EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA"

Transcrição

1 OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) ) alcule: 1 1 a) b) ) alcule: a) ( ) b) 0 4) Resolva as equações, sendo U = : a) 0 4 b) ( + 1) = ( 1) ( 1) 1 c) 0 9 e) = 0 f) = 0 g) + = 6 h) ( + 1) = 40 d) ( + 1) = ) Subtraímos do quadrado de um número real. Em seguida, calculamos a soma de 7 com o triplo desse mesmo número e obtemos nos dois cálculos o mesmo resultado. Qual é esse número? 6) Um retângulo tem dimensões 1 cm 7 cm. Deseja-se aumentar igualmente as duas dimensões de modo que a área do retângulo aumente 10 cm. Quantos centímetros devem ser acrescidos em cada lado do retângulo? 7) Os segmentos, D, MN e PQ formam, nessa ordem, uma proporção. Se MN = cm, PQ = cm e + D = 8 cm, determine e D.

2 8) Sendo a // b // c // d, determine os valores de, y, z e t: a) r s 1 4 y a b c b) b a 1 c 6 4 y 8 r s c) 6 a z 1 b y t c d r s t 9) Uma reta paralela ao lado de um triângulo intersecta no ponto D e no ponto E. Sabendo-se que D =, D = + 6, E = cm e E = 4 cm, determine a medida do lado do triângulo. 10) Um triângulo tem lados de medidas = 18 cm, = 1 cm e = 1 cm. alcule as medidas os segmentos determinados sobre o lado maior pela bissetriz do ângulo oposto. 11) Na figura, D é bissetriz eterna do triângulo. Se = 10 cm, = cm e = 6 cm, determine D = D

3 1) Os lados de um triângulo medem cm, 6 cm e 7 cm. De quanto é preciso prolongar o lado menor para encontrar a bissetriz do ângulo eterno oposto? 1) Os lados de um triângulo têm medidas: a = cm, b = 8 cm e c = 4 cm. Determine os lados de um triângulo semelhante ao primeiro, com 1 cm de perímetro. 14) Na figura, sabendo-se que Dˆ E = ˆ a ) medida do segmento E; b ) O perímetro do triângulo., D = 6 cm, E = 7 cm, DE = 8 cm e D = cm, determine: 1) Na figura abaio, o triângulo é retângulo em e o triângulo DE é retângulo em D. Sabendo-se que = 8 cm, = 1 cm, = 17 cm e D = cm, determine DE =. D E 8 E 1 D 17 16) Nos triângulos retângulos das figuras abaio, determine : a) b) c) d) ) Num triângulo retângulo, a altura relativa à hipotenusa tem medida 6 cm e determina sobre a hipotenusa dois segmentos, cuja diferença é cm. alcule a medida da hipotenusa. 18) alcule a altura de um triângulo isósceles, sabendo que os lados congruentes medem cm cada um e a base do triângulo tem medida 14 cm. 19) Um trapézio retângulo de 1 cm de altura tem as bases medindo 10 cm e 18 cm. Determine a medida do lado oblíquo às bases. 0) s bases de um trapézio isósceles medem 17 cm e cm e os outros lados medem 10 cm cada um. Determine a altura do trapézio. 1) onsidere a figura a seguir, cujas medidas estão em centímetros: a) Determine a área cinza. b) Determine a área do quadrado D.

4 ) Pedro e João estão brincando de balanço, como indica a figura: altura máima que cada um pode subir é 60 cm. Qual é o comprimento do balanço? ) Se um quadrado de lado cm tiver seu lado aumentado de cm, passará a ter uma área de 49 cm. Determine o valor de. 4) De um quadrado de lado 10 cm, foi retirado um retângulo cuja base é o dobro da altura. 10 cm Restou um heágono de área 8 cm. a) Quais são as dimensões do retângulo retirado? b) Qual é o perímetro do heágono? ) No triângulo retângulo da figura abaio, determine as medidas b e c dos catetos, em centímetros. (Use sen 40 = 0,64 ; cos 40 = 0,77; tg 40 = 0,84) 40 b 7 c 6) Num triângulo retângulo, um ângulo agudo mede 8 e o cateto oposto a esse ângulo mede 11,90 cm. Determine a medida da hipotenusa desse triângulo. (Use sen 8 = 0,8; cos 8 = 0,; tg 8 = 1,60)

5 7) Na figura abaio, determine as medidas dos segmentos D e. 4 y 60 D 8) Determine as medidas b e h indicadas no retângulo da figura abaio, sabendo que a diagonal desse retângulo mede cm. (Use sen 0 = 0,4; cos 0 = 0,94; tg 0 = 0,6) D b h h 0 b 9) onsiderando a figura abaio, temos que o ângulo Ĉ mede 4 e o ângulo ĈD mede 0. alcule a medida do segmento D. (onsidere 1, 7.) D 0cm 0) Na figura seguinte, D é um trapézio retângulo. Sendo e y as medidas dos lados não-paralelos desse trapézio, determine os valores de e y. D 1 y 1 60

6 1) Na figura abaio, as retas r e s são paralelas e a distância entre elas é de cm. Qual é o comprimento do segmento e do segmento? r 0 s ) Determine a altura h do poste indicada na figura. (Use sen 7 = 0,60; cos 7 = 0,80; tg 7 = 0,7) ) Na figura abaio, o segmento representa uma estaca fincada num terreno. altura da estaca é de m. Uma corda é amarrada no ponto da estaca e um homem, no chão, no ponto, pua a corda, de modo que a mesma forme um ângulo de 0 com a estaca. que distância o homem se encontra da base da estaca apoiada no chão? (onsidere 1, 7 ). 4) determinação feita por um radar da altura de uma nuvem em relação ao solo é importante para previsões meteorológicas e na orientação de aviões para que se evitem turbulências. Determine a altura da nuvem detectada pelo radar conforme o desenho seguinte: (onsidere sen 4 = 0,07; cos 4 = 0,99; tg 4 = 0,07)

7 ) alcule: a) (0,00) 0, b) 7,... d) 1 1 0,... c) 8 e) 1 1,71 f) ) Determine o valor de p para que - seja raiz da equação (p-4) (p-) + 0=0. 7) onsidere as frações 6 e 6. 7 a)racionalize os denominadores das frações e simplificando seus resultados. b)alcule o valor aproimado de, usando as aproimações 1, 4 e 1,7. 8) Para estimar a profundidade de um poço com 1,10m de largura, uma pessoa cujos olhos estão a 1,60m do chão posiciona-se a 0,0m de sua borda. Desta forma, a borda do poço esconde eatamente seu fundo. om os dados da figura, a pessoa conclui que a profundidade do poço é: a),8m b),m c),00m d),8m e),0m 9)Determine os possíveis valores reais de q na equação (q 4) (1-7q) + = 0, de modo que ela seja do º grau. 40) O número de diagonais d de um polígono de n lados pode ser obtido pela epressão. alcule o número de lados desse polígono se ele tem 7 diagonais. 41) lassifique em Verdadeiro (V) ou Falso (F), justificando essa classificação: a) ( ) +4=0 =4 = =

8 b) ( ) +(-6)=0 + -6=0 -=0 (-)=0 =0 ou = c) ( ) -=-6 (-)=-6 =-6 ou -=-6 =-1 4) Uma epressão correspondente à velocidade com que um corpo (no vácuo) chega ao solo é v=, onde v é a velocidade, g é a aceleração da gravidade e h a altura de queda. ssim sendo, por qual número ficará multiplicada a velocidade de queda do corpo caso a altura altere de metros para 1,68 metros? 4) Pedro está construindo uma fogueira representada pela figura abaio. Ele sabe que a soma de com y é 4 e que as retas r, s e t são paralelas. diferença - y é: a). b) 4. c) 6. d) 10. e) 1. 44) Seja o triângulo de lados, e respectivamente iguais a 9 cm, 8 cm e 10 cm. Sejam M e N as bissetrizes interna e eterna do triângulo no vértice com M e N pontos da reta que contém o lado. Determine a medida do segmento MN. 4) O triângulo tem lados = cm e = cm. bissetriz interna do ângulo intersecta o lado no ponto D tal que D =1, cm. alcule a medida do segmento.

9 46) Na figura a seguir, D é um retângulo e é a bissetriz interna do ângulo do triângulo DP. Sabe-se que D = DQ e que as medidas estão indicadas em centímetros.qual é o perímetro do retângulo D? 47) Qual é o valor da epressão ( )? 48) Pedrinho não sabia nadar e queria descobrir a medida da parte mais etensa () da "Lagoa Funda". Depois de muito pensar, colocou estacas nas margens da lagoa, esticou cordas de até e de até, conforme figura abaio. Medindo essas cordas, obteve: med () = 4 m e med () = 18 m. Usando seus conhecimentos matemáticos, Pedrinho concluiu que a parte mais etensa da lagoa mede: a) 0 m b) 8 m c) 6 m d) m e) 4 m 49) s etremidades de um fio de antena totalmente esticado estão presas no topo de um prédio e no topo de um poste, respectivamente, de 16 m e 4 m de altura. onsiderando-se o terreno horizontal e sabendose que a distância entre o prédio e o poste é de 9 m, o comprimento do fio, em metros, é: a) 0 m b) 1 m c) 6 m d) m e) 4 m

10 0) Dois navios partem de um mesmo ponto, no mesmo instante, e viajam com velocidades constantes em direções que formam um ângulo reto. Depois de uma hora de viagem, a distância entre os dois navios é 1 milhas. Se um deles é 7 milhas por hora mais rápido que o outro, determine a velocidade de cada navio. 1) Durante um incêndio num edifício de apartamentos, os bombeiros utilizaram uma escada Magirus de 10 m para atingir a janela do apartamento afetado. escada estava colocada a 1m do chão, sobre um caminhão que se encontrava afastado 6m do edifício. Qual é a altura desse apartamento em relação ao chão? ) Uma árvore foi quebrada pelo vento e a parte do tronco que restou em pé forma um ângulo reto com o solo. Se a altura da árvore antes de se quebrar era de 9m, e sabendo que a ponta da parte quebrada está a m da base da árvore, qual a altura do tronco que restou em pé?

11 GRITO 1)a) b) ) a) 0 b) 8 ) a) b) 4 4) a) b) 8 0 ; 1 0; 11 c) ; d) e) { ; } 4 f) g) {1; 6} h) {1; 16} ) ou 6) cm 7) = 8 cm D = 0 cm 8) a) = 1 y = 9 8 b) y 4 c) = 4 y = 6 z = t = 9 9) 18 cm 10) 10 cm, 8 cm 11) 6 cm 1) 0 cm 1) 1 cm, 4 cm, 1 cm 14) a), cm b) 1, cm 8 1) cm 16) a) = 0 b) = c) = 4 d) = 17) 1 cm 014

12 18) 4 cm 19) 17 cm 0) 8 cm 1) a) 10 m b) 89 m ) cm ) cm 4) a) cm e 6 cm b) 40 cm ) b =,9 cm; c = 4,48 cm 6) 14 cm 7) = 1cm; y = 8) b =,9 cm; h = 11,9 cm 9) 1 cm 0) = 1 cm; y = 6 cm 1) cm; 66cm ) 6 m ) 1,7 m 4),6 km ) a) 0,0 b) c) 4 d) e)1 16 f) 6) 7) b) 4,8 8) b 48) a 49) b 9) 40) 9 41) a)f b)v c)f 4) 1, 4)c 44) 40 cm 4), cm 46)1, cm 47) 0) milhas/hora e 1milhas/hora 1) 9 m { } ) 4 m

13 olégio Franco-rasileiro 1

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de LISTA DE EXERCÍCIOS P4 º BIM 0 PARTE POTÊNCIAS ) Calcule: a) 0, b) 0, c) 0, d),4 e), f) 8 8, ) (PUC-SP) Calcule: a) 4 c) 4 e) 4 b) 4 d) 4 f) 4 ) (FUVEST SP) Qual a metade de 4) Calcule: a) 0 b)? ) Calcule

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO Série: 9ºANO Turma: Disciplina: GEOMETRIA Professor: Mozart William EXERCÍCIO DE FIXAÇÃO II SEMESTRE 1) Num triângulo retângulo, a razão entre as projeções dos catetos sobre a hipotenusa é 16 9. Sabendo

Leia mais

Unidade 3 Geometria: semelhança de triângulos

Unidade 3 Geometria: semelhança de triângulos Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e

Leia mais

PARTE 1. 3) Lançando-se um dado ao acaso, qual é a probabilidade de se obter na face superior: a) o número 2?

PARTE 1. 3) Lançando-se um dado ao acaso, qual é a probabilidade de se obter na face superior: a) o número 2? ENSINO FUNDAMENTAL 2 9º ano LISTA DE EXERCÍCIOS PP 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA 1) Sobre um jogo de dominó, responda: a) quantas peças formam esse jogo? b) retirando-se uma peça desse

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales Período: 1 o Bimestre Série/Turma: 1 a série EM Professor(a): Cleubim Valor: Nota: Aluno(a): Razão e Proporção

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Lista de exercícios do teorema de Tales &

Lista de exercícios do teorema de Tales & Valor 2,0 Componente Curricular: Professor(a): Turno: Data: Matemática Matutino / /2013 luno(a): Nº do luno: Série: Turma: 8ª (81)(82)(83) Sucesso! Lista de Exercícios Lista de exercícios do teorema de

Leia mais

Aluno (a): Para as questões de Ciências Exatas têm que ser apresentados os respectivos cálculos.

Aluno (a): Para as questões de Ciências Exatas têm que ser apresentados os respectivos cálculos. Aluno (a): Matemática 1ª) Determine o conjunto solução das equações a seguir. a) x 4 + 2x 2 + 1 = 0 b) m 4 2m 2 8 = 0 c) 3x + 16 = 4 d) 2x 3 = x 1 2ª) A soma dos inversos de dois números inteiros e consecutivos

Leia mais

Ficha de Trabalho nº 1

Ficha de Trabalho nº 1 Matemática Nome: Setembro 0 º no Nº Turma: Parte I Escolha Múltipla No triângulo, 5 cm Sabemos ainda que 60 área do triângulo é: e 0 cm () 75 cm () 75 cm () 7, 5 cm () 50 cm No referencial on está representado

Leia mais

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos

Leia mais

QUESTÃO 16 Na figura, há três quadrados.

QUESTÃO 16 Na figura, há três quadrados. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, há três quadrados. A B A E F

Leia mais

Unidade 6 Geometria: quadriláteros

Unidade 6 Geometria: quadriláteros Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

Razões Trigonométrica Prof. Diow. Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa.

Razões Trigonométrica Prof. Diow. Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. Razões Trigonométrica Prof. Diow Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. Cosseno de um ângulo agudo é a razão entre a medida do cateto

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos triângulos Resolução das atividades complementares Matemática M Trigonometria nos triângulos p. 4 ipotenusa de um triângulo retângulo mede 0 cm e o ângulo ˆ mede 60. Qual é a medida dos catetos? 5 cm; 5 cm y 60 o

Leia mais

1) Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e)

1) Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) 1) Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) 2) Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 3) Determine x e y, sendo r, s e t retas paralelas. 4) Uma reta paralela

Leia mais

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno 01. Para essa atividade sugerimos inicialmente que você observe a ilustração abaio e responda aos questionamentos: 1 cm 1 cm a. Calcule a área dos dois quadrados menores que estão em destaque: b. Some

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015

LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015 ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: ease.acp@adventistas.org.br

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

Lista de Exercícios 3 1

Lista de Exercícios 3 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

LISTA DE EXERCÍCIOS 01

LISTA DE EXERCÍCIOS 01 MTEMÁTIC Professores rthur, Denilton, Elizeu e Rodrigo LIST DE EXERCÍCIOS 0 0. (UCSal) Na figura a seguir, suponha que um observador encontra-se no ponto, à distância C 4 metros do pé de uma torre, vendo

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

Matemática Prof. Evandro de Freitas Exercícios de Fixação Teorema de Tales

Matemática Prof. Evandro de Freitas Exercícios de Fixação Teorema de Tales Matemática Prof. Evandro de Freitas Exercícios de Fixação Teorema de Tales 1) Nas figuras, a // b // c, calcule o valor de x. Acesse professorevandro.net! a) Resp.: 6 b) Resp.: 7 c) Resp.: 10,5 d) Resp.:

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria

MATEMÁTICA A - 11o Ano Geometria -Trigonometria MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g)

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) 9º ano Matemática 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) Matemática Avaliação Produtiva 02. Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 03. Determine

Leia mais

30's Volume 9 Matemática

30's Volume 9 Matemática 30's Volume 9 Matemática www.cursomentor.com 20 de janeiro de 201 Q1. Uma pessoa adulta possui aproximadamente litros de sangue. Em uma pessoa saudável, 1 mm 3 de sangue possui, aproximadamente: milhões

Leia mais

Aula 11 Conseqüências da semelhança de

Aula 11 Conseqüências da semelhança de onseqüências da semelhança de triângulos MÓULO 1 - UL 11 ula 11 onseqüências da semelhança de triângulos Objetivos presentar o Teorema de Pitágoras presentar o teorema da bissetriz interna. O Teorema de

Leia mais

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções:

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções: EXERCÍCIOS DE REVISÃO: Quadriláteros Aluno (a): LISTA 08 Nº: Ano: 8º Unidade Barra Leandro Figueira Freitas Instruções: VOCÊ PODERÁ FAZER ESTAS QUESTÕES DIRETAMENTE NO CADERNO, OU, IMPRIMIR ESTAS FOLHAS

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Nome: Nº: Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Polígonos: - nomenclatura.

Leia mais

Lista de exercícios do teorema de Tales

Lista de exercícios do teorema de Tales Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2014 Aluno(a): Nº do Aluno: Série: Turma: 8ª (81) (82) Sucesso! Lista de Exercícios Lista de exercícios do teorema de

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS MTEMÁTI - 1 o NO MÓULO 52 POLÍGONOS E QURILÁTEROS B b a c d B E B E B β X γ Y W α Z θ B B B B B B B B B M N B M N Fixação 1) Qual o polígono convexo que tem 90 diagonais? Fixação F 2) diferença entre

Leia mais

Trabalho 1º Bimestre - 9ºano

Trabalho 1º Bimestre - 9ºano Matéria: Matemática Data de entrega: 23/03/2017 Valor: 10 Trabalho 1º Bimestre - 9ºano TEMA: Problemas envolvendo números inteiros Desenvolvimento e Descrição: 1. Trabalho Individual manuscrito em folha

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA Série/Ano: 9º ANO Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos

Leia mais

Centro Educacional Juscelino Kubitschek

Centro Educacional Juscelino Kubitschek Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / / ENSINO: ( ) Fundamental ( X ) Médio SÉRIE: _ 2º _ TURMA: TURNO: DISCIPLINA: _MATEMÁTICA PROFESSOR: EQUIPE DE MATEMÁTICA LISTA DE RECUPERAÇÃO

Leia mais

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4}

a) x 2-2x = 0 c) 3x 2 - x = 0 e) -x 2 + 4x = 0 g) 4x 2-5x = 0 a) x 2-4 = 0 4x 2 = 64 x 2 = 64:4 x 2 = 16 x = ± 16 x = ± 4 V = {± 4} AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Equações do º grau ) Verifique se o número 9 é raiz da equação - 8 0. Se 9 for raiz, terá de satisfazer a equação: 9 -.9 8 8-99 8 0 Então 9 é raiz da equação

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais

AULA 01 GEOMETRIA PLANA 25º 130º. AB é paralelo a CG. a) 115 b) 65 c) 130 d) 95 e) 125

AULA 01 GEOMETRIA PLANA 25º 130º. AB é paralelo a CG. a) 115 b) 65 c) 130 d) 95 e) 125 UL 01 GEOMETRI PLN 01) Determine o valor de x na figura abaixo: 5º r// s a) 115 b) 65 c) 10 d) 95 e) 15 05) ( OM-006 ). Três quadrados são colados pelos seus vértices entre si e a dois bastões verticais,

Leia mais

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas.

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas. Exercícios de Razões Trigonométricas a) No triângulo retângulo da figura abaixo, determine as medidas de x e y indicadas (Use: sen 65 = 0,91; cos 65 = 0,42 ; tg 65 = 2,14) b) Considerando o triângulo retângulo

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes:

Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes: AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Relações métricas nos triângulos retângulos ) Usando o teorema de Pitágoras, determine os elementos indicados por ou nas figuras seguintes: d) e) f) g) h) 0

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO. ENSINO FUNDAMENTAL Conteúdos do 9º Ano 1º/2º Bimestre 2014 Trabalho de Dependência Nome: N. o : Turma: Professor(: João/Daniel Data: / /2014 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo

Leia mais

Disciplina: Matemática Data da entrega: 31/03/2015.

Disciplina: Matemática Data da entrega: 31/03/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções

Leia mais

RECUPERAÇÃO FINAL DE MATEMÁTICA PROFESSOR GILMAR BORNATTO

RECUPERAÇÃO FINAL DE MATEMÁTICA PROFESSOR GILMAR BORNATTO 1. (Unesp) Seja A = [a Œ] a matriz 2 x 2 real definida por a Œ = 1 se i j e a Œ = -1 se i > j. Calcule A. 2. (Unesp) Seja A=[a Œ] a matriz real 2 x 2 definida por a Œ=1 se i j e a Œ=-1 se i>j. Calcule

Leia mais

LISTA DE EXERCÍCIOS 9º ano 4º bim

LISTA DE EXERCÍCIOS 9º ano 4º bim LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}

Leia mais

Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane

Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane 1) Um terreno quadrado tem 289m 2 de área. Parte desse terreno é ocupada por um galpão quadrado e outra, por uma calçada de 3m de

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

01. (valor: 1,0) Calcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): 13 2 = x 2 x x 5. Resposta: x = 5.

01. (valor: 1,0) Calcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): 13 2 = x 2 x x 5. Resposta: x = 5. P 006G.a Série Matemática Geometria Fábio áceres/oliveira/osana lves 0. (valor:,0) alcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): a. = + 69 esposta: =. b. 0 cos0 6 esposta:

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

Matemática. Geometria plana

Matemática. Geometria plana Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,

Leia mais

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.

Leia mais

Teste de Avaliação Escrita

Teste de Avaliação Escrita Teste de Avaliação Escrita Duração: 90 minutos de março de 01 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/01 Matemática 7.º Ano Nome: N.º Turma: Classificação: Fraco (0% 19%) Insuficiente

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

CENTRO EDUCACIONAL SESC CIDADANIA

CENTRO EDUCACIONAL SESC CIDADANIA CENTRO EDUCACIONAL SESC CIDADANIA Prof. (a): Heloísa Andréia LRR MATEMÁTICA III 2º TRIMESTRE Se não existe esforço, não existe progresso (F. Douglas) ENSINO MÉDIO Aluno(a): SÉRIE 3ª TURMA DATA: / /2017

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados um cilindro e um prisma quadrangular regular [ ] de bases []

Leia mais

Universidade Federal do Paraná Setor de Ciências da Terra - Departamento de Geomática Prof a Regiane Dalazoana

Universidade Federal do Paraná Setor de Ciências da Terra - Departamento de Geomática Prof a Regiane Dalazoana 1 Universidade Federal do Paraná Setor de Ciências da Terra - Departamento de Geomática Prof a Regiane Dalazoana CAPÍTULO 1 - REVISÃO MATEMÁTICA GA069 - TOPOGRAFIA I LISTA DE EXERCÍCIOS a) Transforme os

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.

Leia mais

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e : Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 2º Ano do Ensino Médio

Leia mais

Lista de exercícios matemática. Semelhança

Lista de exercícios matemática. Semelhança Semelhança 1. Classifique as sentenças em verdadeiras ou falsas: a) ( ) Dois quadrados são sempre semelhantes. b) ( ) Dois polígonos são semelhantes quando seus lados correspondentes são proporcionais

Leia mais

Plano de Recuperação Semestral 1º Semestre 2017

Plano de Recuperação Semestral 1º Semestre 2017 Disciplina: MATEMÁTICA 1 - Álgebra Série/Ano: 9º ANO Professores: Tammy, Figo, Pupo, Laendle Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos

Leia mais