O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

Tamanho: px
Começar a partir da página:

Download "O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais"

Transcrição

1 José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição, os meios de comuicação passam a publicar diariamete, ou quase, pesquisas por amostragem que estimam as proporções de votos dos diversos cadidatos, de acordo com as iteções dos eleitores aquele mometo Estas publicações são em geral acompahadas da iformação do tamaho da amostra ( foram etrevistados x eleitores ) e de uma frase do tipo: o erro da pesquisa é de 3%, para mais ou para meos essas ocasiões, os professores de Matemática são frequetemete pergutados pelos aluos e por familiares ou amigos curiosos, sobre o sigificado desta frase É o que pretedemos esclarecer o seu site, um cohecido istituto de pesquisa iforma que o seu cálculo de erro amostral é feito o cotexto de um modelo de amostragem aleatório simples (ver ao fial o Apêdice ) E os outros istitutos também costumam adotar o mesmo procedimeto Por isto aalisaremos este tipo de amostragem, para eteder estas frases Amostra aleatória simples Supoha que o uiverso a ser pesquisado teha uidades e que uma certa variável assuma, essas uidades, os valores,, Deseja-se selecioar uma amostra de tamaho (com ), de modo que ela seja aleatória simples (isto é, todas as uidades têm a mesma probabilidade / de serem selecioadas) e sem reposição, isto é, ehuma uidade pode ser selecioada mais de uma vez a mesma amostra O úmero de amostras possíveis é ( ) ( )! C!!( )! A média amostral Uma vez selecioada tal amostra (usado uma ura, ou uma tabela de úmeros aleatórios, ou outro processo válido), podemos estimar a média (aritmética) da variável, isto é: Para isto, tomamos a média aritmética x desta amostra como sedo um estimador da média da variável em questão

2 José Paulo Careiro & Moacyr Alvim Por exemplo, se { y,, y } y y sem repetição), etão x, esta amostra, assume o valor for tal amostra (ode os y i aturalmete são algus dos Vamos estudar agora a distribuição da média amostral, isto é, vamos ver o que podemos saber sobre como varia x ao logo de todas as amostras possíveis Já que todos os subcojutos do uiverso com elemetos têm a mesma probabilidade de serem selecioados, o valor esperado da média das amostras ao logo de todas as amostras possíveis será a média aritmética de todas as médias das amostras Este valor é represetado por E( x ) j, Para cocretizar, supoha que as amostras sejam { y,, y },,{ y,, y}, com médias, respectivamete: m y y,, m y y Etão: m m y y y y Ex ( y y ) ( ) y y ( ) a soma que está etre colchetes, todas as parcelas são valores de j Quatas vezes aparece esta soma? Tatas quatas sejam as amostras que cotêm, ou seja, C O mesmo se passa com os outros j C C Substituido, levado em cota que Portato, a soma etre colchetes é igual a: C, ficamos com: C Ex ( ) C Porém C ( )!! ( )!! C ( )!( )!!( )!!( )! Logo: E( x) Isto sigifica que o valor esperado do estimador x é a própria média da variável o uiverso Por isto, diz-se que este é um estimador ão tedecioso

3 José Paulo Careiro & Moacyr Alvim O desvio padrão amostral Com a mesma omeclatura do parágrafo aterior, a variâcia da variável é, por defiição, V( ), ou seja, a média dos desvios quadráticos de em relação a sua média O desvio padrão s ( ) da variável é a raiz quadrada da variâcia, isto é: s ( ) V ( ) Uma outra expressão útil da variâcia decorre do seguite desevolvimeto: V( ) ( ) A fórmula V( ) é usualmete verbalizada assim: a variâcia é igual à média dos quadrados meos o quadrado da média A variâcia amostral, isto é, a variâcia do estimador x ao logo de todas as amostras, é dada por V( x) m m, e o desvio padrão amostral é sx ( ) Vx ( ) O desvio padrão amostral é a pricipal medida do erro amostral, como veremos o Apêdice, deduz-se a seguite importate fórmula, que forece a variâcia amostral: V( ) V( x) Observe que o fator f tede a quado tede a ifiito Portato, para uma V( ) população ifiita, teríamos V( x) Por isto, f é chamado fator de correção para população fiita Além disto, f já é muito próximo de para valores grades de e valores razoáveis de Por exemplo, em uma pesquisa eleitoral, o uiverso é o total de eleitores, atualmete em cerca de 35 milhões este caso, para uma amostra de mil 3

4 José Paulo Careiro & Moacyr Alvim eleitores, f 0,999985, com 6 decimais Por este motivo, para pesquisas eleitorais, V( ) adota-se simplesmete a fórmula aproximada: V( x) Segue que o desvio padrão amostral é: s ( ) sx ( ) Esta fórmula é muito importate e tem vários sigificados e coseqüêcias Por exemplo: ) Para um tamaho fixo de amostra, o desvio padrão amostral é diretamete proporcioal ao desvio padrão (o uiverso) da variável a ser pesquisada Por exemplo, se a variável A é vezes mais dispersa (em termo de desvio padrão) do que a variável B, etão o desvio padrão amostral da variável A será o dobro do desvio padrão amostral da variável B ) Para uma mesma variável (portato s ( ) está fixo), o erro amostral é iversamete proporcioal à raiz quadrada do tamaho da amostra Por exemplo, se quadruplicarmos o tamaho da amostra, o erro se reduz à metade (e ão à quarta parte, como se poderia pesar) Isto mostra que aumetar demais o tamaho da amostra ão ecessariamete melhora tato a precisão da estimativa o etato, cabe pergutar: como calcular o erro amostral por esta fórmula, se ele depede do desvio padrão da variável o uiverso, o qual é descohecido? Há diversas maeiras de tetar cotorar este problema, sempre tetado usar algum cohecimeto sobre o uiverso Amostragem de proporções as pesquisas eleitorais, queremos saber, por exemplo, a proporção dos eleitores que têm iteção de votar um determiado cadidato Vamos ver que isto se reduz a estimar uma média Quado queremos estimar qual a proporção de uma população de tamaho, que possui uma certa característica, criamos uma variável, que vale quado o idivíduo tem esta característica, e vale 0, em caso cotrário este caso, a soma traduz o úmero de pessoas que possuem a característica, equato a média P é justamete a proporção (a ser estimada) de pessoas que possuem a característica em questão Já que P é a média da variável, podemos aplicar o que apredemos os parágrafos ateriores sobre médias Em uma amostra aleatória simples sem reposição, um estimador para P é a proporção p de pessoas da amostra que declaram seu voto em A (isto é, p é aqui o osso x ) Para estimar o erro amostral, vamos primeiro calcular a variâcia (o uiverso) de, que é: V( ) Já sabemos que P Por outro lado, como só 4

5 José Paulo Careiro & Moacyr Alvim assume os valores 0 e, etão j j, para cada j de a Portato: V( ) PP P( P) V( ) Fialmete, aplicado a fórmula V( x) (para tamahos grades de uiverso), P( P) vem que V( p) Logo, o desvio padrão amostral para proporções é: P( P) s( p) Por exemplo, para estimar uma proporção de 40% (o uiverso) com uma amostra aleatória simples de 000 pessoas, o desvio padrão amostral é de 0, 40,6 0, 055,55% 000 Desvio padrão máximo para proporções A expressão P( P) P P é uma forma quadrática Exercício: Mostre que o valor máximo que P( P) pode assumir é /4, o que ocorre quado P / 0,5 50% Coseqüêcia: Tomado a raiz quadrada, coclui-se que o desvio padrão amostral /4 máximo das proporções é, o qual ocorre para a proporção de 50% Os istitutos de pesquisa, em geral, forecem a sua iformação de erro amostral, tedo em vista o erro máximo (veja, ovamete, o Apêdice ) O papel da curva ormal Como foi sugerido pelo experimeto iicial do curso, uma amostra aleatória simples, desde que o tamaho do uiverso seja suficietemete grade (um coceito relativo em Matemática), a distribuição das médias de todas as possíveis amostras é aproximadamete igual à de uma curva ormal, com média e desvio padrão iguais, respectivamete, à média e ao desvio padrão amostrais Por outro lado, é sabido (da teoria da curva ormal) que, se uma variável aleatória for distribuída segudo uma distribuição ormal de média m e desvio padrão s, etão a probabilidade de que esta variável assuma valores etre m s e m s é de aproximadamete 68%, e a probabilidade de que esta variável assuma valores etre m s e m s é de aproximadamete 96% Também muito usado é o itervalo etre 5

6 José Paulo Careiro & Moacyr Alvim m, 96s e m, 96 s, que cobre aproximadamete 95% Sobre as propriedades da curva ormal, ver Apêdice 3 Exemplo aplicado às pesquisas eleitorais Supoha que um Istituto de Pesquisa teha realizado uma amostragem aleatória simples de âmbito acioal para estimar proporções de iteção de votos, com uma amostra de 000 eleitores Etão, o desvio padrão amostral máximo é s 0, 03,3% Como s,6%, etão o Istituto poderá dizer que o 500 erro da pesquisa é de,6% Com isto, cofiado o caráter ormal da distribuição amostral, ele espera garatir que somete em 4% de todas as amostras possíveis, uma proporção (o uiverso) de 50% poderia aparecer a amostra como mais de 5,3% ou meos do que 47,7% Uma iformação mais detalhada seria uma tabela do tipo: Proporção Erro amostral (%) (%) 0,5 0, 30,4 40,5 50,6 ode os valores da seguda colua correspodem a P( P) s ote que os valores da ª colua referem-se ao uiverso Cometário fial sobre as pesquisas eleitorais a prática, é iviável ecoomicamete fazer uma pesquisa eleitoral de âmbito acioal (e mesmo estadual ou muicipal, para muicípios grades) usado amostra aleatória simples O que se faz comumete é selecioar a amostra em dois estágios, selecioado primeiro uma amostra de muicípios (são cerca de 5700 o Brasil) esta amostra, os muicípios ão são selecioados com igual probabilidade, e sim com probabilidade proporcioal à sua população Detro de cada muicípio selecioado, a idéia é fazer 6

7 José Paulo Careiro & Moacyr Alvim uma amostragem estratificada, isto é o uiverso é dividido em estratos supostamete homogêeos em relação à variável pesquisada Este procedimeto tede a reduzir o desvio padrão amostral o caso das pesquisas eleitorais, a estratificação é feita por reda, gerado os estratos deomiados classe A, classe B, etc Uma maeira de fazer isto é usar iformações, por exemplo, do último Ceso Demográfico do IBGE Uma maeira muito mais barata, mas bem meos precisa, é a chamada amostragem por quotas esta, o istituto determia previamete quatos eleitores vão ser pesquisados em cada estrato e sai caçado os eleitores as ruas, coletado sua iteção de votos e também a sua iformação de reda A partir daí, completa as suas quotas este último sistema, é praticamete impossível calcular o erro amostral Uma amostra por estágios estratificada, se for bem feita, permite o cálculo do erro amostral, mas este seria bastate complexo Como se viu, a prática, os istitutos de pesquisa, para efeito de erro amostral, fazem de cota que a amostra é aleatória simples Ilustração prática Para ilustrar praticamete estes coceitos durate o curso, foi proposto primeiramete estimar a altura média dos participates do curso, que eram Além de calcular, uma plailha eletrôica, a média e o desvio padrão do uiverso, o tamaho pequeo do uiverso permitiu observar todas as amostras, a média amostral e o desvio padrão amostral a oportuidade, foi verificada a veracidade das fórmulas deduzidas Foram feitas também experiêcias fictícias com uiversos maiores Foi explorado o fato de que o aspecto dos histogramas se aproximava do aspecto de uma curva ormal (ver adiate) Também foi feito um experimeto com proporções (ver o parágrafo seguite) Tudo isto costa da plailha aexa, deomiada Experimetos Amostrais Apêdice Iformação dada o site do IBOPE - Acesso em 4/03/0 html Margem de erro Por se tratar de estatísticas e ão úmeros absolutos, toda pesquisa apreseta uma margem de erro que depede do tamaho da amostra estudada e dos resultados obtidos Isso ocorre porque ão é etrevistado todo o uiverso da população, mas apeas uma parte represetativa deste Trabalhado dessa maeira, há sempre um erro amostral cohecido e calculado especificamete para cada pesquisa eleitoral Para uma mesma amostra, quato maior a homogeeidade da população pesquisada, meor será o erro amostral e vice-versa Por isso, ão existe um erro amostral úico e fechado para a pesquisa como um todo, pois em cada iformação forecida pela pesquisa há um erro correspodete 7

8 José Paulo Careiro & Moacyr Alvim o caso das pesquisas eleitorais, esses erros são geralmete desiguais para os diversos cadidatos em fução da distribuição geográfica do eleitorado de cada um deles A margem de erro comumete divulgada refere-se a uma estimativa de erro máximo, cosiderado-se um modelo de amostragem aleatório simples Dessa maeira, os resultados de uma pesquisa devem ser iterpretados detro de um itervalo que estabeleça limites à estimativa obtida: o chamado itervalo de cofiaça O itervalo de cofiaça é sempre pré-estabelecido ates do iício da pesquisa, de comum acordo etre o cliete e o IBOPE Geralmete, fica em toro de 95% Isso quer dizer que se uma pesquisa fosse realizada 00 vezes em 95 delas o resultado ficaria detro da margem de erro Apêdice Dedução da fórmula da variâcia amostral A variâcia amostral, isto é, a variâcia do estimador x ao logo de todas as amostras, é dada por V( x) m m que foi feito para V( ), verifica-se que Por um desevolvimeto aálogo ao m m V( x) Vamos calcular a soma m y y y y m ( y ) ( ) y y y A expressão etre colchetes será a soma dos quadrados mais a soma dos duplos produtos dos y s Mas os y s são os próprios que aparecem as amostras correspodetes Como cada j aparece em quadrados será igual a C j C amostras, etão a soma dos Por outro lado, o produto, por exemplo, aparecerá tatas vezes quatas forem as amostras que cotiverem e ao mesmo tempo, ou seja, C vezes O mesmo ocorrerá com qualquer outro duplo produto Logo, a soma dos duplos produtos será C Levado aida em cosideração que C, segue que: m m C C C 8

9 José Paulo Careiro & Moacyr Alvim Para simplificar, vamos fazer Q Levado em cota que C e C e que ( ) C C ( ) P, vem que: m m ( ) Q P Q P ( ) Logo: V( x) Q P Por outro lado: QP, dode segue que P Q Q E aida, como visto acima, V( ), dode segue que coseqüetemete, P V( ) ( ) V( ) Portato: ( ) Q P V ( ) V( ) Q V( ) e,, equato V( ) Q P V( ) ( ) V ( ) ( ) Fialmete: V( ) V( ) V( x) Apêdice 3 A curva ormal com média m e desvio padrão s tem expressão y = () e O gráfico desta curva com m =,75 e s = 0,05 é exibido a figura abaixo A curva ormal é sempre simétrica com relação à média m e a área total sob a curva é igual a Dizemos que uma variável aleatória tem distribuição ormal se a probabilidade do valor desta variável estar em um itervalo [a, b] for a área sob a curva ormal o itervalo [a,b] Por exemplo, supoha que a altura de certa população seja bem aproximada por uma distribuição ormal com média m =,75 metros e desvio padrão s = 0,05 metros Podemos etão estimar o percetual da população que tem altura etre [,70,80] calculado a área sob a curva y = (,), e, etre x=,80 e x=,90 este caso a área é 0,68 e, portato, 68% da população tem altura o itervalo [,70 e,80] 9

10 José Paulo Careiro & Moacyr Alvim = (,) 0,05, Área = 0,68 As áreas correspodetes a certos itervalos em toro da média são muito usadas: a área sob a curva o itervalo [m-s, m+s] é aproximadamete 68% da área total sob a curva (é o caso do exemplo acima) A área o itervalo [m-s, m+s] é aproximadamete 96% E o itervalo em toro da média que correspode a área de 95% é [m-,96s, m+,96s] A curva ormal é freqüetemete utilizada como modelo de distribuição de probabilidade de diversas medidas, de alturas de idivíduos até velocidades de moléculas de gás o osso cotexto, a curva ormal é importate por que fazemos uso do Teorema Cetral do Limite, segudo o qual, dada uma amostra aleatória simples, a média amostral tem distribuição de probabilidades bem aproximada pela curva ormal, quado é suficietemete grade Portato, usado amostras aleatórias simples, podemos usar a curva ormal para avaliar as marges de erro 0

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA

DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4

SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4 SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil

Carteiras de Mínimo VAR ( Value at Risk ) no Brasil Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA

INE 5111- ESTATÍSTICA APLICADA I - TURMA 05324 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA INE 5111- ESTATÍSTICA APLICADA I - TURMA 534 - GABARITO LISTA DE EXERCÍCIOS SOBRE AMOSTRAGEM E PLANEJAMENTO DA PESQUISA 1. Aalise as situações descritas abaixo e decida se a pesquisa deve ser feita por

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA

Unesp Universidade Estadual Paulista FACULDADE DE ENGENHARIA Uesp Uiversidade Estadual Paulista FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ MBA-PRO ESTATÍSTICA PARA A TOMADA DE DECISÃO Prof. Dr. Messias Borges Silva e Prof. M.Sc. Fabricio Maciel Gomes GUARATINGUETÁ,

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

Guia do Professor. Matemática e Saúde. Experimentos

Guia do Professor. Matemática e Saúde. Experimentos Guia do Professor Matemática e Saúde Experimetos Coordeação Geral Elizabete dos Satos Autores Bárbara N. Palharii Alvim Sousa Karia Pessoa da Silva Lourdes Maria Werle de Almeida Luciaa Gastaldi S. Souza

Leia mais

RESISTORES E RESISTÊNCIAS

RESISTORES E RESISTÊNCIAS ELETICIDADE CAPÍTULO ESISTOES E ESISTÊNCIAS No Capítulo estudamos, detre outras coisas, o coceito de resistêcia elétrica. Vimos que tal costitui a capacidade de um corpo qualquer se opôr a passagem de

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

Notas de Aula do Curso PGE950: Probabilidade

Notas de Aula do Curso PGE950: Probabilidade Notas de Aula do Curso PGE950: Probabilidade Leadro Chaves Rêgo, Ph.D. 2013.1 Prefácio Estas otas de aula foram feitas para compilar o coteúdo de várias referêcias bibliográficas tedo em vista o coteúdo

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Prof. Gilmar Boratto Material de apoio para o curso de Admiistração. ÍNDICE CONCEITOS BÁSICOS...- 2-1- CONCEITO DE FLUXO DE CAIXA...- 2-2-A MATEMÁTICA FINANCEIRA E SEUS OBJETIVOS...-

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (III ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice Itrodução Aplicação do cálculo matricial aos

Leia mais

Rejane Corrrea da Rocha. Matemática Financeira

Rejane Corrrea da Rocha. Matemática Financeira Rejae Corrrea da Rocha Matemática Fiaceira Uiversidade Federal de São João del-rei 0 Capítulo 5 Matemática Fiaceira Neste capítulo, os coceitos básicos de Matemática Fiaceira e algumas aplicações, dos

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

Sistema Computacional para Medidas de Posição - FATEST

Sistema Computacional para Medidas de Posição - FATEST Sistema Computacioal para Medidas de Posição - FATEST Deise Deolido Silva, Mauricio Duarte, Reata Ueo Sales, Guilherme Maia da Silva Faculdade de Tecologia de Garça FATEC deisedeolido@hotmail.com, maur.duarte@gmail.com,

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.

Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais. 03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio

Leia mais

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing Profa. Regia Maria Sigolo Berardielli Estatística Gestão Fiaceira / Gestão de Recursos Humaos / Logística / Marketig REGINA MARIA SIGOLO BERNARDINELLI ESTATÍSTICA Esio a Distâcia E a D Revisão 09/008 LISTA

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

M = 4320 CERTO. O montante será

M = 4320 CERTO. O montante será PROVA BANCO DO BRASIL / 008 CESPE Para a veda de otebooks, uma loja de iformática oferece vários plaos de fiaciameto e, em todos eles, a taxa básica de juros é de % compostos ao mês. Nessa situação, julgue

Leia mais

MATEMÁTICA APLICADA À GESTÃO I

MATEMÁTICA APLICADA À GESTÃO I 00 MATEMÁTICA APLICADA À GESTÃO I TEXTO DE APOIO MARIA ALICE FILIPE ÍNDICE NOTAS PRÉVIAS ALGUNS CONCEITOS SOBRE SÉRIES6 NOTAS PRÉVIAS As otas seguites referem-se ao maual adoptado: Cálculo, Vol I James

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica

Cálculo das Probabilidades e Estatística I. Departamento de Estatistica Cálculo das Probabilidades e Estatística I Departameto de Estatistica Versão - 2013 Sumário 1 Itrodução à Estatística 1 1.1 Coceitos básicos de amostragem..................................... 2 1.1.1

Leia mais

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP

Goiânia, 07 a 10 de outubro. Mini Curso. Tópicos em passeios aleatórios. Ms. Valdivino Vargas Júnior - Doutorando/IME/USP Goiâia, 07 a 10 de outubro Mii Curso Tópicos em passeios aleatórios Ms. Valdivio Vargas Júior - Doutorado/IME/USP TÓPICOS EM PASSEIOS ALEATÓRIOS VARGAS JÚNIOR,V. 1. Itrodução Cosidere a seguite situação

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição NOV 0

Leia mais

Capítulo 1. Teoria da Amostragem

Capítulo 1. Teoria da Amostragem Capítulo 1 Teoria da Amostragem 1.1 Itrodução A amostragem e em particular os processos de amostragem aplicam-se em variadíssimas áreas do cohecimeto e costituem, muitas vezes, a úica forma de obter iformações

Leia mais

ERROS ERRO DE ARREDONDAMENTO

ERROS ERRO DE ARREDONDAMENTO ERROS Seja o valor aproimado do valor eacto. O erro de deie-se por ε ε erro absoluto de Aálise N um érica 4 ERRO DE ARREDONDAENTO Seja o valor aproimado do valor eacto tedo eactamete k dígitos após o poto

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

1.5 Aritmética de Ponto Flutuante

1.5 Aritmética de Ponto Flutuante .5 Aritmética de Poto Flutuate A represetação em aritmética de poto flutuate é muito utilizada a computação digital. Um exemplo é a caso das calculadoras cietíficas. Exemplo:,597 03. 3 Este úmero represeta:,597.

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

INFERÊNCIA ESTATÍSTICA

INFERÊNCIA ESTATÍSTICA Uiversidade Federal da Bahia Istituto de Matemática Departameto de Estatística Estatística IV (MAT027) e Itrodução à Estatística (MAT050) NOTAS DE AULA UNIDADE III INFERÊNCIA ESTATÍSTICA 1 1 INTRODUÇÃO

Leia mais

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum

Otimização e complexidade de algoritmos: problematizando o cálculo do mínimo múltiplo comum Otimização e complexidade de algoritmos: problematizado o cálculo do míimo múltiplo comum Custódio Gastão da Silva Júior 1 1 Faculdade de Iformática PUCRS 90619-900 Porto Alegre RS Brasil gastaojuior@gmail.com

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Revisão 01-2011. Exercícios Lista 01 21/02/2011. Questão 01 UFRJ - 2006

Revisão 01-2011. Exercícios Lista 01 21/02/2011. Questão 01 UFRJ - 2006 Aluo(a): Professor: Chiquiho Revisão 0-20 Exercícios Lista 0 2/02/20 Questão 0 UFRJ - 2006 Dois estados produzem trigo e soja. Os gráficos abaixo represetam a produção relativa de grãos de cada um desses

Leia mais

Aplicação de geomarketing em uma cidade de médio porte

Aplicação de geomarketing em uma cidade de médio porte Aplicação de geomarketig em uma cidade de médio porte Guilherme Marcodes da Silva Vilma Mayumi Tachibaa Itrodução Geomarketig, segudo Chasco-Yrigoye (003), é uma poderosa metodologia cietífica, desevolvida

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

Capitulo 9 Resolução de Exercícios

Capitulo 9 Resolução de Exercícios FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;

Leia mais

Capítulo 2 Análise Descritiva e Exploratória de Dados

Capítulo 2 Análise Descritiva e Exploratória de Dados UNIVERSIDADE FEDERAL DE SÃO CARLOS C E N T R O D E C I Ê N C I A S E X A T A S E D E T E C N O L O G I A D E P A R T A M E N T O D E E S T A T Í S T I C A INTRODUÇÃO AO PLANEJAMENTO E ANÁLISE ESTATÍSTICA

Leia mais

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples:

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples: PEDRO ORBERTO JUROS COMPOSTOS Da capitalização simples, sabemos que o redimeto se dá de forma liear ou proporcioal. A base de cálculo é sempre o capital iicial. o regime composto de capitalização, dizemos

Leia mais

Exame MACS- Inferência-Intervalos.

Exame MACS- Inferência-Intervalos. Exame MACS- Iferêcia-Itervalos. No iício deste capítulo, surgem algumas ideias que devemos ter presetes: O objectivo da iferêcia estatística é usar uma amostra e tirar coclusões para toda a população.

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

AULA: Inferência Estatística

AULA: Inferência Estatística AULA: Iferêcia Estatística stica Prof. Víctor Hugo Lachos Dávila Iferêcia Estatística Iferêcia Estatística é um cojuto de técicas que objetiva estudar uma oulação através de evidêcias forecidas or uma

Leia mais

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS

CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 60 Sumário CAPÍTULO 5 CIRCUITOS SEQUENCIAIS III: CONTADORES SÍNCRONOS 5.1. Itrodução... 62 5.2. Tabelas de trasição dos flip-flops... 63 5.2.1. Tabela de trasição do flip-flop JK... 63 5.2.2. Tabela de

Leia mais

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1 MAC122 Pricípios de Desevolvimeto de Algoritmos EP o. 1 Prof. Dr. Paulo Mirada 1 Istituto de Matemática e Estatística (IME) Uiversidade de São Paulo (USP) 1. Estrutura dos arquivos de images o formato

Leia mais

ESTATÍSTICA DESCRITIVA

ESTATÍSTICA DESCRITIVA COORDENADORIA DE MATEMÁTICA ESTATÍSTICA DESCRITIVA Vitória - ES CAPÍTULO I 1-UM BREVE HISTÓRICO Pesquisas arqueológicas idicam que há 3000 aos A.C. já se faziam cesos a Babilôia, Chia e Egito. Até mesmo

Leia mais

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço

Matemática Alexander dos Santos Dutra Ingrid Regina Pellini Valenço 4 Matemática Alexader dos Satos Dutra Igrid Regia Pellii Valeço Professor SUMÁRIO Reprodução proibida. Art. 84 do Código Peal e Lei 9.60 de 9 de fevereiro de 998. Módulo 0 Progressão aritmérica.................................

Leia mais

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

PROFESSOR: SEBASTIÃO GERALDO BARBOSA

PROFESSOR: SEBASTIÃO GERALDO BARBOSA UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - 0 - PROFESSOR: SEBASTIÃO GERALDO BARBOSA Setembro/203 UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - - TÓPICOS DE MATEMÁTICA FINANCIEIRA

Leia mais

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger

Tópicos de Mecânica Quântica I. Equações de Newton e de Hamilton versus Equações de Schrödinger Tópicos de Mecâica Quâtica I Equações de Newto e de Hamilto versus Equações de Schrödiger Ferado Ferades Cetro de Ciêcias Moleculares e Materiais, DQBFCUL Notas para as aulas de Química-Física II, 010/11

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2

SÉRIE: Estatística Básica Texto v: CORRELAÇÃO E REGRESSÃO SUMÁRIO 1. CORRELAÇÃO...2 SUMÁRIO 1. CORRELAÇÃO... 1.1. Itrodução... 1.. Padrões de associação... 3 1.3. Idicadores de associação... 3 1.4. O coeficiete de correlação... 5 1.5. Hipóteses básicas... 5 1.6. Defiição... 6 1.7. Distribuição

Leia mais

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda 1 Uma Metodologia de Busca Otimizada de Trasformadores de Distribuição Eficiete para qualquer Demada A.F.Picaço (1), M.L.B.Martiez (), P.C.Rosa (), E.G. Costa (1), E.W.T.Neto () (1) Uiversidade Federal

Leia mais

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA

INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA Resumo Itervalos de Cofiaça ara médias e roorções com alicações a Egeharia. Ferado Mori Prof.fmori@gmail.com Itervallos de Cofiiaça ara Médiias e Proorções

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

O uso de questionários em trabalhos científicos

O uso de questionários em trabalhos científicos 1. Itrodução O uso de questioários em trabalhos cietíficos Um questioário é tão somete um cojuto de questões, feito para gerar os dados ecessários para se verificar se os objetivos de um projeto foram

Leia mais

Análise de Dados. Introdução às técnicas de Amostragem Introdução à Estimação Introdução aos testes Métodos não paramétricos

Análise de Dados. Introdução às técnicas de Amostragem Introdução à Estimação Introdução aos testes Métodos não paramétricos Aálise de Dados Itrodução às técicas de Amostragem Itrodução à Estimação Itrodução aos testes Métodos ão paramétricos Maria Eugéia Graça Martis Faculdade de Ciêcias da Uiversidade de Lisboa Março 009 ÍNDICE

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

Instituto de Engenharia de Produção & Gestão

Instituto de Engenharia de Produção & Gestão UNIFEI - Uiversidade Federal de Itajubá Istituto de Egeharia de Produção & Gestão Notas compiladas por PEDRO PAULO BALESTRASSI ANDERSON PAULO DE PAIVA Itajubá/007 CAPÍTULO - ESTATÍSTICA. - Do que trata

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

UM NOVO OLHAR PARA O TEOREMA DE EULER

UM NOVO OLHAR PARA O TEOREMA DE EULER X Ecotro Nacioal de Educação Matemática UM NOVO OLHA PAA O TEOEMA DE EULE Iácio Atôio Athayde Oliveira Secretária de Educação do Distrito Federal professoriacio@gmail.com Aa Maria edolfi Gadulfo Uiversidade

Leia mais