Problema de Fluxo de Custo Mínimo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Problema de Fluxo de Custo Mínimo"

Transcrição

1 Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Fluo de Custo Míimo

2 O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre os modelos de otimização em redes, uma vez que este egloba uma eorme quatidade de aplicações e pode ser resolvido de maeira etremamete eficiete. O Problema de Trasporte, de Desigação, de Camiho Mais Curto e de Fluo Máimo (vistos ateriormete) são casos especiais do Problema de Fluo de Custo Míimo. A úica eceção é o Problema de Árvore Geradora Míima. A eemplo dos problemas acima (com eceção do Problema de Árvore Geradora Míima), o Problema de Fluo de Custo Míimo é um Problema de Programação Liear, logo o Simple pode ser utilizado para sua resolução. Uma versão específica do Simple, deomiada Método Simple de Redes pode ser utilizada de maeira aida mais eficiete de que o próprio Simple. Fluo de Custo Míimo 2

3 Algumas Cosiderações. A rede é represetada por um Dígrafo (orietada) e coectada. 2. No míimo um dos ós é um ó de forecimeto (origem). 3. No míimo um dos ós é um ó de demada (destio). 4. Todos os ós restates são ós Trasshipmet (etreposto, itermediário). 5. A rede possui arcos, tato quato forem ecessários, com capacidade suficiete para habilitar todos os fluos gerados os ós de forecimeto para alcaçar os ós de demada. 6. O custo do fluo através de cada arco é proporcioal a quatidade daquele fluo, ode o custo por uidade de fluo é cohecido. 7. O objetivo é miimizar o custo total de eviar o forecimeto dispoível através da rede para satisfazer a demada dada (um objetivo alterativo é maimizar o lucro total para fazer isto). Fluo de Custo Míimo 3

4 Eemplos de Aplicações: A mais importate aplicação está em plaejar a operação de uma rede de distribuição de uma compahia. Este tipo de aplicação evolve determiar um plao para trasportar bes a partir das fotes (fábricas, etc) para locais de armazeagem itermediárias (quado ecessário) e etão para os clietes (demada). Fluo de Custo Míimo 4

5 Formulação do Modelo Cosidere um Dígrafo coectado, ode os ós icluem-se o míimo um ó de forecimeto e o míimo um ó de demada. As variáveis de decisão (de cotrole) são fluo o arco (i,j). As iformações ecessárias são: c custo por uidade de fluo o arco (i,j) u capacidade de fluo o arco (i,j) b i > 0 se o ó i é um ó de forecimeto b i fluo a rede gerado o ó i A fução-objetivo é: Miimizar Z c i Sujeito a para cada ó i 0 u e para cada arco (i,j) ji b i b i < 0 se o ó i é um ó de demada b i 0 se o ó i é um ó trasshipmet ji fluo fluo sai chega ó i ó i Fluo de Custo Míimo 5

6 Em algumas aplicações, faz-se ecessário ter um limite iferior L >0 para o fluo o arco (i,j). Para evitar alterações a formulação do modelo, utiliza-se: L L Propriedade de Soluções Iteiras com substituido Para Problemas de Fluo de Custo Míimo, ode todo b i e u são valores iteiros, todas as variáveis básicas em toda solução básica viável também são valores iteiros. Propriedade de Soluções Viáveis Uma codição ecessária para um Problema de Fluo de Custo Míimo ter alguma solução viável é que b i 0, isto é, o fluo total gerado os ós de forecimeto i deve ser igual ao fluo total absorvido os ós de demada. Quado este fato é violado sigifica que os forecimetos ou as demadas represetam limites superiores ao ivés de quatidades eatas. No caso do Problema de Trasporte, por eemplo, um destio (origem) auiliar é criado a fim de absorver a oferta (demada) em ecesso. De maeira aáloga, o Problema de Fluo de Custo Míimo cria-se um ó de demada (forecimeto) auiliar para absorver o forecimeto (demada) em ecesso. Fluo de Custo Míimo 6

7 Eemplo O dígrafo abaio ilustra uma rede de distribuição de uma compahia, ode os ós A e B são duas fábricas desta compahia, os ós D e E são dois estoques e o ó C é um cetro de distribuição (trasshipmet). Fluo de Custo Míimo 7

8 O modelo de Programação Liear para este eemplo fica: Miimizar Sujeito a Z 2 AB 4 AC 9 AD 3 BC CE 3 DE 2 ED e AB AB AB AC AC AD AD BC BC CE CE CE DE DE ED ED Fluo de Custo Míimo 8

9 Casos Especiais (demais Problemas de Redes como Problema de Fluo de Custo Míimo). Problema de Trasporte Um ó de forecimeto para cada fote Um ó de demada para cada destio Nehum ó Trasshipmet u mi sujeito a: m Z c ji i b 0 i s d i i j dispoibilidade demada ( i,..., m; j,...) u 0 2. Problema de Desigação Igual ao Problema de Trasporte, com: úmero de ós de forecimeto é igual ao úmero de ós de demada b i para cada ó de forecimeto b i - para cada ó de demada mi sujeito a: m Z c i ji b 0 u i dispoibilidade demada i se i desigado para j 0 caso cotrário Fluo de Custo Míimo 9

10 3. Problema de Camiho Mais Curto Apeas um ó de forecimeto (origem) com forecimeto Apeas um ó de demada (destio) com demada Todos demais ós são ós Trasshipmet Todo arco permite fluo em ambos setidos (i j e j i), com eceção dos arcos que saem da origem e dos arcos que chegam o destio mi sujeito a: 0 m Z c i ji i origem 0 i origem i destio ou para cada arco (i,j) destio Distâcias são os custos c e c ji u Fluo de Custo Míimo 0

11 4. Problema de Fluo Máimo Apeas um ó de forecimeto (origem) Apeas um ó de demada (destio) Todos demais ós são ós Trasshipmet c 0 para todo (i,j) Adicioar um arco coectado o ó de demada ao ó de forecimeto (este setido) com: u demada,forecimeto e c demada,forecimeto > 0 (ormalmete utiliza-se c demada,forecimeto para simplificar cálculos). Obs: a adição deste arco auiliar tora os ós de forecimeto e de demada também ós Trasshipmet. ma ji 0 Z sujeito a: m 0 u i Fluo de Custo Míimo c mi Z para cada arco (i,j) destio,origem

12 Modelo de Fluo Máimo a partir do modelo de Fluo de Custo Míimo para o eemplo do Parque Seervada (código Lido). MIN TO!MAX TO!PODE USAR MAX TO OU MIN -TO SUBJECT TO R) OA OB OC - TO 0 VARIABLE VALUE R2) AB AD - OA 0 TO R3) BD BE BC - AB - OB 0 OA R4) CE - BC - OC 0 OB R5) DT - AD - BD - ED 0 OC R6) ED ET - BE - CE 0 AB R7) TO - DT - ET 0 AD END BD !LIMITES SUPERIORES BE SUB OA 5 BC SUB OB 7 CE SUB OC 4 DT SUB AB ED SUB AD 3 SUB BC 2 ET SUB BD 4 SUB BE 5 SUB CE 4 SUB DT 9 SUB ED Fluo de Custo Míimo 2 SUB ET 6

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

Minicurso Introdução a Problemas de Otimização

Minicurso Introdução a Problemas de Otimização Miicurso Itrodução a Problemas de Otimização Adriaa Cristia Cherri Departameto de Matemática - Faculdade de Ciêcias Uiversidade Estadual Paulista - Campus de Bauru adriaa@fc.uesp.br Adréa Carla Goçalves

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

Resoluçaõ de exercícios de Programação Linear Inteira

Resoluçaõ de exercícios de Programação Linear Inteira Resoluçaõ de exercícios de Programação Liear Iteira Carlos Eduardo Ramisch - N.º Cartão: 134657 PESQUISA OPERACIONAL I (ADM01120) Turma B Professor Deis Borestei 19 de juho de 2006 Problema 1: Exercício

Leia mais

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA Itrodução CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA A Ciética Química estuda a velocidade com a qual as reações acotecem e os fatores que são capazes de realizar ifluêcia sobre ela. A medida mais

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO QUANTITATIVO P/ APO-MPOG 2015

RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO QUANTITATIVO P/ APO-MPOG 2015 RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO QUANTITATIVO P/ APO-MPOG 2015 Olá galera!!!! Hoje estou postado a resolução das questões de Raciocíio Lógico Quatitativo da prova de APO/MPOG, ocorrida o último

Leia mais

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE

UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE UM MODELO DE PLANEJAMENTO DA PRODUÇÃO CONSIDERANDO FAMÍLIAS DE ITENS E MÚLTIPLOS RECURSOS UTILIZANDO UMA ADAPTAÇÃO DO MODELO DE TRANSPORTE Debora Jaesch Programa de Pós-Graduação em Egeharia de Produção

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012 DILMAR RICARDO MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS Teoria e Seleção das Questões: Prof. Dilmar Ricardo Orgaização e Diagramação: Mariae dos Reis ª Edição DEZ 0 TODOS OS DIREITOS

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

Tópicos em Otimização. Otimização Linear - Aplicações

Tópicos em Otimização. Otimização Linear - Aplicações Tópicos em Otimização Otimização Liear - Aplicações Problemas tratados por otimização liear Problema da Mistura: Combiar materiais obtidos a atureza (ou restos de outros á combiados) para gerar ovos materiais

Leia mais

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS 145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

2 Modelos de Programação Linear

2 Modelos de Programação Linear Modelos de Programação Liear Coteúdos do Capítulo Problemas de Programação Liear Resolução pelo método gráfico O Problema do Pitor Miimização Restrições Redudates Solução Múltipla, Ilimitada e Iviável

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,...

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,... Escola Secudária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ao Lectivo 000/0 Cojuto IR - Operações com radicais, racioalização de deomiadores e equadrametos 0º Ao Nome: Nº: Turma: NÚMEROS IRRACIONAIS

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

As principais propriedades geométricas de figuras planas são:

As principais propriedades geométricas de figuras planas são: Tema IV. CRCTERÍSTICS GEOMÉTRICS DE FIGURS PLNS 4.1. Itrodução O dimesioameto e a verificação da capacidade resistete de barras, como de qualquer elemeto estrutural depedem de gradezas chamadas tesões,

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS

SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS Notas de aula- Física II Profs. Amauri e Ricardo SUPERPOSIÇÃO DE ONDAS E ONDAS ESTACIONÁRIAS Superposição de Odas O pricípio de superposição é uma propriedade do movimeto odulatório. Este pricípio afirma

Leia mais

Algoritmos de Iluminação Global

Algoritmos de Iluminação Global Sistemas Gráficos/ Computação Gráfica e Iterfaces Objectivo: calcular a cor de cada poto a partir da ilumiação directa de uma fote de luz, mais a soma de todas as reflexões das superfícies próximas. Nos

Leia mais

Mas, a situação é diferente quando se considera, por exemplo, a

Mas, a situação é diferente quando se considera, por exemplo, a . NÚMEROS COMPLEXOS Se um corpo umérico uma equação algébrica ão tem raíes, é possível costruir outro corpo umérico, mais eteso, ode a equação se tora resolúvel. Eemplo: ± raíes irracioais Mas, a situação

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

Conjugado, Potência e Velocidade em Máquinas Elétricas

Conjugado, Potência e Velocidade em Máquinas Elétricas TEORIA 1 ojugado, otêcia e Velocidade em Máquias Elétricas 1.1 O ojugado: O cojugado, também cohecido por torque, é o esforço realizado por um motor, mais precisamete pelo cetro do eixo do rotor do motor,

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

Usamos a tabela de valores da função na calculadora (após a introdução da função):

Usamos a tabela de valores da função na calculadora (após a introdução da função): 25.2 Queremos determiar o valor de, de modo que: 4,3 log 2 4, 3 Usamos a tabela de valores da fução a calculadora (após a itrodução da fução): Podemos verificar que o primeiro a ultrapassar 4,3 é 4,3219

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON)

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) Modelos probabilísticos Algumas variáveis aleatórias (V.A.) aparecem com bastate frequêcia em situações práticas de eperimetos aleatórios (E.: peso,

Leia mais

Questão 01) Na equação matricial, , calcule x e y. Questão 02) , determine o valor do módulo do elemento. Dadas as matrizes A = (3-4 6) e

Questão 01) Na equação matricial, , calcule x e y. Questão 02) , determine o valor do módulo do elemento. Dadas as matrizes A = (3-4 6) e Questão ) Na equação matricial, y, calcule e y. Questão ) Dadas as matrizes A = ( - 6) e B, determie o valor do módulo do elemeto a da matriz produto A por B. Questão ) Cosidere uma matriz A, de ordem,

Leia mais

Uma relação entre sincronização no mapa do círculo e os números racionais

Uma relação entre sincronização no mapa do círculo e os números racionais Uma relação etre sicroização o mapa do círculo e os úmeros racioais Mariaa P. M. A. Baroi Elbert E. N. Macau Laboratório Associado de Computação e Matemática Aplicada Istituto Nacioal de Pesquisas Espaciais

Leia mais

APLICAÇÃO DO PROBLEMA DO CAIXEIRO VIAJANTE NA OTIMIZAÇÃO DE ROTEIROS

APLICAÇÃO DO PROBLEMA DO CAIXEIRO VIAJANTE NA OTIMIZAÇÃO DE ROTEIROS APLICAÇÃO DO PROBLEMA DO CAIXEIRO VIAJANTE NA OTIMIZAÇÃO DE ROTEIROS Ferado Soares Gomes Taufer (FURG) feradosoares29@hotmail.com Elaie Correa Pereira (FURG) elaiepereira@prolic.furg.br Este artigo apreseta

Leia mais

Um estudo das permutações caóticas

Um estudo das permutações caóticas Um estudo das permutações caóticas Trabalho apresetado como atividade do PIPE a disciplia Matemática Fiita do Curso de Matemática o 1º semestre de 2009 Fabrício Alves de Oliveira Gabriel Gomes Cuha Grégory

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

Probabilidades num jogo aos dados

Probabilidades num jogo aos dados Técicas Laboratoriais de Física Lic. Física e Eg. Biomédica 007/08 Capítulo VIII Distribuição Biomial Probabilidades um jogo aos dados Defiição de uma Distribuição Biomial Propriedades da Distribuição

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) E 6) C ) E 6) B ) D ) C 7) D ) C 7) A ) A ) B 8) B ) B 8) A ) B ) D 9) D ) A 9) B ) E 5) D 0) D 5) A

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA Coceito de taxa de juros Taxa de juro é a relação etre o valor dos juros pagos (ou recebidos) o fial de um determiado período de tempo e o valor do capital

Leia mais

CORDAS E TUBOS SONOROS TEORIA

CORDAS E TUBOS SONOROS TEORIA CORDAS E TUBOS SONOROS TEORIA Já vimos a formação de odas estacioárias de maeira geral. Agora, vamos estudar este assuto de forma mais específica. Primeiramete, vamos os cocetrar em uma corda, que pode

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

RESOLUÇÃO DE SISTEMAS NÃO LINEARES

RESOLUÇÃO DE SISTEMAS NÃO LINEARES 87 RESOLUÇÃO DE SISTEMAS NÃO LINEARES Uma equação que coteha uma epressão do tipo, -,,, se(), e +z, z etc, é chamada ão-liear em,, z,, porque ela ão pode ser escrita o que é uma equação liear em,, z, a

Leia mais

ELETROQUÍMICA TÓPICOS EXTRAS

ELETROQUÍMICA TÓPICOS EXTRAS ELETROQUÍMCA TÓPCOS EXTRAS trodução Este artigo tem por fialidade tratar de assutos relacioados com a Eletroquímica que têm sido largamete cobrados os vestibulares do ME e do TA. remos tratar e mostrar

Leia mais

Transporte Iônico e o Potencial de Membrana

Transporte Iônico e o Potencial de Membrana Trasporte Iôico e o Potecial de Membraa Até o mometo, cosideramos apeas o trasporte de solutos eutros (sem carga elétrica) através da membraa celular. A partir de agora, vamos passar a estudar o trasporte

Leia mais

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE 1 Estatística descritiva (Eploratória) PRIMEIRO PASSO: Tabelas (distribuição de frequêcia) e Gráficos. SEGUNDO PASSO: Cálculo de medidas

Leia mais

Cenários de arrecadação do Imposto de Renda Retido na Fonte dos Rendimentos do Trabalho e Outros Rendimentos com Correção Inflacionária

Cenários de arrecadação do Imposto de Renda Retido na Fonte dos Rendimentos do Trabalho e Outros Rendimentos com Correção Inflacionária PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RS FACULDADE DE ADMINISTRAÇÃO, CONTABILIDADE E ECONOMIA SINDICATO DAS EMPRESAS DE SERVIÇOS CONTÁBEIS DO RS Covêio FACE/PUCRS e SESCON-RS Relatório 12 Ceários de arrecadação

Leia mais

RESUMÃO DE RACIOCÍNIO LÓGICO P/ MP-RJ 2016

RESUMÃO DE RACIOCÍNIO LÓGICO P/ MP-RJ 2016 RESUMÃO DE RACIOCÍNIO LÓGICO P/ MP-RJ 016 Olá, tudo bem? Sou o Prof. Arthur Lima, e coloquei em apeas 8 págias os potos do seu edital de RACIOCÍNIO LÓGICO-MATEMÁTICO que cosidero terem maior chace de cobraça

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

Planificação Anual de Matemática

Planificação Anual de Matemática Direção-Geral dos Estabelecimetos Escolares Direção de Serviços da Região Cetro Plaificação Aual de Matemática Ao Letivo: 2015/2016 Domíio Coteúdos Metas Curriculares Nº de Aulas (45 miutos) TEOREMA DE

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Redes Aula 20: Modelos de Optimização de Redes (Prática) O Problema do Caminho Mais Curto. O Problema do Fluxo de Custo Mínimo. 2 Considere a seguinte rede Direccionada: Problema 20.1 (I) A C E B D F 3

Leia mais

Conteúdo. Ao Leitor 01. Ternas Pitagóricas 02. Desconto por compra à vista 04. Sobre o logotipo da revista 06

Conteúdo. Ao Leitor 01. Ternas Pitagóricas 02. Desconto por compra à vista 04. Sobre o logotipo da revista 06 Coteúdo Ao Leitor 01 Teras Pitagóricas 0 Descoto por compra à vista 04 Sobre o logotipo da revista 06 Plaejado a costrução de estradas e potes 08 Problemas 09 REVISTA DE MATEMÁTICA DO COLÉGIO ABSOLUTO

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010 GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

7. ANÁLISE COMBINATÓRIA Professor Fernando Vargas. n 1 Cuidado

7. ANÁLISE COMBINATÓRIA Professor Fernando Vargas. n 1 Cuidado 7. ANÁLISE COMBINATÓRIA Professor Ferado Vargas É a área da Matemática que trata dos problemas de cotagem. Estuda problemas que evolvem o cálculo do úmero de agrupametos que podem ser feitos com os elemetos

Leia mais

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior. 0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão

Leia mais

1. CENTROS DE MASSA 1.2. CENTRO DE MASSA DE UM CORPO BI-DIMENSIONAL

1. CENTROS DE MASSA 1.2. CENTRO DE MASSA DE UM CORPO BI-DIMENSIONAL . CENTROS DE ASSA.. FORÇAS E CORPOS RÍGIDOS Corpo rígido é aquele que ão se deforma. As forças que actuam em corpos rígidos podem ser classificadas em dois grupos: Forças Exteriores que represetam a acção

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Resposta de Sistemas de 2 a Ordem à Excitação Periódica Não Harmônica

Resposta de Sistemas de 2 a Ordem à Excitação Periódica Não Harmônica Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 1 18 Resposta de Sistemas de a Ordem à Excitação Periódica Não Harmôica 1 INTRODUÇÃO Muitas vezes, a excitação é uma fução periódica,

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

CONJUNTOS NUMÉRICOS , 2 OPERAÇÕES BÁSICAS APROVA CONCURSOS MINISTÉRIO DA FAZENDA. Prof. Daniel Almeida AULA 01/20

CONJUNTOS NUMÉRICOS , 2 OPERAÇÕES BÁSICAS APROVA CONCURSOS MINISTÉRIO DA FAZENDA. Prof. Daniel Almeida AULA 01/20 CONJUNTOS NUMÉRICOS - Números Naturais (IN ) Foram os primeiros úmeros a surgir devido à ecessidade dos homes em cotar objetos. IN = { 0,,,,,, 6,... } - Números Iteiros ( Z ) Se jutarmos os úmeros aturais

Leia mais

Modelo Matemático para plantio e colheita da cana-de-açúcar

Modelo Matemático para plantio e colheita da cana-de-açúcar Modelo Matemático para platio e colheita da caa-de-açúcar Heleice O. Floretio 1, Paulo Roberto Isler 2, E-mail: heleice@ibb.uesp.br pauloisler@fca.uesp.br Rômulo Pimetel Ramos 2, Jois Jecs Nervis 2 E-mail:

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Ageda Aálise e Técicas de Algoritmos Jorge Figueiredo Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos Aálise de de Algoritmos Recursivos Itrodução A

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

ROTEIRIZAÇÃO DE VEÍCULOS DE INSPEÇÃO DE TRÁFEGO EM RODOVIA CONCEDIDA: UM ESTUDO DE CASO NA CONCESSIONÁRIA AUTOPISTA LITORAL SUL

ROTEIRIZAÇÃO DE VEÍCULOS DE INSPEÇÃO DE TRÁFEGO EM RODOVIA CONCEDIDA: UM ESTUDO DE CASO NA CONCESSIONÁRIA AUTOPISTA LITORAL SUL ROTEIRIZAÇÃO DE VEÍCULOS DE INSPEÇÃO DE TRÁFEGO EM RODOVIA CONCEDIDA: UM ESTUDO DE CASO NA CONCESSIONÁRIA AUTOPISTA LITORAL SUL Ferado Cesar da Sila Vaia Macowski Durski Sila ROTEIRIZAÇÃO DE VEÍCULOS DE

Leia mais

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a):

Estatística Aplicada Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluno(a): Medidas Resumo Apostila 4 Prof. Fábio Hipólito Aluo(a): # Objetivo desta aula: Calcular as medidas de tedêcia cetral: média, moda e mediaa para distribuições de frequêcias potuais e por itervalos de classes.

Leia mais

H = U + PV função de estado. Processo isobárico e quase-estático (dp = 0): dh A variação de entalpia é igual ao calor H T

H = U + PV função de estado. Processo isobárico e quase-estático (dp = 0): dh A variação de entalpia é igual ao calor H T Etalpia H + V fução de estado H H (, ) V Variáveis aturais de H dh d + dv + Vd H H rocesso isobárico e quase-estático (d ): dh variação de etalpia é igual ao calor d + dv δq trocado pelo sistema um processo

Leia mais

defi departamento de física www.defi.isep.ipp.pt

defi departamento de física www.defi.isep.ipp.pt defi departameto de física Laboratórios de Física www.defi.isep.ipp.pt stituto Superior de Egeharia do Porto- Departameto de Física Rua Dr. Atóio Berardio de Almeida, 431 4200-072 Porto. T 228 340 500.

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

Recredenciamento Portaria MEC 347, de D.O.U

Recredenciamento Portaria MEC 347, de D.O.U Portaria MEC 347, de 05.04.0 - D.O.U. 0.04.0. ESTATÍSTICA I / MÉTODOS QUANTITATIVOS E PROCESSO DECISÓRIO I / ESTATÍSTICA APLICADA À EDUCAÇÃO Elemetos de Probabilidade Quest(i) Ecotramos, a atureza, dois

Leia mais

TEXTO PARA DISCUSSÃO N 223 INDICADOR DE POBREZA: APLICAÇÃO DE UMA ABORDAGEM MULTIDIMENSIONAL AO CASO BRASILEIRO

TEXTO PARA DISCUSSÃO N 223 INDICADOR DE POBREZA: APLICAÇÃO DE UMA ABORDAGEM MULTIDIMENSIONAL AO CASO BRASILEIRO TEXTO PARA DISCUSSÃO N 223 INDICADOR DE POREZA: APLICAÇÃO DE UMA AORDAGEM MULTIDIMENSIONAL AO CASO RASILEIRO Helger Marra Lopes Paulo rígido Rocha Macedo Aa Flávia Machado Outubro de 2003 Ficha catalográfica

Leia mais