Lista de Exercícios 3 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios 3 1"

Transcrição

1 Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = b g = 7/ + / 1/ c h = π d f = e g = tg 2 f f = g h = h g = 2 sen cos Respostas: a 1 ; 5; b 1, 0, 7 ; c ; d ±; e kπ e 2k + 1π 8, k Z; f 2, 5, 1; g 1,, 1 ± 10; h 2k + 1 π, k Z 2 Encontre os valores máimo e mínimo das funções nos intervalos indicados, se eistirem: a f = 2; [1, 6 b g = 1 ; [, 1] c h = + 2; [ 10, 20] d h = + 2; 10, 20 e gt = 5 sent; [ π, π] f f t = 1 [ 2 cossec2t; π, π ] 6 g h = + 2 2/ ; [, 2] h g = 6 2 / ; [ 1, ] Respostas: a valor máimo: f1 = 1; b valor máimo: g = 1 ; mínimo: g 1 = 1; c valor máimo: h20 = 18; mínimo: h = 2; d valor mínimo: h = 2; π e valor máimo: g = 5; mínimo: g π = 5; f Não eistem; 2 2 g valor máimo: h2 = ; mínimo: h 2 = 0; h valor máimo: g2 = 6; mínimo: g 1 = 6 + Teste da derivada primeira Para cada um das funções a seguir: i Encontre os pontos críticos ii Determine os intervalos onde as funções são crescentes iii Determine os intervalos onde as funções são decrescentes iv Encontre os máimos e mínimos locais se eistirem a f = + 2 b g = 2 cos c h = 1 d f = + e g = 2 f h = 2/ 1/ + 1 g f = + 1 2/ 2 1/ Respostas: a i 1; 1 ; ii, 1 1, + ; iii = 1 ; + 5 se < 1 j f = se 1 < 2 7 se 2 h g = 1 sec2 k g = 2 ln { se 2 i h = se > 2 l h = 2 ln 1, 1 ; iv máimo local: = 1; mínimo local: 1 Esta lista foi elaborada em parceria com a professora Monique Rafaella Anunciação de Oliveira - DEMAT/UFOP

2 b i kπ, k Z; ii 2k + 1π, 8k + 1π, k Z; iii 8kπ, 2k + 1π, k Z; iv máimos locais: = 8kπ, k Z; mínimos locais: = π2k + 1, k Z; c i 1; ii 1, ; iii, 1; iv mínimo local: = 1; d i ; ii, + ; iii ; iv Não eistem; e i, 2; ii, ; iii, + ; iv máimo local: = ; mínimo local: = 2; f i 0; 1 1 ; 8 ; ii 8, + iii, 1 ; iv mínimo local: = ; g i 1, 1, 2; ii, 1 1, + ; iii 1, 1; iv máimo local: = 1; mínimo local: = 1; h i kπ 2k + 1π k + 1π k + 1π 2k + 1π 2k + 1π k + π,, k Z; ii kπ,,, k Z; iii, k + π 2k + 1π, k + 1π, k Z; iv máimo local: = ; mínimo local: = kπ, k Z; 2 i i 2, 0; ii, 2 0, + ; iii 2, 0; iv máimo local: = 2; mínimo local: = 0; j i 1, 0, 2; ii, 1 0, 2; iii 1, 0 2, + ; iv máimo local: = 1; = 2; mínimo local: = 0; k i e 1/2 ; ii e 1/2, + ; iii 0, e 1/2 ; iv máimo local: = 0; mínimo local: = e 1/2 ; l i e 1/2 ; ii 0, e 1/2 ; iii e 1/2, + ; iv máimo local: = e 1/2 ; mínimo local: = 0 Encontre os valores de a, b e c tais que a função f = a 2 + b + c tenha um máimo local no ponto 7, 1 e que o gráfico de y = f passe pelo ponto 2, 2 a = 25, b = 2 25, c = Diga se as afirmativas são falsas ou verdadeiras, justificando sua resposta a Se uma função f é derivável no intervalo fechado [a, b] e f a f b < 0, então eiste pelo menos um número c no intervalo aberto a, b tal que f c = 0 b Se uma função f é derivável no intervalo fechado [a, b] e f a f b > 0, então eiste pelo menos um número c no intervalo aberto a, b tal que f c = 0 c Se uma função f é derivável no intervalo fechado [a, b] e f a f b = 0, então eiste pelo menos um número c no intervalo aberto a, b tal que f c = 0 d Se f = n, com n um inteiro positivo ímpar, então f não possui pontos de máimo e mínimo locais e Se uma função f é derivável no intervalo fechado [a, b] e g é derivável no intervalo fechado [fa, fb] com f e g funções crescentes então f g é crescente f Se uma função f é derivável no intervalo fechado [a, b] e g é derivável no intervalo fechado [fa, fb] com f e f g funções crescentes então g é crescente g Se f é uma função crescente e derivável no intervalo fechado [a, b] então g = f é decrescente h Se f > 0 é uma função crescente e derivável no intervalo fechado [a, b] então g = 1/f é decrescente Respostas: a Verdadeiro; b Falso; c Falso; d Verdadeiro; e Verdadeiro; f Verdadeiro; g Verdadeiro; h Verdadeiro 6 Encontre os máimos e mínimos locais aplicando o teste da segunda derivada quando possível: a y = + 2 b y = cos2 c y = /2 2 1/ d y = 27 2 e y = f y = cos Respostas: a máimo local: = 0; mínimos locais: = 2; = 1; b máimos locais: = kπ 2, k Z, k par; mínimos locais: = kπ 12/7 2 2, k,k ímpar; c mínimo local: = ; d máimo local: = ; mínimo local: = 2 2 ; e máimo local: = 27/ ; f Não é possível usar o teste

3 7 Se f = p p com p > 0 e p 1 verifique que: a Se 0 < p < 1, f possui um máimo local em = 1 b Se p > 1, f possui um mínimo local em = 1 8 Se f = a 2 + b + c, use o teste da derivada segunda para mostrar que se a < 0 então f possui um ponto de máimo local O que ocorre quando a > 0? f possui um ponto de mínimo local 9 Esboce os gráficos das funções abaio, indicando, quando eistirem, os pontos críticos, pontos de máimo e mínimo locais, pontos de infleão, assíntotas, intervalos de crescimento e decrescimento e a concavidade do gráfico a y = b y = c y = 2 2 d y = e y = f y = g y = e h y = e2 i y = ln j y = 2 ln k y = 1 l y = Respostas: a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; l 10 Calcule: 2 + a b c + d e + e 12 + e f 0 e cos

4 + 1 g ln + 1 h 2 2 i π 2 cotg 2 6 j 1 ln ln 1 2π cos k 1 sen l m tg [1 tg sec2] π n 0 e + 1 o p q r Respostas: a 0; b 1 ; c 11; d + ; e 0; f 1; g 0; h + ; i Não eiste; j 0; k 1; l 1; 26 m Não eiste; n e 2 ; o e; p Não eiste; q 1; r Não eiste 11 Um reservatório de água está sendo esvaziado A quantidade de água no reservatório, em litros, t horas após o escoamento ter começado é dada por V t = 6110 t 2 a Qual é o volume inicial nesse reservatório? b A taa de variação do volume de água no reservatório após 8 horas c Após quanto tempo a taa de variação do volume será de 1800l/h? d Supondo que tal reservatório possua formato de um cilindro circular reto, cuja a área da base é 1000 m 2, qual é a taa de variação da altura da água quando o tempo é 5 horas Respostas: a l; b dv = 096 l/h; c t = 20 h; d =, 2 m/h 12 Encontre a taa de variação do volume V de um cubo em relação ao comprimento de sua diagonal Se a diagonal está se epandindo a uma taa de 2m/s, qual a razão de variação do volume quando a diagonal mede m? dv = D2 dd ; dv = 6 1 Os lados de um triângulo equilátero crescem à taa de 2, 5 cm/s a Qual é a taa de crescimento da área desse triângulo, quando os lados tiverem 12 cm de comprimento? b Qual é a taa de crescimento do perímetros desse triângulo, quando os lados medirem 10 cm? c Qual é a taa de crescimento da altura desse triângulo, quando os lados medirem 8 cm? Respostas: a da = 15 cm 2 /s; b dp = 7, 5 cm/s; c = 1, 25 1 O raio de um cone é sempre igual à metade de sua altura h Determine a taa de variação da área da base em relação ao volume do cone Volume do cone é dado pela epressão: V = πr2 h, onde h é a altura e r o raio da base da 2π = dv V 15 Uma pedra jogada em um lago emite ondas circulares, cujo raio cresce a uma taa constante de 1 m/s Determine a taa de variação da área da região circular itada por essas ondas depois de 10 s da = 20π m2 /s 16 Cada lado de um quadrado está crescendo a uma taa de 5 m/s Com que taa a área do quadrado estará aumentando quando a área do quadrado for 20 m 2? da = 20 5 m 2 /s 17 Um avião, à velocidade constante de 1200 km/h, voa horizontalmente a uma altitude de 500 m e passa diretamente sobre uma estação de radar Encontre a taa segundo a qual a distância do avião até a estação está crescendo quando ele está a m da estação Aproimadamente 112 km/h

5 18 Uma escada com 25 unidades de comprimento está apoiada numa parede vertical Se o pé da escada for puado horizontalmente, afastando-se da parede a unidades de comprimento por segundo, qual a velocidade com que a escada está deslizando, quando seu pé está a 15 unidades de comprimento da parede? 9 uc/s 19 Um tanque cilíndrico com raio de 20 m está sendo enchido com água a uma taa de m /s Quão rápido está crescendo a altura da água? = 00π m/s 20 Dois carros partem de um mesmo ponto Um viaja para leste a 95 km/h e o outro para o norte com velocidade de 65 km/h A que taa está aumentando a distância entre os dois carros duas horas depois da partida? 5 50 km/h 21 Um tanque tem a forma de um cone invertido com 20 m de altura e uma base de 5 m de raio A água é despejada dentro do tanque a uma taa de m /min Com que velocidade o nível da água estará se elevando quando sua profundidade for de 5 m? = 8 25π m/min 22 O volume do cubo está aumentando à taa de 2 m /s Com que taa estará variando a área de uma de suas faces quando a aresta tiver 0 m? da = 2 5 m2 /s 2 Uma lâmpada está pendurada a, 5 m de um piso horizontal Se um homem com 1, 80 m de altura caminha afastando-se da luz, com uma velocidade de 1, 5 m/s, responda: a Qual a velocidade de crescimento da sombra? b Com que velocidade a ponta da sombra do homem está se movendo? Respostas: a 1 m/s; b 2, 5 m/s 2 A lei de Boyle para a epansão de um gás é P V = C, onde P é o número de quilos por unidade quadrada de pressão, V é o número de unidades cúbicas do volume do gás e C é uma constante Num certo instante, a pressão é de 150 kg/m 2, o volume é 1, 5 m e está crescendo a uma taa de 1 m /min Ache a taa de variação da pressão nesse instante dp = 100 kg/m2 /s 25 Um foguete subindo verticalmente é acompanhado por uma estação de radar no solo a 5 km da rampa de lançamento Com que rapidez o foguete estará subindo quando a sua altura for 6 km e a distância entre a estação do radar estiver crescendo a uma taa de 2000 km/h = km/h 26 Suponha que z = y, onde e y estão variando com o tempo em segundos No instante em que = 2 e y =, está decrescendo a uma taa de 2 unidades de comprimento por segundo e y está crescendo a uma taa de 6 unidades de comprimento por segundo Com que rapidez z estará variando neste instante? z é crescente ou decrescente? dz Respostas: = 20 uc/s; crescente 27 Ache as dimensões de um retângulo com perímetro de 100 m, cuja área é a maior possível 25 e Sejam e y dois números positivos cuja soma é 16 Determine tais valores para que o produto y seja máimo = y = 8 29 João irá construir um jardim retangular cercado cuja a área é de 100 m 2 A cerca que será utilizada é composta por quatro fios esticados horizontalmente presos por mourões fiados nos vértices do retângulo Quais são as dimensões desse jardim para que seja utilizado a menor quantidade de fio possível? 10 e 10

6 0 Um arame de 20 cm de comprimento deve ser cortado em dois pedaços, um para formar um quadrado e outro para formar um triângulo equilátero Como devemos cortar o arame para que a soma das áreas englobadas pelos dois pedaços seja: a máima b mínima Respostas: a Não cortar e construir só o quadrado; b Em pedaços de comprimentos e Um arame de comprimento L centímetros é cortado em dois pedaços, sendo um dobrado em forma de quadrado e o outro em forma de círculo Como devemos cortar o arame para que a soma das áreas englobadas pelos dois pedaços seja: a máima b mínima Respostas: a Não cortar e construir só o círculo; b Em pedaços de comprimentos L 5 e L 5 2 Dentre os triângulos isósceles com perímetro fiado, mostre que o triângulo de maior área é o equilátero Um cartaz deve ter uma área de 600 cm 2 para a mensagem a ser impressa; as margens no topo e na base devem ser cada uma de 7, 5 cm, e de 5 cm nas margens laterais Determine as dimensões do cartaz para que seja mínima a quantidade de papel usada 5 e 0 Encontre o ponto sobre a reta y = + 7 que está mais próimo da origem 28 17, Encontre o ponto da reta de equação y = + mais próimo do ponto 1, 2 Qual é a distância mínima? Respostas: 1 2, 5 ; Determine as dimensões do retângulo de maior área possível que pode ser inscrito na elipse de equação y2 = 1 Qual é a área desse retângulo? Respostas: 2 e 2; 12 7 Um fazendeiro tem 950 m de cerca e quer cercar um campo retangular que está a margem de um rio reto Ele não precisa cercar a margem do rio Quais as dimensões do campo que tem maior área? 75 2 e 75 8 Encontre a área do maior retângulo que pode ser inscrito em um círculo de raio r 2r 2 9 Um piscicultor deseja construir um aquário com base quadrada sem tampa cujo volume será de 2 m Quais as dimensões do aquário que minimizam a quantidade de material?, e 2 0 Encontre a equação da reta que passa pelo ponto 1, 1 e que deita a menor área com os eios coordenados no primeiro quadrante y = 2 1 Um copo de papel é feito no formato cilíndrico, de modo que sua capacidade seja 0 cm Ache a altura h e o raio r da base que minimizam a quantidade de papel utilizada 0 r = π, h = 0 π 2 π Um copo de papel é feito no formato de um cone reto, de modo que sua capacidade seja 0 cm Ache a altura h e o raio r da base que minimizam a quantidade de papel utilizada Vcone = πr2 h 050 r = 6 π 2, h = 90 6 π π 050 2

As listas de exercícios podem ser encontradas nos seguintes endereços: ou na pasta J18, no xerox (sala1036)

As listas de exercícios podem ser encontradas nos seguintes endereços:  ou na pasta J18, no xerox (sala1036) As listas de eercícios podem ser encontradas nos seguintes endereços: www.mat.ufmg.br/calculoi ou na pasta J8, no ero (sala06) TERCEIRA LISTA DE EXERCÍCIOS. Derive: a) y = 6 + b) y = c) d) y = + y = 0

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações Universidade Federal de Viçosa Departamento de Matemática MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações 1) Determine a função derivada de f definida por: a) ( 2 + 4 5) 4 b) (2 4 7 3 ) e c)

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

MAT Cálculo I - POLI a Lista de Exercícios

MAT Cálculo I - POLI a Lista de Exercícios MAT 453 - Cálculo I - POLI - 003 a Lista de Eercícios. Calcule a derivada indicada em cada caso: a) y se y = ; b) y se y = ( ) d ; c) ; d + ( d) d d 3 + ); e) d500 3 d 500 (3 3 79 + 4).. Calcule dy por

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

Lista de Exercícios do capítulo 4

Lista de Exercícios do capítulo 4 Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo

Leia mais

Lista de Exercícios 03: Derivadas e Aplicações

Lista de Exercícios 03: Derivadas e Aplicações Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologias Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental - UACTA Disciplina: Cálculo Professor: Paulo Pamplona

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1 Lista 5: Derivada como taxa de variação e Diferencial - Cálculo Diferencial e Integral I Professora: Elisandra Bär de Figueiredo 1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que

Leia mais

Lista 3. Funções de Uma Variável. Derivadas III

Lista 3. Funções de Uma Variável. Derivadas III Lista 3 Funções de Uma Variável Derivadas III Taxas Relacionadas 5 Uma esteira transportadora está descarregando cascalho a uma taxa de 30m 3 /min formando uma pilha na forma de cone com diâmetro da base

Leia mais

Prof. Me. Armando Paulo da Silva paginapessoal.utfpr.edu.br/armando

Prof. Me. Armando Paulo da Silva paginapessoal.utfpr.edu.br/armando Prof. Me. Armando Paulo da Silva armando@utfpr.edu.br paginapessoal.utfpr.edu.br/armando Taxa de Variação Relacionada 1 Exemplo A: Um quadrado se expande de modo que seu lado varia a razão de 5 cm/s. Achar

Leia mais

1. Seja V o volume de um cilindro tendo altura h e raio r e suponha que h e r variam com o tempo.

1. Seja V o volume de um cilindro tendo altura h e raio r e suponha que h e r variam com o tempo. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA DISCIPLINA: MAT0339 - Cálculo e Geometria Analítica para Arquitetos PROFESSOR: Vilmar Trevisan

Leia mais

Primeiro Teste de Cálculo Infinitesimal I

Primeiro Teste de Cálculo Infinitesimal I Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5

Leia mais

4.1 Funções Deriváveis

4.1 Funções Deriváveis 4. Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

Boa Prova! arcsen(x 2 +2x) Determine:

Boa Prova! arcsen(x 2 +2x) Determine: Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas. Funções Quadráticas

Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas. Funções Quadráticas Lista 8 Bases Matemáticas Funções Quadráticas, Eponenciais, Logarítmicas e Trigonométricas Funções Quadráticas Esboce o gráfico das seguintes funções, indicando em quais intervalos as funções são crescentes

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Derivada de funções na forma paramétrica

Derivada de funções na forma paramétrica Derivada de funções na forma paramétrica Sejam ( t) y y( t) (1) duas funções da mesma variável t [a,b]. Tomando e y como as coordenadas de um ponto P, podemos dizer que a cada valor de t, corresponde um

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA VIÇOSA - MG BRASIL

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA VIÇOSA - MG BRASIL MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 6571-000 - VIÇOSA - MG BRASIL 8 o e 9 o ROTEIRO DE MAT 096 TUTORIA EM CÁLCULO DIFERENCIAL E INTEGRAL I ASSUNTO: Problemas de Otimização

Leia mais

Problemas de Máximos e mínimos

Problemas de Máximos e mínimos roblemas de Máimos e mínimos rof. Me. Arton Barboni ) Obter dois números positivos cuja soma seja 60 e o produto o maior possível. * Supor, R + S = + = 60 (I) =. (II) De (I), segue que = 60 (III). Substituindo

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que: MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) 1 + 1 1 ) alcule: 1 1 a). 8. 8 b) ) alcule: a) 1 7 1 ( ) 64 9 1 b) 0 4) Resolva

Leia mais

5.3 EXERCÍCIO pg. 191

5.3 EXERCÍCIO pg. 191 5 EXERCÍCIO pg 9 0 Numa granja experimental, constatou-se que uma ave em desenvolvimento pesa em gramas l 0 + (t + ) W(t),t + 60, 0, 60 onde t é medido em dias t 60 t 90, (a) Qual a razão de aumento do

Leia mais

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Mínimos Exercício 1 Determine os intervalos de crescimento e de decrescimento, calcule todos os limites necessários e esboce o gráfico de f, onde

Leia mais

PROBLEMAS DE OTIMIZAÇÃO MÁXIMOS E MÍNIMOS UNIVERSIDADE SÃO JUDAS TADEU CURSO: ENGENHARIA TURMA: Nº DE ORDEM: RESUMO 1

PROBLEMAS DE OTIMIZAÇÃO MÁXIMOS E MÍNIMOS UNIVERSIDADE SÃO JUDAS TADEU CURSO: ENGENHARIA TURMA: Nº DE ORDEM: RESUMO 1 UNIVERSIDADE SÃO JUDAS TADEU DATA: CURSO: ENGENHARIA TURMA: Nº DE ORDEM: DISCIPLINA: CÁLCULO I Prof. Ms Rogério Lobo PROBLEMAS DE OTIMIZAÇÃO MÁXIMOS E MÍNIMOS Observe a função y = f(x), contínua e derivável,

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

MAT CÁLCULO DIFERENCIAL E INTEGRAL I. IME & Física 2016 (2 a Lista de Exercícios)

MAT CÁLCULO DIFERENCIAL E INTEGRAL I. IME & Física 2016 (2 a Lista de Exercícios) MAT - CÁLCULO DIFERENCIAL E INTEGRAL I IME & Física 6 ( a Lista de Eercícios). Verifique para as funções abaio se eistem números c, com a < c < b e tais que f(b) f(a) = f (c)(b a). Em caso afirmativo eiba-os.

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas

Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas Lista 8 Bases Matemáticas Funções Quadráticas, Eponenciais, Logarítmicas e Trigonométricas Funções Quadráticas Esboceográficodas seguintes funções, indicando em quais intervalos as funções são crescentes

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA GOUVEIA.

DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA GOUVEIA. RESOLUÇÃO DA AVALIAÇÃO FINAL DE MATEMÁTICA APLICADA EM 008 NO COLÉGIO ANCHIETA-BA, AOS ALUNOS DA a SÉRIE DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. 0. D C

Leia mais

Unicamp - 2 a Fase (17/01/2001)

Unicamp - 2 a Fase (17/01/2001) Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática MAT- - Cálculo Diferencial e Integral I Bacharelado em Matemática - 200 a Lista de eercícios I. Limite de funções. Calcule os seguintes ites, caso eistam: 2 3 + 9 2 + 2 + 4 2 + 6 5 ) 2 3 2 2 2) + 4 + 8

Leia mais

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor. Curso: Exercícios ESAF para Receita Federal 2013 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 03 Geometria/Trigonometria Professor: Valdenilson Garcia 2013 Copyright. Curso Agora eu Passo

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

REVISÃO ENEM 2013 Professor: FABRÍCIO MAIA

REVISÃO ENEM 2013 Professor: FABRÍCIO MAIA REVISÃO ENEM 013 Professor: FABRÍCIO MAIA ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Problema 01 Para trocar uma lâmpada, Roberto encostou uma escada na parede de sua casa, de forma que o topo da escada

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real.

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real. 6/0/008 Fatec/Tatuí Calculo II - Taxas Relacionadas 1 Taxas Relacionadas Um problema envolvendo taxas de variação de variáveis relacionadas é chamado de problema de taxas relacionadas. Os passos a seguir

Leia mais

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO Série: 9ºANO Turma: Disciplina: GEOMETRIA Professor: Mozart William EXERCÍCIO DE FIXAÇÃO II SEMESTRE 1) Num triângulo retângulo, a razão entre as projeções dos catetos sobre a hipotenusa é 16 9. Sabendo

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista

Leia mais

3.4. Determine o(s) ponto(s) da curva x =cost, y =sent, z =sen(t/2) mais distante(s) da origem.

3.4. Determine o(s) ponto(s) da curva x =cost, y =sent, z =sen(t/2) mais distante(s) da origem. 3.1. Locallize e classifiqueospontoscríticosdafunçãoz = f (x, y). Determine se a função tem máximo ou mínimo absoluto em seu domínio. (a) z = xy (b) z =ln(xy) 2x 3y (c) z = xy 2 + x 2 y xy (d) z = x 2

Leia mais

M23 FICHA DE TRABALHO DERIVADAS I PARTE. 3. Na figura estão representadas:

M23 FICHA DE TRABALHO DERIVADAS I PARTE. 3. Na figura estão representadas: M FICHA DE TRABALHO DERIVADAS I PARTE. Na figura estão representadas: Parte do gráfico de uma função f diferenciável em ; Uma recta r tangente ao gráfico de f no ponto de abcissa. O valor de f (), derivada

Leia mais

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75 MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens

Leia mais

MAT146 - Cálculo I - Teorema do Valor Intermediário

MAT146 - Cálculo I - Teorema do Valor Intermediário MAT146 - Cálculo I - Teorema do Valor Intermediário Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Agora, veremos problemas em que temos de determinar a taxa de variação de uma variável,

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Matemática. Geometria plana

Matemática. Geometria plana Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,

Leia mais

Sólidos Inscritos. Interbits SuperPro Web

Sólidos Inscritos. Interbits SuperPro Web Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.

Leia mais

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00 Aula n ọ 03 01. Um engenheiro, precisando calcular a área de um terreno com forma quadrangular (conforme a figura abaixo), utilizou como referencial as duas ruas, A e B, que se cruzavam perpendicularmente.

Leia mais

ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO. Um ponto c do domínio de uma função f é chamado de ponto crítico da f se f (c) = 0 ou f (c) não existe.

ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO. Um ponto c do domínio de uma função f é chamado de ponto crítico da f se f (c) = 0 ou f (c) não existe. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo I - 2006 PONTO CRÍTICO ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO Um ponto c do domínio de

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno 01. Para essa atividade sugerimos inicialmente que você observe a ilustração abaio e responda aos questionamentos: 1 cm 1 cm a. Calcule a área dos dois quadrados menores que estão em destaque: b. Some

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi

LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 17 Crescimento e decrescimento de funções, máximos e mínimos globais, máximos e mínimos locais, o teorema

Leia mais

A) 45 B) 22,5 C) 43 D) 21, A soma das áreas dos 20 primeiros trapézios é igual a: [A] 260 [B] 130 [C] 70 [D] 450

A) 45 B) 22,5 C) 43 D) 21, A soma das áreas dos 20 primeiros trapézios é igual a: [A] 260 [B] 130 [C] 70 [D] 450 6. Observe a sequência de trapézios rectângulos construídos como é sugerido na figura. Seja (a n ) a sucessão das áreas dos trapézios, em que o trapézio de ordem tem dois vértices nos pontos (, 0) e (,

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 2010 13/12/2009 INSTRUÇÕES 1. Confira, abaio, o seu número de inscrição, turma e nome. Assine no local indicado. Conhecimentos Específicos 2. Aguarde autorização para abrir o caderno

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

começou a caminhar às 7h35min. gastou = 25 minutos. Então ele

começou a caminhar às 7h35min. gastou = 25 minutos. Então ele MATEMÁTICA Caminhando sempre com a mesma velocidade, a partir do marco zero, em uma pista circular, um pedestre chega à marca dos 2 500 metros às 8 horas, e aos 000 metros às 8h5min. a) A que horas e minutos

Leia mais

MAT146 - Cálculo I - Problemas de Otimização

MAT146 - Cálculo I - Problemas de Otimização Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Um problema de otimização é aquele onde se procura determinar os valores extremos de uma função, isto é, o maior ou o menor valor que

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

AFA 006 LÍNGUA INGLESA E MATEMÁTICA CFOAV/CFOINT/CFOINF CÓDIGO 6 i - Considere o número compleo z = e calcule z n. No conjunto formado pelos quatro menores valores naturais de n para os quais z n é um

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013 Página de 8 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC38 Respostas da Prova de Final - 0//03 Questão : ( pontos) (a) Dado o gráfico da função f, esboce o gráfico da função

Leia mais

PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J

PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J PADRÃO DE RESPOSTA - MATEMÁTICA - GRUPOS I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Verifique se as afirmações abaixo são verdadeiras ou falsas Justifique sua resposta a) O número é irracional; (0,5

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

Unidade 3 Geometria: semelhança de triângulos

Unidade 3 Geometria: semelhança de triângulos Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B. Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaio. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA

Leia mais

Sólidos Inscritos e Circunscritos

Sólidos Inscritos e Circunscritos Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..

Leia mais