Parte 3: Gráfico de Gestão de Estoque. Gráficos e Cálculos Fundamentais

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Parte 3: Gráfico de Gestão de Estoque. Gráficos e Cálculos Fundamentais"

Transcrição

1 Capítulo 3: Gestão de stoques Curso de Admiistração de mpresas 2º Semestre 09 Disciplia: Admiistração da Logística e Patrimôio Capítulo 03: Gestão de estoques (Partes 3 e 4) Parte : Itrodução Parte 2: Idicadores de desempeho a gestão de estoques Parte 3: Gráficos e Cálculos Fudametais Parte 4: Sistemas de Gestão de stoque 2 Gestão de stoques Parte 3: Gráficos e Cálculos Fudametais Gráfico de Gestão de stoque 3 4 A movimetação de estoques de um material ocorre ao logo do tempo, e iclui: movimetação de etrada de materiais, provocada pelo recebimeto de materiais comprados (RPOSIÇÃO) cosumo de materiais, provocado pela utilização do material o processo produtivo ou veda do mesmo RPOSIÇÃO RPOSIÇÃO RPOSIÇÃO S S2 S3 S4 S5 S6 S7 S8 S9 S0 5 6

2 ste gráfico é chamado de dete de serra. sta movimetação pressupõe: Não haver alteração o padrão de cosumo o tempo T Não existirem falhas o processo de compra que atrasem a colocação do pedido O forecedor uca atrasa a etrega do pedido (fabricação do forecedor sem atraso e tempo de trasporte sem atraso) Os materiais ão são rejeitados pelo cotrole de qualidade e são dispoibilizados para cosumo tão logo sejam recebidos. UTOPIA 7 Para efretar a realidade, cosiderado atrasos e falhas o processo, os admiistradores de materiais matém uma quatidade de reserva para ser usada estes casos. sta reserva é chamada de estoque de seguraça ou estoque míimo. Deve-se ter muito critério para dimesioar o estoque míimo porque ele represeta um acréscimo os custos de estoque (custos diretos custos armazeagem custo de pedido) 8 Qtde RPOSIÇÃO S S2 S3 S4 S5 S6 S7 S8 S9 S0 stoque de seguraça Tempo Cálculos de Gestão de stoque 9 0 Cosumo médio mesal: É a média aritmética das quatidades retiradas do estoque. É usado para o estudo do dimesioameto de estoques porque trata-se de um valor provável de cosumo, desde que parta-se do pressuposto de que ão haverão grades alterações de cosumo em da demada. Cosumo _ Médio _ Mes= Cálculos de Gestão de stoque mes= cosumo _ mesal Cosumo _ Médio _ Mes= Produto P (Retiradas stoque em Um.) Fev/08 ª Retida 2ª Retida 3ª Retida 4ª Retida 5ª Retida Total 00 XMPLO mes= cosumo _ mesal Resposta: Cosumo Médio = (00/5) = 2 uidades/mês Cosumidas Durate o mês! 2 2

3 Lote de ressuprimeto (Q) Quatidade a ser abastecida em cada pedido de suprimeto. Pode ser calculado de diversas formas, uma delas é por lote ecoômico de compra ou lote ecoômico de produção. Cálculos de Gestão de stoque Coceito Prelimiar 3 Tempo de reposição(tr) Tempo gasto desde a colocação do pedido de compras até a dispoibilidade do item para armazeagem. Compreede:.O tempo gasto desde a emissão do pedido e o recebimeto do mesmo pelo forecedor (emissão do pedido): m processos itegrados eletroicamete pode represetar algus segudos. m processos mauais, pode represetar algumas horas ou dias. 2.O tempo de preparação do pedido que é o tempo que o forecedor leva para fabricar os produtos, separá-los, emitir o faturameto e dispoibilizá-los para o trasporte. 3.Tempo de trasporte 4.Tempo de recebimeto, coferêcia e dispoibilização do material para estoque / uso. Cálculos de Gestão de stoque Coceito Prelimiar 4 stoque médio (med) Correspode ao ível médio de estoque em toro do qual as operações de compra e cosumo se realizaram. med = mi (Q/2) ode Q= Lote de Ressuprimeto stoque míimo (mi) Ou estoque de seguraça. Quatidade costate que serve para garatir a dispoibilidade do material em casos de falha o processo de ressuprimeto. stoque máximo (max) Quatidade máxima do material em estoque. Correspode à soma do estoque míimo somado ao lote de ressuprimeto. Determia o quato devemos ter de estoque. max = mi Q Cálculos de Gestão de stoque 5 stoque dispoível total (disp) É o total de materiais dispoíveis para cosumo ou com ressuprimeto garatido. Cosidera: Saldo de estoque existete dispoível para cosumo; Pedidos de ressuprimeto já emitidos e aida ão recebidos, em atraso ou ão. stoque de materiais recebidos e reservados para ispeção de qualidade Cálculos de Gestão de stoque 6 Cálculos de Gestão de stoque XMPLO Qtde RPOSIÇÃO Quatidade Maxima Máxima = QMax max = mi Q Lote de ressuprimeto= Q M = Q/2 mi stoque de seguraça S S2 S3 S4 S5 S6 S7 S8 S9 S0 Tempo stoque Quatidade Seg.= Qde Míima = QMi Mi 7 Pela ficha de estoque de uma peça, obtemos as seguites iformações: mi = 300 pçs Lote compra = 50 pçs Qual é o estoque médio e o estoque máximo? med = Q/2 mi med = 50/2 300 med = 375 pcs max = mi LC max = =

4 Gestão de stoques Parte 4: Sistemas de Gestão de stoques Questões da gestão de estoques Quato estoque devemos ter? Quado devemos fazer os pedidos de ressuprimeto? Qual a quatidade de materiais devemos pedir de cada vez? 9 Sistemas de gestão de estoques Sistema de Reposição Cotíua Sistema de Revisão Periódica (Q) Características: Sistemas de gestão de estoques O estoque vêm sedo cosumido até atigir uma determiada quatidade deomiada poto de pedido, que idica a ecessidade de fazer ovo pedido de suprimeto. Quatidade fixa de ressuprimeto; Itervalo de pedidos variável; 2 22 S T O Q U CICLOS DIFRNTS STOQU D SGURANÇA TMPO LOT FIXO (QL) PONTO D PDIDO Iformações para aálise do estoque e determiação do poto de ressuprimeto: Tempo de reposição (TR) Cosumo médio mesal (C) stoque míimo (mi) stoque dispoível total (disp) Lote de compra (Q) LAD TIM D RPOSIÇÃO IGUAL

5 Poto de pedido: determia quado um pedido de ressuprimeto deve ser realizado. PP = (C x TR) mi Ode PP = poto de pedido C = cosumo médio (diário / semaal / mesal) TR = tempo de reposição (diário / semaal / mesal) mi = estoque de seguraça Fucioameto: Quado a quatidade em estoque dispoível total for meor ou igual Prof. ao Alexadre poto Diizde pedido, deverá ser emitida uma ova ordem de ressuprimeto ao forecedor. 25 tapas de cálculo:. m fução do cosumo médio e do lote ecoômico de compra ou produção, estabelece-se o tamaho do lote de ressuprimeto (Q), que é a quatidade a ser comprada ou produzida a cada pedido de ressuprimeto. Respode a questão: Quato comprar? 2. Calcula-se o stoque de seguraça (mi) em fução da variabilidade da demada e da variabilidade do tempo de reposição; 3. Calcula-se etão o stoque médio (Med), o estoque máximo (max). Respode a questão de quato estoque mater. 4. Sabedo qual é o tempo de ressuprimeto, calcula-se o poto de pedido (PP). Respode à questão quado comprar A cada cosumo do item, calcula-se o ovo valor do estoque dispoível total (disp) e se este for meor ou igual ao poto de pedido (PP), emite-se uma ordem de ressuprimeto de uma quatidade Q do material (lote de ressuprimeto calculado o item ). 6. sta ordem de ressuprimeto será atedida detro de um itervalo de tempo chamado tempo de ressuprimeto (TR). 7. Repete-se os ites 5 e 6 ciclicamete equato os limites de estoque máximo (max) e stoque míimo (mi) forem respeitados. Caso os limites sejam ultrapassados, deve-se reavaliar todo o modelo, iiciado a partir do item. Pricipais vatages Idividualiza a freqüêcia de revisão do estoque, com base o comportameto da demada; obteção de ecoomias as aquisições através de descotos; quatidade fixa poderá ser adequada a dispoibilidade de espaço; Ciclos de reposição mais curtos reduzem a ecessidade de grades estoques de seguraça xemplo xemplo: Represetação Gráfica Uma peça é cosumida a uma razão de 30 uidades por mês. O forecedor estrageiro possui tempo de fabricação de 0 dias e a peça gasta 50 dias para ser trasportada do local de origem até a o destio, cosiderado o tempo ecessário para o desembaraço aduaeiro. Calcule o poto de pedido, sabedo que o estoque míimo correspode a um mês de cosumo. TR = 50 dias 0 dias = 60 dias = 2 meses S T O Q U QL CICLOS DIFRNTS STOQU D SGURANÇA LOT FIXO (QL) PONTO D RPOSIÇÃO R = PONTO D PDIDO PP = (C x TR) mi PP = (30 x 2) 30 PP = 90 uidades TMPO 29 LAD TIM: 60 Dias 30 5

6 Sistemas de gestão de estoques Sistema de Revisão Periódica Sistemas de gestão de estoques Sistema de revisões periódicas (P) Características: O estoque é aalisado a cada itervalo de tempo pré-determiado e é colocado um pedido de ressuprimeto de acordo com as quatidades ecessárias; Quatidade variável de ressuprimeto; Itervalo de pedidos fixo; 3 32 S T O Q U PONTOS D RVISÃO SISTMA D RVISÃO PRIÓDICA CICLOS D RVISÃO PRIÓDICA IGUAIS STOQU D SGURANÇA NTRGA TMPO NÍVL D RFRÊNCIA 33 x.secretária Sistema revisão periódica (P) tapas de cálculo:. Calcula-se o stoque de seguraça (mi) em fução da variabilidade da demada e da variabilidade do tempo de reposição; 2. m fução do cosumo médio (C) e do lote ecoômico de compra ou produção, estabelece-se o tamaho do lote de ressuprimeto (Q), que é a quatidade a ser comprada ou produzida a cada pedido de ressuprimeto. Respode a questão Quato comprar? 3. Calcula-se etão o stoque médio (med), o estoque máximo (max). Respode a questão de quato estoque mater. 4. Calcula-se o itevalo de tempo etre pedidos, em fução do lote de ressumprimeto (Q) e do cosumo médio (C). Respode à questão quado comprar. 34 Sistema revisão periódica (P) 5. A cada itervalo de tempo IP, emite-se uma ordem de ressuprimeto de uma quatidade de material determiada pela difereça etre o estoque máximo (max) e o saldo estoque dispoível atual (disp). 6. sta ordem de ressuprimeto será atedida detro de um itervalo de tempo chamado tempo de ressuprimeto (TR). 7. Repete-se os ites 5 e 6 ciclicamete equato os limites de estoque máximo (max) e stoque míimo (mi) forem respeitados. Caso os limites sejam ultrapassados, deve-se reavaliar todo o modelo, iiciado a partir do item. Sistema revisão periódica (P) Pricipais vatages Permite cocetrar a etrega de vários materiais, com grades ecoomias operacioais; Permite programar adequadamete as etregas dos ites aos usuários dos materiais; Aquisições de vários ites em um mesmo forecedor poderá esejar a emissão de ordem de compra para múltiplos ites com redução de custos (emissão da ordem, trasporte etc) 35 Melhor adequado para produtos perecíveis por exemplo. 36 6

7 Formulário Q= M ( QP) Q= Quatidade a pedir M= stoque Máximo = stoque Presete QP = Quatidade Pedete (já pedida) - vetual M= D x (P LT) S D= Taxa de Demada P= Período de Revisão LT= Tempo de Ressuprimeto (Lead Time) S= stoque de Seguraça xemplo Solução xemplo: Imagiemos que uma situação é tal que o período de revisão de um sistema de revisão periódica é P=5 dias, o Lead Time LT=3 dias, a taxa de demada D=6 litros/dia, o estoque de seguraça foi defiido em 8 litros, o estoque presete é de 8 litros e a quatidade pedete de etrega é 0, ou seja, ão há pedidos pedetes. De quato seria a quatidade a pedir se fosse feita agora uma revisão? Q= D x (P LT) S ( QP) Q= 6 x (5 3) 8 (8 0) = 98 A quatidade a pedir é de 98 litros. stoque Máximo: 6 litros Qde a Pedir: 98 litros 8 litros 39 Características e Limitações do modelo de revisão periódica Sistema fácil e barato de operar (ão exige verificação do saldo do estoque a cada movimetação); Não assume a pricípio que a demada seja costate; Os riscos associados a falta é maior que os outros modelos, pois as revisões ocorrem em itervalos fixos; Geralmete Ites com maior estoque de seguraça; 4 7

Número-índice: Conceito, amostragem e construção de estimadores

Número-índice: Conceito, amostragem e construção de estimadores Número-ídice: Coceito, amostragem e costrução de estimadores Objetivo Geral da aula Defiir o que são os úmeros-ídices, efatizado a sua importâcia para aálise ecoômica. Cosidere os dados apresetados a Tabela

Leia mais

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA Itrodução CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA A Ciética Química estuda a velocidade com a qual as reações acotecem e os fatores que são capazes de realizar ifluêcia sobre ela. A medida mais

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO

O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO O PROBLEMA DE TRANSPORTES SOB A ÓTICA DOS MODELOS DE EQUILÍBRIO ESPACIAL DE MERCADO Sérgio Ferado Mayerle, Dr. UFSC / CTC / EPS - mayerle@eps.ufsc.br - Floriaópolis - SC Thiago Dedavid de Almeida Bastos

Leia mais

Taxas e Índices. Ana Maria Lima de Farias Dirce Uesu Pesco

Taxas e Índices. Ana Maria Lima de Farias Dirce Uesu Pesco Taxas e Ídices Aa Maria Lima de Farias Dirce Uesu esco Itrodução Nesse texto apresetaremos coceitos básicos sobre ídices e taxas. Embora existam aplicações em diversos cotextos, essas otas utilizaremos

Leia mais

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ 1 Escola de Egeharia de orea EE SP Departameto de Egeharia Química DEQI Disciplia: Normalização e Cotrole da Qualidade NCQ Capítulo : Amostragem por Variáveis (MI STD 1) SEÇÃO A.1 Objetivo Este capítulo

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy Viziho Próximo ógica Fuzzy Métodos de Classificação dos Objetos Segmetados(IAR) objeto REGRA CASSE Fuzzy Cohecimeto Miima Distâcia Viziho Próximo O método do viziho próximo é baseado o método da míima

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 3 TEOREMA DO LIMITE CENTRAL INTRODUÇÃO AO CONTROLE ESTATÍSTICO DE PROCESSO

ENGENHARIA DA QUALIDADE A ENG AULA 3 TEOREMA DO LIMITE CENTRAL INTRODUÇÃO AO CONTROLE ESTATÍSTICO DE PROCESSO ENGENHARIA DA QUALIDADE A ENG 09008 AULA 3 TEOREMA DO LIMITE CENTRAL INTRODUÇÃO AO CONTROLE ESTATÍSTICO DE PROCESSO PROFESSOR: CARLA SCHWENGBER TEN CATEN Teorema do limite cetral A soma (e sua média) de

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Balanceamento de uma linha de produção

Balanceamento de uma linha de produção M alaceameto de uma liha de produção Uma liha de produção cosiste um cojuto de Postos de Trabalho (PT) cuja posição é sucessivas operações a realizar e descritas a gama operatória. Recordese que um PT

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

O PARADOXO DE SIMPSON

O PARADOXO DE SIMPSON O PARADOXO DE SIMPSON Valmir R. Silva Adre Toom PIBIC-UFPE-CNPq Itrodução A aálise cietífica de dados através da modelagem matemática é uma atividade idispesável a Teoria de Decisão. O mesmo coceito é

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott pedott@producao.ufrgs.br Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

MEDIDAS RESUMO EM TABELAS DE FREQUÊNCIA

MEDIDAS RESUMO EM TABELAS DE FREQUÊNCIA MEDIDAS RESUMO EM TABELAS DE FREQUÊNCIA Média ) Tabela de frequêcias simples Cálculo da média: Tabela a Distribuição da idade de fucioários hipertesos Frequêcia Frequêcia (aos) 7 4 5 6 4 4 44 45 46 5 (aos)

Leia mais

ESTATÍSTICA E PROBABILIDADES

ESTATÍSTICA E PROBABILIDADES ESTATÍSTICA E PROBABILIDADES Aluo(a): Turma: Professores: Data: Edu/Vicete Noções de Estatística Podemos eteder a Estatística como sedo o método de estudo de comportameto coletivo, cujas coclusões são

Leia mais

AULA 26 Materiais de Construção I

AULA 26 Materiais de Construção I Faculdade de Egeharia - Liceciatura em Egeharia Civil AULA 26 Materiais de Costrução I Capítulo Aula 26 VII Cotrole de Qualidade do Betão Cotrole de Qualidade do Betão Itrodução; Fases de cotrole de qualidade:

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 04: Medidas de Posição (webercampos@gmail.com) . MÉDIA ARITMÉTICA : Para um cojuto de valores Média Aritmética Simples: xi p Média Aritmética Poderada: MÓDULO 04 - MEDIDAS

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre os modelos de

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

APLICAÇÃO DE UM MODELO DE PEDIDOS COORDENADOS PARA A GESTÃO DE ESTOQUE DE PRODUTOS IMPORTADOS

APLICAÇÃO DE UM MODELO DE PEDIDOS COORDENADOS PARA A GESTÃO DE ESTOQUE DE PRODUTOS IMPORTADOS APLICAÇÃO DE UM MODELO DE PEDIDOS COORDENADOS PARA A GESTÃO DE ESTOQUE DE PRODUTOS IMPORTADOS Arthur Strommer de Farias Hugo T. Y. Yoshizaki Escola Politécica USP - Departameto De Egeharia De Produção

Leia mais

TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS.

TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS. TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS. 1.1 Objectivos Medir gradezas físicas, utilizado os istrumetos adequados. Apresetar correctamete os resultados das medições, ao ível da utilização

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E

MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE DISPERSÃO Í N D I C E Medidas de Tedêcia Cetral Itrodução... 1- Média Aritmética... - Moda... 3- Mediaa... Medidas de Dispersão 4- Amplitude Total... 5- Variâcia

Leia mais

ANÁLISE DA VIABILIDADE FINANCEIRA PARA CORTE DE UMA FLORESTA PLANTADA - EUCALYPTUS

ANÁLISE DA VIABILIDADE FINANCEIRA PARA CORTE DE UMA FLORESTA PLANTADA - EUCALYPTUS ANÁLISE DA VIABILIDADE FINANCEIRA PARA CORTE DE UMA FLORESTA PLANTADA - EUCALYPTUS Karie Lopes 1 Tiago Hedges² Waystro Jesus de Paula³. RESUMO: Neste estudo, objetivou-se aalisar a viabilidade fiaceira,

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

Introdução a Complexidade de Algoritmos

Introdução a Complexidade de Algoritmos Itrodução a Complexidade de Algoritmos Estruturas de Dados Prof. Vilso Heck Juior Apresetação Revisão - O Algoritmo; A Complexidade; Exercício. Complexidade de Algoritmos REVISÃO - O ALGORITMO O Algoritmo

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Ciêcias Exatas Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice

Leia mais

FUNDAÇÃO GETULIO VARGAS Programa de Certificação de Qualidade Curso de Graduação em Administração

FUNDAÇÃO GETULIO VARGAS Programa de Certificação de Qualidade Curso de Graduação em Administração FUNDAÇÃO GETULIO VARGAS Programa de Certificação de Qualidade Curso de Graduação em Admiistração PROVA DE ESTATÍSTICA II º Semestre / 00 - P - TIPO DADOS DO ALUNO: Nome: Assiatura INSTRUÇÕES: Você receberá

Leia mais

Centro Educacional Sesc Cidadania

Centro Educacional Sesc Cidadania Cetro Educacioal Sesc Cidadaia Prof.(a): Kátia Lima Lista de Exercícios Matemática Fiaceira Se ão existe esforço, ão existe progresso (F. Douglas) ENSINO MÉDIO Aluo(a): ANO TURMA DATA: Questão 01) Um líquido

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I J.I.Ribeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem. Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção. É uma

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol PROVA 1 7/10/009 Nome: GABARITO 1. Os dados apresetados a seqüêcia mostram os resultados de colesterol mg /100ml em dois grupos de aimais. O grupo A é formado por 10 total ( ) aimais submetidos a um cotrole

Leia mais

Alternativas para redução do desperdício de materiais nos canteiros de obra PLANILHA Nº2.1. MEDIÇÃO DE ESTOQUE (VI E VF): AREIA. A.

Alternativas para redução do desperdício de materiais nos canteiros de obra PLANILHA Nº2.1. MEDIÇÃO DE ESTOQUE (VI E VF): AREIA. A. ANEXO A 95 Alterativas para redução do desperdício de materiais os cateiros de obra PLANILHA Nº2.1. Observador: A. Idetificação MEDIÇÃO DE ESTOQUE (VI E VF): Código da obra: B. Quatidade de materiais estocados

Leia mais

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados

Disciplina: MATEMÁTICA Turma: 3º Ano Professor (a) : CÉSAR LOPES DE ASSIS INTRODUÇÃO A ESTATÍSTICA. Organização de dados Escola SESI de Aápolis - Judiaí Aluo (a): Disciplia: MATEMÁTICA Turma: 3º Ao Professor (a) : CÉSAR LOPES DE ASSIS Data: INTRODUÇÃO A ESTATÍSTICA A Estatística é o ramo da Matemática que coleta, descreve,

Leia mais

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões INFERÊNCIA Fazer iferêcia (ou iferir) = tirar coclusões Iferêcia Estatística: cojuto de métodos de aálise estatística que permitem tirar coclusões sobre uma população com base em somete uma parte dela

Leia mais

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA Coceito de taxa de juros Taxa de juro é a relação etre o valor dos juros pagos (ou recebidos) o fial de um determiado período de tempo e o valor do capital

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

CF358 Física BásicaExperimental I

CF358 Física BásicaExperimental I CF358 Física BásicaExperimetal I CONFIGURAÇÃO MÓDULO TEÓRICO MÓDULO EXPERIMENTAL => BLOCO 1-4 EXPERIMENTOS => BLOCO 2-4 EXPERIMENTOS PRESENÇA (muito importate) NO MÍNIMO 75% AVALIAÇÃO 01 PROVA -BLOCO TEÓRICO

Leia mais

Unidade IX Estimação

Unidade IX Estimação Uidade IX Estimação 6/09/07 Itervalos de cofiaça ii. Para a difereça etre médias de duas populações (μ μ ) caso : Variâcias cohecidas Pressupostos: 6/09/07 x - x x - x ; N é - x x ) ( x x x x E ) ( x x

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

Procedimentos de Marcação a Mercado (06, 2017)

Procedimentos de Marcação a Mercado (06, 2017) Procedimetos de Marcação a Mercado (06, 207) Risk Maagemet Baco Sumitomo Mitsui Brasileiro S.A SUMÁRIO ESCOPO 4 2 PRINCÍPIOS 4 3 ORGANIZAÇÃO 5 4 COTAS 5 4. Cotas de Fechameto 5 4.2 Cotas de Abertura 6

Leia mais

Departamento De Farmácia. Disciplina De Biofarmácia

Departamento De Farmácia. Disciplina De Biofarmácia MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI DIAMANTINA MINAS GERAIS Departameto De Farmácia Disciplia De Biofarmácia ExErcício de Farmacociética Lista 1 Professor Atoio

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS

CAPÍTULO 6 ESTIMATIVA DE PARÂMETROS PPGEP. Introdução. Introdução. Estimativa de Parâmetros UFRGS CAPÍTULO 6 Itrodução Uma variável aleatória é caracterizada ou descrita pela sua distribuição de probabilidade. ETIMATIVA DE PARÂMETRO URG Em aplicações idustriais, as distribuições de probabilidade são

Leia mais

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20 Ídice Sucessão de úmeros reais. Represetação gráfica. Sucessões defiidas por recorrêcia Itrodução 8 Teoria. Itrodução ao estudo das sucessões 0 Teoria. Defiição de sucessão de úmeros reais Teoria 3. Defiição

Leia mais

Sumário. 2 Índice Remissivo 19

Sumário. 2 Índice Remissivo 19 i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

Whats: PROGRESSÃO GEOMÉTRICA

Whats: PROGRESSÃO GEOMÉTRICA Questões Vídeos 1. As áreas dos quadrados a seguir estão em progressão geométrica de razão 2. Podemos afirmar que os lados dos quadrados estão em a) progressão aritmética de razão 2. b) progressão geométrica

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

PREVISÃO DE PRECIPITAÇÃO

PREVISÃO DE PRECIPITAÇÃO 4 PREVISÃO DE PRECIPITAÇÃO PROBABILIDADE NOS PROJETOS Em Egeharia o cohecimeto das magitudes das precipitações apreseta grade iteresse prático por sua freqüete aplicação os projetos hidráulicos. Nos projetos

Leia mais

Aumentou-se o número de crimes nas regiões onde foram construídos os presídios?

Aumentou-se o número de crimes nas regiões onde foram construídos os presídios? Aumetou-se o úmero de crimes as regiões ode foram costruídos os presídios? Guilherme Aparecido Satos Aguilar 1 Vilma Mayumi Tachibaa 1 1 Itrodução O Brasil tem a quarta maior população carcerária do mudo

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 1-ESTATÍSTICA II (CE003)

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 1-ESTATÍSTICA II (CE003) UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA -ESTATÍSTICA II (CE003) Prof. Beito Olivares Aguilera o Sem./6. Usado os dados da Tabela o Aexo (Seção Orçameto da MB),

Leia mais

Rogério da Silva Pimentel 1, 4 ; Emerson Wruck 2,4 ; Robson de Souza Vieira 3,4. Bolsista PBIC/UEG UEG.

Rogério da Silva Pimentel 1, 4 ; Emerson Wruck 2,4 ; Robson de Souza Vieira 3,4. Bolsista PBIC/UEG UEG. UTILIZAÇÃO DE FERRAMENTAS DE ANÁLISE DE DADOS CATEGORIZADOS NA DESCRIÇÃO DA EVOLUÇÃO DO PERFIL DOS CANDIDATOS INSCRITOS NO VESTIBULAR DO CURSO DE BACHARELADO EM QUÍMICA INDUSTRIAL: EVOLUÇÃO DO PERFIL.

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Distribuição de Bernoulli

Distribuição de Bernoulli Algumas Distribuições Discretas Cálculo das Probabilidades e Estatística I Prof. Luiz Medeiros Departameto de Estatística UFPB Distribuição de Beroulli Na prática muitos eperimetos admitem apeas dois resultados

Leia mais

16/10/2017. Banco de Dados. Gerenciamento de Arquivos. Gerenciamento de Arquivos Sistema Gerenciador de Banco de Dados Modelos de Dados

16/10/2017. Banco de Dados. Gerenciamento de Arquivos. Gerenciamento de Arquivos Sistema Gerenciador de Banco de Dados Modelos de Dados Baco de Dados Gereciameto de Arquivos Sistema Gereciador de Baco de Dados Modelos de Dados Gereciameto de Arquivos Gereciameto de Arquivos 1 Gereciameto de Arquivos Em uma empresa existem 3 departametos:

Leia mais

Teste de Software. Engenharia de Software Profa. Dra. Elisa Yumi Nakagawa 1º semestre de 2016

Teste de Software. Engenharia de Software Profa. Dra. Elisa Yumi Nakagawa 1º semestre de 2016 Teste de Software Egeharia de Software Profa. Dra. Elisa Yumi Nakagawa 1º semestre de 2016 Aspectos teóricos e empíricos de teste de cobertura de software Notas Didáticas do ICMC/USP (o. 31) Tópicos da

Leia mais

M23 Ficha de Trabalho SUCESSÕES 2

M23 Ficha de Trabalho SUCESSÕES 2 M Ficha de Trabalho NOME: SUCESSÕES I PARTE Relativamete à sucessão a =, pode-se afirmar que: (A) É um ifiitamete grade positivo (B) É um ifiitésimo (C) É um ifiitamete grade egativo (D) É limitada Cosidere

Leia mais

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO FUNDAMENTOS DE MATEMÁTICA Nome: DATA: 0//06 ) Se x+ y e x y, etão x + y é a) 66. b) 67. c) 68. d) 69. e) 70. ) Cosiderado-se que x 97, y 907 e z xy, o valor

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

PROVA DE MATEMÁTICA 2 a FASE

PROVA DE MATEMÁTICA 2 a FASE PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um

Leia mais

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a):

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a): Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluo(a): # Objetivo desta aula: Calcular as medidas de tedêcia cetral: média, moda e mediaa para distribuições de frequêcias potuais e por itervalos de classes.

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

Considerando que os triângulos são todos semelhantes, os perímetros formam uma PG de razão 1.

Considerando que os triângulos são todos semelhantes, os perímetros formam uma PG de razão 1. Resposta da questão : [B] Tem-se que t at = habitates e bt Resposta da questão : [D] PA a; a + r; a + r; a + 3r; a + 4r; a + 5r; a + 6r ( ) ( ) PG a; a + r; a + 6r; q = a + 6r a + r = a + r a + 4ar + 4r

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Aula 23 Juros Compostos. Motate e juros. Descoto Composto. Taxa real e taxa efetiva. Taxas equivaletes. Capitais equivaletes. Capitalização cotíua. Equivalêcia Composta de Capitais. Descotos: Descoto racioal

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Matemática Financeira

Matemática Financeira UNIVERSIDADE DE SÃO PAULO Faculdade de Ecoomia, Admiistração e Cotabilidade de Ribeirão Preto - FEA-RP Matemática Fiaceira Profa. Dra.Luciaa C.Siqueira Ambrozii Juros Compostos 1 Juros compostos Cosidera

Leia mais

Ordenação. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR

Ordenação. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Ordeação David Meotti Algoritmos e Estruturas de Dados II DIf UFPR Critério de Ordeação Ordea-se de acordo com uma chave: typedef it ChaveTipo; typedef struct ChaveTipo Chave; /* outros compoetes */ Item;

Leia mais

Matriz de Contabilidade Social. Prof. Eduardo A. Haddad

Matriz de Contabilidade Social. Prof. Eduardo A. Haddad Matriz de Cotabilidade Social Prof. Eduardo A. Haddad Fluxo circular da reda 2 Defiição 1 Sistema de dados desagregados, cosistetes e completos, que capta a iterdepedêcia existete detro do sistema socioecoômico

Leia mais

Métodos de Amostragem

Métodos de Amostragem Métodos de Amostragem Amostragem aleatória Este é o procedimeto mais usual para ivetários florestais e baseia-se o pressuposto de que todas as uidades amostrais têm a mesma chace de serem amostradas a

Leia mais

) x N(núcleos) = λ N desint./seg.

) x N(núcleos) = λ N desint./seg. FÍSICA NUCLEAR E PARTÍCULAS PERÍODOS DE SEMI - DESINTEGRAÇÃO (ACTIVAÇÃO COM NEUTRÕES) Um úcleo radioactivo, após a sua formação, pode decair em qualquer istate. Verifica-se que este processo de decaimeto

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Govero do Estado do Rio Grade do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005 PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 005 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque todas alterativas).

Leia mais

IAG. Definições: O valor do dinheiro no tempo Representação: (100) 100. Visualização: Fluxo de Caixa B&A B&A

IAG. Definições: O valor do dinheiro no tempo Representação: (100) 100. Visualização: Fluxo de Caixa B&A B&A IAG Matemática Fiaceira Fluxo de Caixa O valor do diheiro o tempo Represetação: Saídas Etradas (100) 100 Prof. Luiz Bradão 2012 1 2 Visualização: Fluxo de Caixa 0 1 2 3 4 5 Defiições: Fluxo de Caixa VP

Leia mais

Prova Resolvida e Comentada Prof. Joselias (011 ) AFRF 2005 Matemática Financeira e Estatística

Prova Resolvida e Comentada Prof. Joselias (011 ) AFRF 2005 Matemática Financeira e Estatística Prova Resolvida e Cometada Prof. Joselias joselias@uol.com.br (0 )9654-53 FRF 005 Matemática Fiaceira e Estatística Soluções das Provas do FRF-005 de Matemática Fiaceira e de Estatística Prof. Joselias

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999 PG apostila. (Fuvest 05) Um alfabeto miimalista é costituído por apeas dois símbolos, represetados por * e #. Uma palavra de comprimeto,, é formada por escolhas sucessivas de um desses dois símbolos. Por

Leia mais

Economia Florestal. A floresta como um capital

Economia Florestal. A floresta como um capital Ecoomia Florestal A floresta como um capital O que é um capital? Defiição Capital é um fudo ou valor (pode ser moetário, bes, maquiaria, etc.) que pode gerar redimetos futuros durate um certo tempo, capazes

Leia mais

* O presente trabalho foi desenvolvido a partir de situações reais de emprêsas. A bibliografia no fim do artigo trata também do assunto abordado.

* O presente trabalho foi desenvolvido a partir de situações reais de emprêsas. A bibliografia no fim do artigo trata também do assunto abordado. Variações do Estoque: omial, Roberto Carvalho Cardoso** Real e Iflacioária* Sumário: 1. Acréscimos: omial, Real e Iflacioário. 2. Acréseimo Real a Preços de Reposição. 3. Caso Prático. 4. Bibliografia.

Leia mais

EDICOM compromete-se com seus clientes no cumprimento de três variáveis fundamentais que garantem a qualidade do serviço:

EDICOM compromete-se com seus clientes no cumprimento de três variáveis fundamentais que garantem a qualidade do serviço: EDICOM, Service Level Agreemet Termos e Codições www.edicomgroup.com EDICOM compromete-se com seus clietes o cumprimeto de três variáveis fudametais que garatem a qualidade do serviço: DISPONIBILIDADE

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais