CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS"

Transcrição

1 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução Tabelas de trasição dos flip-flops Tabela de trasição do flip-flop JK Tabela de trasição do flip-flop T Tabela de trasição do flip-flop D Projeto de cotador sícroo Diagramas de Trasição Tabela de Estados Futuros e de Etradas dos Flip-flops Cotador Sícroo Crescete / Decrescete Exercícios de Fixação... 73

2 61 CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS Cotiuado os estudos sobre circuitos cotadores, partimos agora para circuitos os Cotadores Sícroos. Após esse capítulo você deverá ser capaz de: (1) Eteder o fucioameto de circuitos cotadores sícroos; e (2) Projetar um cotador sícroo a partir das especificações ecessárias.

3 Itrodução Cotadores sícroos são circuitos sequeciais capazes de executar cotages biárias de forma aleatória, pois possuem um circuito combiacioal extero, que utiliza como etradas as saídas Q e Q de cada flip-flop e suas saídas são coectadas às etradas dos flip-flops utilizados. A figura 5.1 apreseta o diagrama geral de um cotador sícroo utilizado flip-flops JK para cotagem. Figura 5.1 Diagrama geral de um cotador sícroo com flip-flops JK. As características pricipais dos cotadores sícroos são: (1) Os FF POSSUEM as etradas clock em comum; (2) Possuem circuito combiacioal extero, que utiliza as equações de trasição dos flip-flops utilizados para ser implemetado; (3) Possuem saída biária aleatória; e (4) O bit mais sigificativo da cotagem (MSB) pode ser qualquer um dos flip-flops, pois quem determia essa ordem é o circuito combiacioal extero. No caso da figura 5.1 o bit mais sigificativo pode ser tato o flip-flop 1 quato o flip-flop. Ates de estudarmos o projeto de cotadores sícroos, devemos aalisar as tabelas de trasição dos flip-flops.

4 Tabelas de trasição dos flip-flops As tabelas de trasição dos flip-flops ada mais são que outra forma de visualização das tabelas verdades desses flip-flops. Para a motagem dessas tabelas, devemos aalisar com foco os valores de trasições das saídas e os valores de etrada que se deve ter em suas etradas para provocar essa trasição, desde que um pulso de clock ocorra em suas etradas. A saída do flip-flop em seu estado atual é deomiada em seu estado futuro, ou seja, após a trasição, é deomiada Q 1 ou Q, ou simplesmete Q, e a saída Q Tabela de trasição do flip-flop JK Para o flip-flop JK temos: Q = 0 para Q 0, utilizamos em suas etradas, J = 0 e K = 0 ou J = 0 e K = 1. 1 = Q = 0 para Q 1, utilizamos em suas etradas, J = 1 e K = 0 ou J = 1 e K = 1. 1 = Q = 1 para Q 0, utilizamos em suas etradas, J = 0 e K = 1 ou J = 1 e K = 1. 1 = Q = 1 para Q 1, utilizamos em suas etradas, J = 0 e K = 0 ou J = 1 e K = 0. 1 = Logo, resumido essas proposições, temos a seguite tabela verdade de trasição: Q 1 Q J K X X 1 0 X X Tabela de trasição do flip-flop T Para o flip-flop T temos: Q = 0 para Q 0, utilizamos T = 0. 1 = Q = 0 para Q 1, utilizamos T = 1. 1 =

5 64 Q = 1 para Q 0, utilizamos T = 1. 1 = Q = 1 para Q 1, utilizamos T = 0. 1 = Logo, resumido essas proposições, temos a seguite tabela verdade de trasição: Q 1 Q T Tabela de trasição do flip-flop D Para o flip-flop D temos: Q = 0 para Q 0, utilizamos D = 0. 1 = Q = 0 para Q 1, utilizamos D = 1. 1 = Q = 1 para Q 0, utilizamos D = 0. 1 = Q = 1 para Q 1, utilizamos D = 1. 1 = Logo, resumido essas proposições, temos a seguite tabela verdade de trasição: Q 1 Q D

6 Projeto de cotador sícroo Ates de projetarmos um cotador sícroo ecessitamos eteder algumas partes itegrates deste projeto Diagramas de Trasição Para projetar um cotador sícroo, deve-se primeiro eteder as especificações de projeto. Um cotador sícroo tem sua cotagem especificada através de um diagrama de trasição, apresetado a figura 5.2, que idica qual é o estado futuro a ser atigido pelo cotador quado é aplicado um pulso de clock. Figura 5.2 Diagrama de estados de um cotador sícroo. A idicação (1) mostra que o cotador deve iiciar sua cotagem pelo estado idicado por (2). Cada circuferêcia represeta um estado da cotagem e pode idicar um valor decimal, biário, hexadecimal ou um ome exemplo state1 que represeta algum valor tabelado. A seta com a idicação (3) represeta que existe uma trasição do estado state1 para state2, assim como para os outros estados Tabela de Estados Futuros e de Etradas dos Flip-flops Cosidere o cotador sícroo represetado pelo diagrama de estados da figura 5.3, a tabela de estados futuros desse cotador ada mais é que uma represetação tabelada dos seus estados. Ela será extremamete importate para que possamos gerar a tabela de etrada dos flip-flops adiate.

7 66 Figura 5.3 Diagrama de estado de um cotador sícroo de módulo 5. A tabela de estados futuros de um diagrama de estados é gerada colocado em uma colua o estado atual que o cotador se ecotra e em outra colua o seu próximo estado. No caso da figura 5.3, sua tabela de estados futuros fica como demostrado a seguir, cosiderado três flip-flops A, B e C, sedo A o bit mais sigificativo. Estados Atuais Estados Futuros Q A Q B Q C Q A Q B Q C A partir dessa tabela, podemos gerar a tabela de etrada dos flip-flops, que são as tabelas que geram as equações lógicas do circuito combiacioal, mostrado a figura 5.1, ecessárias para a implemetação do cotador.

8 67 Para gerar essa tabela, ecessitamos das tabelas de trasição do tipo de flip-flop utilizado, descritas o item 5.2. Cosiderado que os flip-flops utilizados para implemetação desse cotador sejam flip-flops JK, para gerar a tabela de etrada dos flip-flops, basta observarmos quais são as trasições que ocorrem dos estados Q x para o estado Q x de cada liha e preechermos as etradas J x e K x de cada flip-flop de acordo com a tabela de trasição do flip-flop JK. A tabela de etrada dos flip-flops do cotador descrito a figura 5.3 fica da seguite forma: Estados Atuais Estados Futuros Etradas dos Flip-Flops JK Q A Q B Q C Q A Q B Q C J A K A J B K B J C K C X 0 X 1 X X 1 X X X X 0 1 X X X 1 X X 1 0 X 0 X X 1 0 X X X 1 X 1 0 X X 1 X 1 X 1 Gerada a tabela de etradas dos flip-flops, ecessitamos gerar as fuções lógicas do circuito combiacioal resposável pela cotagem, e para isso, como descrito o diagrama de blocos da figura 5.1, utilizaremos Q A, Q B e Q C como etradas do circuito combiacioal e J A, K A, J B, K B, J C e K C como saídas, ou seja, basta implemetar uma fução lógica para cada um dos J s e K s utilizados, fazedo como etradas dessas fuções as saídas Q dos flip-flops. Como ferrameta para gerar essas fuções, utilizaremos mapas de Veitch-Karaugh, revisados o capítulo 1, e simplificado as fuções lógicas descritas, obteremos as seguites equações: =. =1 =. = = =1 (1) (2) (3) (4) (5) (6)

9 68 Determiadas as equações lógicas das etradas, para fializar o projeto, basta implemetar o circuito lógico, retirado como saídas do cotador as saídas Q de cada flip-flop. O circuito do exemplo utilizado é mostrado a figura 5.4. Figura 5.4 Circuito cotador sícroo de módulo 5 implemetado com flip-flops JK. Perguta: Na figura 5.3 possuímos um idicativo de que o cotador deve iiciar sua cotagem o estado 000. O que podemos fazer esse circuito para garatirmos que sempre que o cotador seja ligado ele iicie sua cotagem em 000 se suas etradas assícroas forem ativadas em ível baixo? Sugestão: Implemete o mesmo cotador do exemplo aterior utilizado flip-flops tipo T e tipo D como elemetos de memória. Implemetado o circuito lógico, fializamos o projeto de um cotador sícroo. Resumido as etapas de projeto temos: (1) Determiação do diagrama de estados do cotador a partir das especificações de projeto; (2) Motagem da tabela de estados futuros; (3) Motagem da tabela de etrada dos flip-flops; (4) Implemetação das fuções lógicas de etrada dos flip-flops; e (5) Implemetação do circuito lógico.

10 Cotador Sícroo Crescete / Decrescete O projeto de um cotador sícroo crescete / decrescete ecessita da iserção de uma variável de cotrole. No osso caso, vamos chamar essa variável de cotrole de variável Z, que será iserida o circuito combiacioal da figura 5.1 para executar uma etapa de cotrole. Figura 5.5 Diagrama de blocos de um cotador sícroo com váriável Z de cotrole. Tomado como exemplo um cotador sícroo crescete / decrescete de 2 bits, devemos costruir um diagrama de estados que coteha as duas possíveis sequêcias de cotagem. Defiido como cotagem crescete para Z = 0 e decrescete para Z = 1 podemos obter os dois diagramas da figura 5.6 ou aida obter um úico diagrama, figura 5.7, que coteha as duas sequêcias obtidas de acordo com o valor de Z. Figura 5.6 Diagramas de estado para os distitos valores da variável de cotrole 'Z'.

11 70 Figura 5.7 Diagrama de estados que cotém as duas possíveis sequêcias do cotador. A motagem da tabela de estados futuros e de etrada dos flip-flops, cosiderado flip-flops JK, e iserido a variável Z, fica da seguite forma: Estados Atuais Estados Futuros Etradas dos Flip-Flops JK Q A Z Q B Q A Q B J B K B J A K A X 1 X X X X 1 0 X X 0 X X 0 X X X X 0 1 X X 1 X 0 Simplificado as fuções lógicas, obtemos as seguites equações: = = =. = =. = = = (7) (8) (9) (10)

12 71 Implemetado as equações (7) à (10), obtemos o circuito descrito a figura 5.8. Figura 5.8 Circuito de um cotador sícroo crescete / decrescete com uma variável Z de cotrole (Z = 0 crescete). Perguta: Na figura 5.7 possuímos um idicativo de que o cotador deve iiciar sua cotagem o estado 00. O que podemos fazer esse circuito para garatirmos que sempre que o cotador seja ligado ele iicie sua cotagem em 00 se suas etradas assícroas forem ativadas com ível alto? Sugestão: Implemete o mesmo cotador do exemplo aterior utilizado flip-flops tipo T e tipo D como elemetos de memória. A partir desse tipo de projeto de cotador sícroo, podemos projetar cotadores sícroos de sequêcias aleatórias cotrolados por variáveis exteras. A figura 5.9 mostra um exemplo de diagrama de estados de um cotador sícroo aleatório cotrolado pela variável extera Z. Faça a tabela de estados futuros desse cotador. Os estados estão codificados da seguite forma: Nome Valor em biário S S S S S S S S S8 1111

13 72 Figura 5.9 Cotador sícroo aleatório cotrolado por variável Z. Perguta 1: No diagrama da figura 5.9, podemos verificar que em todos os estados que podem ser executados com 4 bits estão sedo utilizados. O que acoteceria se por algum distúrbio o sistema o cotador apresetasse o valor 0110 em sua saída? Perguta 2: O que acoteceria o cotador estivesse o estado S3, com Z =1, e o valor da variável Z fosse alterado para 0? Sugestão: Implemete o mesmo cotador do exemplo aterior utilizado flip-flops tipo T.

14 Exercícios de Fixação 1) Implemete um cotador sícroo crescete, com reset automático, de módulo 16 utilizado FF JK. 2) Implemete um cotador sícroo, sem reset automático, que cote de 2 até 6, crie uma sub-rotia de iicialização para esse cotador. Utilize FF T. 3) Implemete um cotador sícroo, que execute a sequêcia abaixo. O cotador deve possuir reset automático em 1 e deve-se utilizar FF JK. 4) Implemete um cotador sícroo, com reset automático, que execute a seguite sequêcia: Use FF D. 5) Implemete um cotador sícroo de 4 bits, com reset automático, que execute uma cotagem dos úmeros pares. Utilize FF JK. 6) Implemete um cotador sícroo de 4 bits, sem reset automático, que execute uma cotagem dos úmeros ímpares. Utilize FF JK. 7) Implemete um cotador sícroo de 3 bits, crescete / decrescete, com uma variável Z de cotrole. Utilize FF JK. 8) Implemete um cotador sícroo de 3 bits, com uma variável Z de cotrole, que execute as seguites sequêcias: a. Com Z = 0: b. Com Z = 1: Utilize FF D.

15 74 9) Implemete um cotador sícroo que execute a sequêcia abaixo. Utilize FF T. 10) Implemete um cotador sícroo que execute a sequêcia abaixo. Utilize FF D. 11) Implemete um cotador sícroo, com variáveis Y e X de cotrole, que execute as seguites sequêcias abaixo, com reset iicial em 2 h. Utilize FF JK.

CIRCUITOS SEQUÊNCIAIS

CIRCUITOS SEQUÊNCIAIS Coelh ho, J.P. @ Sistem mas Digita ais : Y20 07/08 CIRCUITOS SEQUÊNCIAIS O que é um circuito it sequêcial? Difereça etre circuito combiatório e sequecial... O elemeto básico e fudametal da lógica sequecial

Leia mais

Parte I - Projecto de Sistemas Digitais

Parte I - Projecto de Sistemas Digitais Parte I - Projecto de Sistemas Digitais Na disciplia de sistemas digitais foram estudadas técicas de desevolvimeto de circuitos digitais ao ível da porta lógica, ou seja, os circuito digitais projectados,

Leia mais

CAPÍTULO 4 CIRCUITOS SEQUENCIAIS II: CONTADORES ASSÍNCRONOS

CAPÍTULO 4 CIRCUITOS SEQUENCIAIS II: CONTADORES ASSÍNCRONOS 50 Sumário CAPÍTULO 4 CIRCUITOS SEQUENCIAIS II: CONTADORES ASSÍNCRONOS 4.1. Introdução... 52 4.2. Contadores Assíncronos Crescentes... 52 4.3. Contadores Assíncronos Decrescentes... 56 4.4. Contador Assíncrono

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

Contadores. Contadores Assíncronos Crescentes

Contadores. Contadores Assíncronos Crescentes Contadores Variam seus estados sob o comando de um clock; São utilizados para: Contagens diversas; Divisão de frequência; Medição de frequência e tempo; Geração de formas de onda; Conversão analógico para

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa

A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

Sistema Computacional para Medidas de Posição - FATEST

Sistema Computacional para Medidas de Posição - FATEST Sistema Computacioal para Medidas de Posição - FATEST Deise Deolido Silva, Mauricio Duarte, Reata Ueo Sales, Guilherme Maia da Silva Faculdade de Tecologia de Garça FATEC deisedeolido@hotmail.com, maur.duarte@gmail.com,

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA LINGUAGEM DE PROGRAMAÇÃO JAVA¹

SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA LINGUAGEM DE PROGRAMAÇÃO JAVA¹ SISTEMA DE AMORTIZAÇÃO FRANCÊS DESENVOLVIDO ATRAVÉS DA RESUMO LINGUAGEM DE PROGRAMAÇÃO JAVA¹ Deis C. L. Costa² Edso C. Cruz Guilherme D. Silva Diogo Souza Robhyso Deys O presete artigo forece o ecadeameto

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

RESISTORES E RESISTÊNCIAS

RESISTORES E RESISTÊNCIAS ELETICIDADE CAPÍTULO ESISTOES E ESISTÊNCIAS No Capítulo estudamos, detre outras coisas, o coceito de resistêcia elétrica. Vimos que tal costitui a capacidade de um corpo qualquer se opôr a passagem de

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Circuitos Sequenciais. Sistemas digitais

Circuitos Sequenciais. Sistemas digitais Circuitos Sequenciais Sistemas digitais Agenda } Introdução } Latchs (trava) } Latch NAND e Latch NOR } Flip-Flop Set-Reset (FF S-R) } FF S-R Latch NAND, FF S-R Latch NOR, FF S-R Latch NAND com Clock }

Leia mais

CAPÍTULO 6 CIRCUITOS SEQUENCIAIS IV: PROJETO DE REDES SEQUENCIAIS

CAPÍTULO 6 CIRCUITOS SEQUENCIAIS IV: PROJETO DE REDES SEQUENCIAIS 92 CAPÍTULO 6 CIRCUITOS SEQUENCIAIS IV: PROJETO DE REDES SEQUENCIAIS Sumário 6.. Introdução... 94 6... Máquina de Estados de Moore... 94 6..2. Máquina de Estados de Mealy... 95 6.2. Projeto de Redes Sequenciais...

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

Projeto de Máquinas de Estado

Projeto de Máquinas de Estado Projeto de Máquinas de Estado Organizado por Rodrigo Hausen. Original de Thomas L. Floyd. Versão 0: 15 de março de 2013 http://compscinet.org/circuitos Resumo Grande parte deste texto, exemplos e estrutura

Leia mais

III Simpósio sobre Gestão Empresarial e Sustentabilidade (SimpGES) Produtos eco-inovadores: produção e consumo"

III Simpósio sobre Gestão Empresarial e Sustentabilidade (SimpGES) Produtos eco-inovadores: produção e consumo 4 e 5 de outubro de 03 Campo Grade-MS Uiversidade Federal do Mato Grosso do Sul RESUMO EXPANDIDO COMPARAÇÃO ENTRE REDES NEURAIS ARTIFICIAIS E REGRESSÃO LINEAR MÚLTIPLA PARA PREVISÃO DE PREÇOS DE HORTALIÇAS

Leia mais

Projetos Agropecuários - Módulo 4 ANÁLISE FINANCEIRA DE INVESTIMENTO

Projetos Agropecuários - Módulo 4 ANÁLISE FINANCEIRA DE INVESTIMENTO Projetos Agropecuários - Módulo 4 ANÁLISE FINANCEIRA DE INVESTIMENTO A parte fiaceira disciplia todas as áreas de uma orgaização que esteja direta ou idiretamete ligadas à tomada de decisão. Todo profissioal

Leia mais

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x. 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Programando em C++ Joel Saade. Novatec Editora Ltda. www.novateceditora.com.br

Programando em C++ Joel Saade. Novatec Editora Ltda. www.novateceditora.com.br Programado em C++ Joel Saade Novatec Editora Ltda. www.ovateceditora.com.br Programado em C++ Capítulo 1 Itrodução Este capítulo trata, de forma breve, a história de C e C++. Apreseta a estrutura básica

Leia mais

Análise no domínio dos tempos de sistemas representados no Espaço dos Estados

Análise no domínio dos tempos de sistemas representados no Espaço dos Estados MEEC Mestrado em Egeharia Electrotécica e de Computadores MCSDI Guião do trabalho laboratorial º 3 Aálise o domíio dos tempos de sistemas represetados o Espaço dos Estados Aálise o domíio dos tempos de

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que

Exercício 1. Quantos bytes (8 bits) existem de modo que ele contenha exatamente quatro 1 s? Exercício 2. Verifique que LISTA INCRÍVEL DE MATEMÁTICA DISCRETA II DANIEL SMANIA 1 Amostras, seleções, permutações e combiações Exercício 1 Quatos bytes (8 bits) existem de modo que ele coteha exatamete quatro 1 s? Exercício 2

Leia mais

Processamento Morfológico de Imagens Digitais em FPGA

Processamento Morfológico de Imagens Digitais em FPGA VIII Joradas sobre Sistemas Recofiguráveis Processameto Morfológico de Images Digitais em FPGA Aa Rita Silva Horácio C. Neto INESC-ID/IST/UTL INESC-ID/IST/UTL Resumo Este trabalho evolveu o projecto de

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com

Leia mais

Modelando o Tempo de Execução de Tarefas em Projetos: uma Aplicação das Curvas de Aprendizagem

Modelando o Tempo de Execução de Tarefas em Projetos: uma Aplicação das Curvas de Aprendizagem 1 Modelado o Tempo de Execução de Tarefas em Projetos: uma Aplicação das Curvas de Apredizagem RESUMO Este documeto aborda a modelagem do tempo de execução de tarefas em projetos, ode a tomada de decisão

Leia mais

Guia do Professor. Matemática e Saúde. Experimentos

Guia do Professor. Matemática e Saúde. Experimentos Guia do Professor Matemática e Saúde Experimetos Coordeação Geral Elizabete dos Satos Autores Bárbara N. Palharii Alvim Sousa Karia Pessoa da Silva Lourdes Maria Werle de Almeida Luciaa Gastaldi S. Souza

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

Circuitos Seqüenciais

Circuitos Seqüenciais Circuitos Seqüenciais Circuitos Lógicos DCC-IM/UFRJ Prof. Gabriel P. Silva Circuitos Seqüenciais Um circuito seqüencial síncrono consiste de um circuito combinacional e uma rede de memória formada por

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

FLIP-FLOPS FLOPS. INTRODUÇÃO Os circuitos anteriormente estudados são chamados de

FLIP-FLOPS FLOPS. INTRODUÇÃO Os circuitos anteriormente estudados são chamados de FLIP-FLOPS FLOPS INTRODUÇÃO Os circuitos anteriormente estudados são chamados de circuitos combinacionais porque os níveis n lógicos l de saída dependem apenas dos níveis n lógicos l nas entradas. (os

Leia mais

Capítulo VIII Registradores de Deslocamento e Contadores

Capítulo VIII Registradores de Deslocamento e Contadores Capítulo VIII Registradores de Deslocamento e Contadores 1 Introdução Vimos no capítulo anterior que flip-flops são dispositivos capazes de memorizar o seu estado (SET ou RESET). Neste capítulo estudaremos

Leia mais

Álgebra Linear I. Sonia Elena Palomino Castro Bean Daniel Noberto Kozakevich

Álgebra Linear I. Sonia Elena Palomino Castro Bean Daniel Noberto Kozakevich Álgebra Liear I Soia Elea Palomio Castro Bea Daiel Noberto Kozakevich ª Edição Floriaópolis, 0 Govero Federal Presidete da República: Dilma Vaa Rousseff Miistro de Educação: Ferado Haddad Coordeador Nacioal

Leia mais

Cálculo Financeiro Comercial e suas aplicações.

Cálculo Financeiro Comercial e suas aplicações. Matemática Fiaceira Uidade de Sorriso - SENAC M, Prof Rikey Felix Cálculo Fiaceiro Comercial e suas aplicações. Método Algébrico Parte 0 Professor Rikey Felix Edição 0/03 Matemática Fiaceira Uidade de

Leia mais

(1) E que a força contra-eletromotriz é dada por: (2)

(1) E que a força contra-eletromotriz é dada por: (2) Resolução da questão 3 Para respoder essa questão é ecessário veriicar que o motor já está operado e que em determiado mometo algum gradeza do motor irá variar. Frete a essa variação, deve-se determiar

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

CURSO ONLINE DE EXERCÍCIOS MATEMÁTICA FINANCEIRA & ESTATÍSTICA AULA 09

CURSO ONLINE DE EXERCÍCIOS MATEMÁTICA FINANCEIRA & ESTATÍSTICA AULA 09 1 AULA 09 Olá, amigos! Chegamos hoje ao osso peúltimo simulado! Com mais esta aula, completaremos 8 (ceto e oito) questões resolvidas e miuciosamete aalisadas (54 de cada matéria). Teho a impressão de

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

(1) Escola Politécnica da Universidade de São Paulo (2) E. J. Robba Consultoria & Cia. Ltda.

(1) Escola Politécnica da Universidade de São Paulo (2) E. J. Robba Consultoria & Cia. Ltda. Otimização da Qualidade de Forecimeto pela Localização de Dispositivos de Proteção e Seccioameto em Redes de Distribuição Nelso Kaga () Herá Prieto Schmidt () Carlos C. Barioi de Oliveira () Eresto J.

Leia mais

Um Protocolo Híbrido de Anti-colisão de Etiquetas para Sistemas RFID

Um Protocolo Híbrido de Anti-colisão de Etiquetas para Sistemas RFID XXIX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT 11, 2-5 DE OUTUBRO DE 211, CURITIBA, PR Um Protocolo Híbrido de Ati-colisão de Etiquetas para Sistemas RFID Bruo A. de Jesus, Rafael C. de Moura, Liliae

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos

Solução de Equações Diferenciais Ordinárias Usando Métodos Numéricos DELC - Departameto de Eletrôica e Computação ELC 0 Estudo de Casos em Egeharia Elétrica Solução de Equações Difereciais Ordiárias Usado Métodos Numéricos Versão 0. Giovai Baratto Fevereiro de 007 Ídice

Leia mais

Calendário de inspecções em Manutenção Preventiva Condicionada com base na Fiabilidade

Calendário de inspecções em Manutenção Preventiva Condicionada com base na Fiabilidade Caledário de ispecções em Mauteção Prevetiva Codicioada com base a Fiabilidade Rui Assis Faculdade de Egeharia da Uiversidade Católica Portuguesa Rio de Mouro, Portugal rassis@rassis.com http://www.rassis.com

Leia mais

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples:

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples: PEDRO ORBERTO JUROS COMPOSTOS Da capitalização simples, sabemos que o redimeto se dá de forma liear ou proporcioal. A base de cálculo é sempre o capital iicial. o regime composto de capitalização, dizemos

Leia mais

Capitulo 9 Resolução de Exercícios

Capitulo 9 Resolução de Exercícios FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;

Leia mais

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente; 2.1 Dê exemplo de uma seqüêcia fa g ; ão costate, para ilustrar cada situação abaixo: (a) limitada e estritamete crescete; (b) limitada e estritamete decrescete; (c) limitada e ão moótoa; (d) ão limitada

Leia mais

PROFESSOR: SEBASTIÃO GERALDO BARBOSA

PROFESSOR: SEBASTIÃO GERALDO BARBOSA UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - 0 - PROFESSOR: SEBASTIÃO GERALDO BARBOSA Setembro/203 UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - - TÓPICOS DE MATEMÁTICA FINANCIEIRA

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA INTRODUÇÃO MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 1 1 Itrodução à Egeharia Ecoômica A egeharia, iserida detro do cotexto de escassez de recursos, pode aplicar

Leia mais

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados Escola SESI de Aápolis - Judiaí Aluo (a): Disciplia: MATEMÁTICA Turma: 3º Ao Professor (a) : CÉSAR LOPES DE ASSIS Data: INTRODUÇÃO A ESTATÍSTICA A Estatística é o ramo da Matemática que coleta, descreve,

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 Esio Médio) GABARITO GABARITO NÍVEL 3 ) B ) A ) B ) D ) C ) B 7) C ) C 7) B ) C 3) D 8) E 3) A 8) E 3) A ) C 9) B ) B 9) B ) C ) E 0) D ) A

Leia mais

JUROS SIMPLES. 1. Calcule os juros simples referentes a um capital de mil reais, aplicado em 4 anos, a uma taxa de 17% a.a.

JUROS SIMPLES. 1. Calcule os juros simples referentes a um capital de mil reais, aplicado em 4 anos, a uma taxa de 17% a.a. JUROS SIMPLES 1. Calcule os juros simples referetes a um capital de mil reais, aplicado em 4 aos, a uma taxa de 17% a.a. 2. Calcule o capital ecessário para que, em 17 meses, a uma taxa de juros simples

Leia mais

Tipos abstratos de dados (TADs)

Tipos abstratos de dados (TADs) Tipos abstratos de dados (TADs) Um TAD é uma abstração de uma estrutura de dados Um TAD especifica: Dados armazeados Operações sobre os dados Codições de erros associadas à opers Exemplo: TAD que modela

Leia mais

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

O impacto da incorporação da inflação na análise de projetos de investimentos

O impacto da incorporação da inflação na análise de projetos de investimentos Produção, v. 22,. 4, p. 709-717, set./dez. 2012 http://dx.doi.org/10.1590/s0103-65132012005000073 O impacto da icorporação da iflação a aálise de projetos de ivestimetos Joaa Siqueira de Souza a *, Fracisco

Leia mais

Fundamentos de Bancos de Dados 3 a Prova

Fundamentos de Bancos de Dados 3 a Prova Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Dezembro de 2007 Duração: 2 horas Prova com cosulta Questão 1 (Costrução de modelo ER - Peso 3) Deseja-se costruir um sistema WEB que armazee

Leia mais

Universidade Estadual do Ceará

Universidade Estadual do Ceará Universidade Estadual do Ceará Felipe de Almeida Xavier Joao Gonçalves Filho Trabalho Circuitos Lógicos Digitais Professor Domingos Sávio 20 de março de 2010 1 Sumário 1 Uma vista por cima 3 2 A macro

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA DE CONSTRUÇÃO CIVIL GRUPO DE ENSINO E PESQUISA EM REAL ESTATE

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA DE CONSTRUÇÃO CIVIL GRUPO DE ENSINO E PESQUISA EM REAL ESTATE Ídice Setorial de Real Estate IRE São Paulo Juho 205 2 FINALIDADE A costrução e a divulgação do IRE tem o propósito de espelhar o comportameto médio dos preços das ações das empresas que atuam o segmeto

Leia mais

Equações Diferenciais (ED) Resumo

Equações Diferenciais (ED) Resumo Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemática Ficha de Trabalho Probabilidades 12º ao FT4 Arrajos completos (arrajos com repetição) Na liguagem dos computadores usa-se o código biário que é caracterizado pela utilização de apeas dois algarismos,

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.)

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.) Testes χ 2 de ajustameto, homogeeidade e idepedêcia Testes χ 2 (cot.) Os testes χ 2 cosiderados este último poto do programa surgem associados a dados de cotagem. Mais cocretamete, dados que cotam o úmero

Leia mais

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1 MAC122 Pricípios de Desevolvimeto de Algoritmos EP o. 1 Prof. Dr. Paulo Mirada 1 Istituto de Matemática e Estatística (IME) Uiversidade de São Paulo (USP) 1. Estrutura dos arquivos de images o formato

Leia mais

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios www/campossalles.br Cursos de: dmiistração, Ciêcias Cotábeis, Ecoomia, Comércio Exterior, e Sistemas de Iformação - telefoe (11) 3649-70-00 Matemática Fiaceira I 3º semestre 013 Professor Dorival Boora

Leia mais

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia.

Resolução -Vestibular Insper 2015-1 Análise Quantitativa e Lógica. Por profa. Maria Antônia Conceição Gouveia. Resolução -Vestibular Isper 0- Aálise Quatitativa e Lógica Por profa. Maria Atôia Coceição Gouveia.. A fila para etrar em uma balada é ecerrada às h e, quem chega exatamete esse horário, somete cosegue

Leia mais

CAPÍTULO 5 CONTADORES NA FORMA DE CIRCUITO INTEGRADO

CAPÍTULO 5 CONTADORES NA FORMA DE CIRCUITO INTEGRADO 1 CAPÍTULO 5 CONTADORES NA FORMA DE CIRCUITO INTEGRADO INTRODUÇÃO Devido a necessidade geral de contadores, já existem muitos contadores de forma de CI's. Na série TTL 74 os mais simples são o 74LS90,

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line Esse material é parte itegrate do Aulas Particulares o-lie do IESDE BRASIL S/A, mais iformações www.aulasparticularesiesde.com.br MATEMÁTICA PRÉ-VESTIBULAR LIVRO DO PROFESSOR 2006-2009 IESDE Brasil S.A.

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

Figura 1 - Diagrama de um sistema de controle de temperatura que requer conversão analógico-digital para permitir o uso de técnicas de processamento

Figura 1 - Diagrama de um sistema de controle de temperatura que requer conversão analógico-digital para permitir o uso de técnicas de processamento 1 2 3 Figura 1 - Diagrama de um sistema de controle de temperatura que requer conversão analógico-digital para permitir o uso de técnicas de processamento digital - (Sistemas Digitais: Princípios e Aplicações

Leia mais

M = 4320 CERTO. O montante será

M = 4320 CERTO. O montante será PROVA BANCO DO BRASIL / 008 CESPE Para a veda de otebooks, uma loja de iformática oferece vários plaos de fiaciameto e, em todos eles, a taxa básica de juros é de % compostos ao mês. Nessa situação, julgue

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

LABORATÓRIO DE ELETRÔNICA DIGITAL Experiência 9: Análise de Circuitos com Contadores

LABORATÓRIO DE ELETRÔNICA DIGITAL Experiência 9: Análise de Circuitos com Contadores 45 1. Objetivos Realizar a analise detalhada de todos os blocos constituintes de um relógio digital. Implementar um relógio digital. 2. Conceito Um contador é construído a partir de flip-flops (T, D JK,

Leia mais