ϕ 0) e ehuma liha de força atravessa a superfície. a) b) a b c d α = 0 ϕ máx. = A a b c d α = 90 ϕ = 0 Figura II

3 Os fudametos da Física Volume 3 3 Demostrações especiais Podemos iterpretar o fluxo como sedo a gradeza que mede o úmero de lihas de força que atravessa a superfície. Observação: Quado a superfície tiver forma qualquer e o campo ão for uiforme, divide-se a superfície em elemetos de superfície e cosidera-se em cada um o campo praticamete uiforme. alcula-se o fluxo em cada elemeto e, em seguida, somam-se os fluxos em todas as superfícies elemetares.. Teorema de Gauss osidere o campo elétrico gerado por uma distribuição de cargas elétricas. Nesse campo, vamos imagiar uma superfície fechada S. m relação a essa superfície as cargas produtoras do campo podem ser iteras ou exteras. Não cosidere cargas pertecetes à superfície. O teorema de Gauss afirma que: m uma superfície fechada, o fluxo do campo elétrico é proporcioal à soma algébrica das cargas iteras e idepede das cargas exteras. ϕ Σ Q it. e idepede das cargas exteras sedo a permissividade do meio. Sabe-se que do meio). 4π K (costate eletrostática 3. ampo as proximidades de um codutor eletrizado Seja P um poto extero e ifiitamete próximo da superfície de um codutor eletrizado positivamete (figura III). osidere a superfície fechada S cotedo o poto P. A superfície fechada que escolhemos para aplicar o teorema de Gauss é chamada gaussiaa. S Q P próx. A S S : gaussiaa Figura III próx. A Q = σ A

4 Os fudametos da Física Volume 3 4 Demostrações especiais alculemos o fluxo pela defiição e pelo teorema de Gauss. Seja Q a carga do codutor que é itera à superfície S e pertecete à superfície do codutor de área A. Pela defiição de fluxo, temos: ϕ próx. A Pelo teorema de Gauss, temos: ϕ Q Igualado as duas equações, vem: próx. A Q próx. Q A Mas Q A σ, que é a desidade elétrica superficial. Logo: próx. σ Se o codutor estiver eletrizado egativamete, σ deve ser cosiderado em módulo. Assim, temos: próx. σ Para um codutor esférico, temos σ Q 4πR ifiitamete próximo será: Q σ 4 πr 4π. Logo, o campo um poto extero e Q R Q K R próx. próx. próx. próx. ou Sedo sup. próx., vem: sup. K Q R 4. ampo os potos iteros e os potos exteros de uma superfície esférica S, de raio R, eletrizada uiformemete com carga elétrica Q, suposta positiva Seja P i um poto itero à superfície S, distado r do cetro O. Devido à simetria da distribuição de cargas, o campo elétrico em P i, se existir, deve ser radial. A itesidade do campo em todos os potos distaciados r de O é a mesma. osideremos a superfície gaussiaa S, de cetro O e raio r e apliquemos o teorema de Gauss: ϕ s' Q it. Mas: Q it. 0 Logo: ϕ s 0 R r O P i i S S, σ, Q Pela defiição de fluxo, sedo A a área de S, vem: ϕ s i A

5 Os fudametos da Física Volume 3 5 Demostrações especiais Sedo ϕ s 0, resulta i A 0 e, portato, i 0, em qualquer poto de S. Raciocíio aálogo pode ser feito para todos os potos iteros. Assim: É ulo o campo elétrico os potos iteros de uma distribuição superficial esférica e uiforme de cargas. Seja P um poto extero à superfície S, distado d do cetro O. Devido à simetria da distribuição de cargas, o campo elétrico em P deve ser radial. A itesidade do campo em todos os potos distaciados d de O é a mesma. osideremos a superfície gaussiaa S, de cetro O e raio d e apliquemos o teorema de Gauss: ϕ s'' Q it. Mas: Qit. Q Logo: ϕ s'' Q S Q R d S O σ > 0 P Pela defiição de fluxo, sedo A 4πd a área de S, vem: ϕ s 4πd De e, resulta: Q 4 πd Q, com Q 0 4π d Se Q 0, teríamos: ϕ s 4πd (pois α 80 ) Igualado os módulos de e, vem: 4 πd Q π Q d 4 S Q R S O σ < 0 P 3 a ) NRGIA POTNIAL LÉTRIA ARMAZNADA POR UM APAITOR A demostração da fórmula da eergia potecial elétrica armazeada por um capacitor exige o uso de matemática do esio superior. A título de ilustração, vamos fazer uma demostração com recursos mais elemetares. Iicialmete vamos calcular a eergia potecial elétrica armazeada por um codutor eletrizado com carga elétrica Q e sob potecial elétrico V. osidere Q costituído de um úmero muito grade de pequeas cargas q. Assim, temos Q q.

6 Os fudametos da Física Volume 3 6 Demostrações especiais Vamos imagiar o codutor iicialmete eutro e carregá-lo trazedo as pequeas cargas q do ifiito até o codutor. m cada deslocameto de uma carga q, vamos calcular o trabalho da força aplicada pelo operador, lembrado que esse trabalho é igual ao trabalho da força elétrica com sial trocado. No deslocameto da primeira carga q, do ifiito (potecial zero) até o codutor eutro (potecial iicial ulo), o trabalho da força aplicada pelo operador é ulo. letrizado com carga q, o codutor adquire potecial v. Ao trasportar a seguda carga q, o trabalho será q v. Agora o codutor armazea carga q e está sob potecial v. Ao trasportar a terceira carga q, o trabalho será q v e assim sucessivamete, até a eésima carga q, quado o trabalho será q ( )v. A eergia potecial elétrica W armazeada pelo codutor é dada pela soma dos trabalhos realizados pelo operador: W 0 q v q v... q ( )v W q v (0... ) Mas é a soma dos termos de uma PA de termos e razão igual a. 0 Assim, temos: W q v Sedo um úmero muito grade, podemos fazer a aproximação. tão, vem: W q v omo Q q e V v, temos: W Q V Para um capacitor, sedo Q a carga elétrica da armadura positiva e V A seu potecial elétrico, e Q a carga elétrica da armadura egativa e V B seu potecial elétrico, vem: W Q V A ( Q V B ) W QV ( A V B) W Q U

7 Os Fudametos da Física Temas speciais xercícios Resolvidos R. Uma superfície plaa de área A = 9,0 cm está imersa um campo elétrico uiforme de itesidade =, N/. alcule o fluxo do campo esta superfície os casos: a) A superfície está icliada formado um âgulo de 30 0 com as lihas do campo. b) A superfície está disposta perpedicularmete às lihas do campo. c) A superfície está disposta paralelamete às lihas do campo. Solução: a) Se a superfície forma um âgulo de 30 0 com as lihas do campo, cocluímos que o âgulo α etre o vetor campo elétrico e o versor r, perpedicular à superfície, é de Assim vem: ϕ =.A.cosα ϕ =, ,0 0 cos ϕ = 90 b) Neste caso α = 0 ( cos 0 = ) e portato ϕ = 80 c) stado a superfície disposta paralelamete às lihas do campo, resulta que o âgulo o âgulo α etre o vetor campo elétrico e o versor r, perpedicular à superfície, é de omo cos 90 0 = 0, vem : ϕ = 0 Respostas: a) ϕ = 90 b) ϕ = 80 c) ϕ = 0 R. Uma carga elétrica putiforme Q =, µ é colocada o cetro de um cubo de aresta 5,0 cm. O meio é o vácuo ( = 8,8.0 F/m ). Determie o fluxo do campo da carga Q a superfície do cubo.

8 Os Fudametos da Física Temas speciais Solução: Pelo Teorema de Gauss sabemos que: em uma superfície fechada o fluxo do campo elétrico é proporcioal á soma algébrica das cargas iteras e idepede das cargas exteras, sedo dado por: ϕ = Qit Sedo 8,8.0-6 = F/m e Q = Q =, 0, resulta: ϕ = Q it ϕ =, 0 8,8 0 it 6 ϕ =,5 0 N m 5 Resposta: ϕ =,5 0 N m 5 xercícios Propostos P. Uma superfície plaa de área A = cm está imersa um campo elétrico uiforme de itesidade = 5, N/, formado com as lihas de força do campo um âgulo θ. alcule o fluxo do campo esta superfície os casos: a) θ =90 0 b) θ =60 0 c) θ =30 0 d) θ = 0 P. Uma superfície plaa de área A = 0 cm está imersa um campo elétrico uiforme de itesidade = 3, N/. A superfície plaa realiza um movimeto de rotação uiforme, de modo que o âgulo α etre o vetor campo elétrico r e o versor r, perpedicular à superfície, varia com o tempo segudo a fução: α = ωt, ode ω é a velocidade agular. ostrua o gráfico de α em fução de t, cosiderado para t os valores 0, T/4, T/, 3T/4, T, sedo T o período. P3. alcule os fluxos elétricos as cico superfícies mostradas. Dê as respostas em fução de Q e da permissividade do meio.

9 Os Fudametos da Física Temas speciais P4. É dada uma esfera de raio R, a qual se distribuem cargas elétricas de desidade volumétrica ρ positiva e costate. Determie a itesidade do vetor campo elétrico um poto itero que dista r do cetro O da esfera e um poto extero que dista d do cetro O. osidere dada a permissividade do meio. P5. É dada uma reta r, a qual se distribuem cargas elétricas de desidade liear λ positiva e costate. Determie a itesidade do vetor campo elétrico um poto que está a uma distâcia d da reta. osidere dada a permissividade do meio. Respostas: P a) 600 b) c) 300 d) zero

10 Os Fudametos da Física Temas speciais P P3. ϕ P4. S it Q Q = ; ϕs = ; ϕ 3 ρ r ρ R = ; ext = 3 3 d S3 Q = ; ϕ S 4 = 0; ϕ S5 = Q P5. = λ π d

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física

Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.

Leia mais

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples.

1. Objetivo: determinar as tensões normais nas seções transversais de uma viga sujeita a flexão pura e flexão simples. FACULDADES NTEGRADAS ENSTEN DE LMERA Curso de Graduação em Egeharia Civil Resistêcia dos Materiais - 0 Prof. José Atoio Schiavo, MSc. NOTAS DE AULA Aula : Flexão Pura e Flexão Simples. Objetivo: determiar

Leia mais

defi departamento de física www.defi.isep.ipp.pt

defi departamento de física www.defi.isep.ipp.pt defi departameto de física Laboratórios de Física www.defi.isep.ipp.pt stituto Superior de Egeharia do Porto- Departameto de Física Rua Dr. Atóio Berardio de Almeida, 431 4200-072 Porto. T 228 340 500.

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

mgh = 1 2 mv2 + 1 2 Iω2 (1)

mgh = 1 2 mv2 + 1 2 Iω2 (1) a Supoha que um ioiô parte do repouso e desce até uma altura (deslocameto vertical) h, medida desde o poto de ode o ioiô foi solto. Ecotrar a sua velocidade fial de traslação e rotação, e sua aceleração

Leia mais

Prova 3 Física. N ọ DE INSCRIÇÃO:

Prova 3 Física. N ọ DE INSCRIÇÃO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REAIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que costa a etiqueta

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : cojuto dos úmeros aturais; = {,,, } : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros reais : cojuto dos úmeros complexos i: uidade imagiária, i = z: módulo

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Prova 3 Física. N ọ DE INSCRIÇÃO:

Prova 3 Física. N ọ DE INSCRIÇÃO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REAIIZAÇÃO DA PROVA. Coira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coorme o que costa a etiqueta

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

Equações Diferenciais Lineares de Ordem n

Equações Diferenciais Lineares de Ordem n PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Lei de Gauss Origem: Wikipédia, a enciclopédia livre.

Lei de Gauss Origem: Wikipédia, a enciclopédia livre. Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que

Leia mais

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6 Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

1- REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudança do meio de propagação. refração do meio em que o raio se encontra.

1- REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudança do meio de propagação. refração do meio em que o raio se encontra. REFRAÇÃO - LENTES - REFRAÇÃO LUMINOSA é a variação de velocidade da luz devido à mudaça do meio de propagação. - Ídice de refração absoluto: é uma relação etre a velocidade da luz em um determiado meio

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A Questão Em uma pesquisa, foram cosultados 00 cosumidores sobre sua satisfação em relação a uma certa marca de sabão em pó. Cada cosumidor deu uma ota de 0 a 0 para o produto, e a média fial das otas foi

Leia mais

O modelo atômico de J. J. Thomson, proposto em 1904, é constituído pelas hipóteses que se seguem.

O modelo atômico de J. J. Thomson, proposto em 1904, é constituído pelas hipóteses que se seguem. Modelo Atômico de Bohr No fial do século XIX, o elétro já estava estabelecido como partícula fudametal, pricipalmete depois que, em 897, J. J. Thomso determiou a sua razão carga/massa. Sabia-se, etão,

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

Equações Diferenciais (ED) Resumo

Equações Diferenciais (ED) Resumo Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito o INSPE INSPE esolvida /ovembro/0 Prova A (Marrom) MATEMÁTICA 7. Cosidere o quadrilátero coveo ABCD mostrado a figura, em que AB = cm, AD = cm e m(^a) = 90º. 8. No plao cartesiao da

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A

Leia mais

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 3º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 3º TRIMESTRE TIPO A PROVA DE FÍSICA º ANO - ª MENSAL - º TRIMESTRE TIPO A 0) Aalise a(s) afirmação(ões) abaio e assiale V para a(s) verdadeira(s) e F para a(s) falsa(s). Um raio lumioso propaga-se do meio A, cujo ídice de

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II

MOMENTOS DE INÉRCIA. Física Aplicada à Engenharia Civil II Física Aplicada à Egeharia Civil MOMENTOS DE NÉRCA Neste capítulo pretede-se itroduzir o coceito de mometo de iércia, em especial quado aplicado para o caso de superfícies plaas. Este documeto, costitui

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III )

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III ) Lei de Gauss da Eletricidade Objetivos iremos aprender: O que significa fluxo elétrico e como é possível calcular o mesmo. Como é possível determinar a carga elétrica delimitada por uma superfície fechada

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1 MAC122 Pricípios de Desevolvimeto de Algoritmos EP o. 1 Prof. Dr. Paulo Mirada 1 Istituto de Matemática e Estatística (IME) Uiversidade de São Paulo (USP) 1. Estrutura dos arquivos de images o formato

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

a) Calcule o módulo da velocidade na direção vertical no instante em que a bola foi chutada.

a) Calcule o módulo da velocidade na direção vertical no instante em que a bola foi chutada. Proa de Física Professores: Amilcar, Maragato e Elto Jr. 0 - Na cobraça de uma falta durate uma partida de futebol, a bola, ates do chute, está a uma distâcia horizotal de m da liha do gol. Após o chute,

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y.

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y. DEPARTAMENTO...: ENGENHARIA CURSO...: PRODUÇÃO DISCIPLINA...: ENGENHARIA ECONÔMICA / MATEMÁTICA FINANCEIRA PROFESSORES...: WILLIAM FRANCINI PERÍODO...: NOITE SEMESTRE/ANO: 2º/2008 Aula 7 CONTEÚDO RESUMIDO

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

COLÉGIO SANTA MARIA 2009 RUMO AOS 70 ANOS AVALIAÇÃO 2ª ETAPA 1º BLOCO ENSINO MÉDIO

COLÉGIO SANTA MARIA 2009 RUMO AOS 70 ANOS AVALIAÇÃO 2ª ETAPA 1º BLOCO ENSINO MÉDIO OLÉGIO SANTA MAIA 009 UMO AOS 0 ANOS AALIAÇÃO ª TAPA 1º BLOO NSINO MÉDIO NOTA: POFSSO:TADU DISIPLINA: FÍSIA II DATA: / / 3º MÉDIO: ALUNO(A): N Atenção! É importante a escrita legível. Não serão aceitas

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

UM NOVO OLHAR PARA O TEOREMA DE EULER

UM NOVO OLHAR PARA O TEOREMA DE EULER X Ecotro Nacioal de Educação Matemática UM NOVO OLHA PAA O TEOEMA DE EULE Iácio Atôio Athayde Oliveira Secretária de Educação do Distrito Federal professoriacio@gmail.com Aa Maria edolfi Gadulfo Uiversidade

Leia mais

O período do pêndulo: Porque Galileu estava ao mesmo tempo certo e errado

O período do pêndulo: Porque Galileu estava ao mesmo tempo certo e errado UNIVERSIDADE FEDERAL DE MINAS GERAIS UFMG DEPARTAMENTO DE MATEMÁTICA ICEx MONOGRAFIA PARA OBTENÇÃO DE TÍTULO DE ESPECIALISTA EM MATEMÁTICA COM ÊNFASE EM CÁLCULO O período do pêdulo: Porque Galileu estava

Leia mais

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com Aalise de Ivestimetos e Custos Prof. Adilso C. Bassa email: adilsobassa@adilsobassa.com JUROS SIMPLES 1 Juro e Cosumo Existe juro porque os recursos são escassos. As pessoas têm preferêcia temporal: preferem

Leia mais

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior. 0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão

Leia mais

A = Amplitude (altura máxima da onda) c = velocidade da luz = 2,998 x 10 8 m.s -1 3,00 x 10 8 m.s -1. 10 14 Hz. Verde: λ = = Amarela: λ =

A = Amplitude (altura máxima da onda) c = velocidade da luz = 2,998 x 10 8 m.s -1 3,00 x 10 8 m.s -1. 10 14 Hz. Verde: λ = = Amarela: λ = RADIAÇÃO ELETROMAGNÉ QUÍMICA BÁSICAB ESTRUTURA ATÔMICA II PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DAQBI Prof. Luiz Alberto RADIAÇÃO ELETROMAGNÉ RADIAÇÃO ELETROMAGNÉ λ comprimeto de oda Uidade: metro

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Matemática Financeira Aplicada

Matemática Financeira Aplicada Séries Periódicas Uiformes Séries Uiformes Postecipadas 0 1 2 3 4 Séries Uiformes Atecipadas 0 1 2 3 4-1 Séries Uiformes Diferidas (atecipada/postecipada) carêcia 0 c c+1 c+2 c+3 Valor Presete das Séries

Leia mais

Modelo de Nuvens: Modelo de Parcela e unidimensional de tempestades

Modelo de Nuvens: Modelo de Parcela e unidimensional de tempestades Modelo de Nuves: Modelo de Parcela e uidimesioal de tempestades Descrição geral da modelagem umérica Equações básicas que descrevem a parcela de ar: equação movimeto primeira lei termodiâmica equação da

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3 Aula 2_1 Lei de Gauss I Física Geral e xperimental III Prof. Cláudio Graça Capítulo 3 Conceito de Fluxo do campo elétrico Fluxo do campo elétrico num campo uniforme Suponhamos uma superfície plana de área

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemática Ficha de Trabalho Probabilidades 12º ao FT4 Arrajos completos (arrajos com repetição) Na liguagem dos computadores usa-se o código biário que é caracterizado pela utilização de apeas dois algarismos,

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2012, 2.ª fase, versão 1. constante

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2012, 2.ª fase, versão 1. constante Proposta de Resolução do Exame Nacioal de Física e Química A 11.º ao, 01,.ª fase, versão 1 Sociedade Portuuesa de Física, Divisão de Educação, 18 de julho de 01, http://de.spf.pt/moodle/ Grupo I 1. (D)

Leia mais

Capítulo 5. Misturas Simples

Capítulo 5. Misturas Simples Capítulo 5. Misturas Simples aseado o livro: tkis Physical Chemistry Eighth Editio Peter tkis Julio de Paula 04-06-2007 Maria da Coceição Paiva 1 Misturas Simples Para iterpretar termodiamicamete o efeito

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com

Leia mais

Prova 3 Física ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Física ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REAIIZAÇÃO DA PROVA. Coira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta ixada

Leia mais

I - FUNDAMENTOS DO CONCRETO ARMADO 1- INTRODUÇÃO GERAL. 1.1- Definição

I - FUNDAMENTOS DO CONCRETO ARMADO 1- INTRODUÇÃO GERAL. 1.1- Definição I - FUNDAMENTOS DO CONCRETO ARMADO - INTRODUÇÃO GERAL.- Defiição O cocreto armado é um material composto, costituído por cocreto simples e barras ou fios de aço. Os dois materiais costituites (cocreto

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013

CONCURSO PÚBLICO 2013 MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE D TEORIA E 146 QUESTÕES POR TÓPICOS. 1ª Edição JUN 2013 CONCURSO PÚBLICO 01 FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL UFMS MATEMÁTICA PARA TODOS OS CARGOS DA CLASSE "D" TEORIA E 16 QUESTÕES POR TÓPICOS Coordeação e Orgaização: Mariae dos Reis 1ª Edição

Leia mais

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente; 2.1 Dê exemplo de uma seqüêcia fa g ; ão costate, para ilustrar cada situação abaixo: (a) limitada e estritamete crescete; (b) limitada e estritamete decrescete; (c) limitada e ão moótoa; (d) ão limitada

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Componente de Física

Componente de Física Compoete de Física. Comuicação a loga distâcia A luz tem um comportameto dual. Comporta-se como um fluxo de partículas, os fotões, pacotes de eergia quatizada, i.e., quata, em que a eergia trasportada

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8 Exemplos de Cálculo do Potencial Elétrico Vimos na aula passada que há duas maneiras de se calcular o potencial elétrico. Quando se conhece a distribuição de cargas (discreta ou contínua), usa-se as equações

Leia mais

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x. 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita

Leia mais

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda Módulo Elemetos Básicos de Geometria - Parte 3 Diagoais de Poĺıgoos. 8 ao/e.f. Professores Cleber Assis e Tiago Mirada Elemetos Básicos de Geometria - Parte 3. Diagoais de Polígoos. 1 Exercícios Itrodutórios

Leia mais

Momento Linear, Impulso e Colisões (Cap. 8)

Momento Linear, Impulso e Colisões (Cap. 8) Mometo Liear, Impulso e Colisões (Cap. 8) Defiição de mometo liear d v F =m m costate: d m v F= Mometo liear = quatidade de movimeto Mometo liear: =m v p lei de Newto: a m v dp F= A força é igual à taxa

Leia mais

Análise no domínio dos tempos de sistemas representados no Espaço dos Estados

Análise no domínio dos tempos de sistemas representados no Espaço dos Estados MEEC Mestrado em Egeharia Electrotécica e de Computadores MCSDI Guião do trabalho laboratorial º 3 Aálise o domíio dos tempos de sistemas represetados o Espaço dos Estados Aálise o domíio dos tempos de

Leia mais

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples:

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples: PEDRO ORBERTO JUROS COMPOSTOS Da capitalização simples, sabemos que o redimeto se dá de forma liear ou proporcioal. A base de cálculo é sempre o capital iicial. o regime composto de capitalização, dizemos

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

Questão 1. Questão 2. Questão 3. Questão 4. alternativa B. alternativa E. alternativa E

Questão 1. Questão 2. Questão 3. Questão 4. alternativa B. alternativa E. alternativa E Questã Se P é 0% de Q, Q é 0% de R, e S é 50% de R, etã P S é igual a a) 50. b) 5. c). d) 5. e) 4. D alterativa Tems P 0, Q, Q 0, R e S 0,5 R. Lg P 0, Q 0, 0, R. S 0,5 R 0,5 R 5 Questã Seja f:r R uma fuçã

Leia mais