Atividades Práticas Supervisionadas (APS)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Atividades Práticas Supervisionadas (APS)"

Transcrição

1 Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala de aula) Atividades Práticas Supervisionadas (APS) (EXERCÍCIOS: 0% da a parcial) Conteúdo: erivadas, Integrais uplas e Triplas. Imprimir esta lista FRENTE/VERSO. Entregar os eercícios com preenchimento manual. Escrever de forma clara e objetiva. e preferencia, utilizar lapis ou lapiseira. Aluno:... Número:... Turma:... Curitiba PARANÁ

2 a APS Cálculo II erivadas 1. f (, ) Considerando a função f (, ) calcule o que se pede:. f (, ) 4. f (,1) 4. f (,1) 4 5. Encontre f se f (, ) sin( ). (u v ) sin() cos( ).

3 a APS Cálculo II 6. Encontre f e f se f (, ). cos 6- f sin e ( cos ) f cos ( cos ) 7. Encontre f e f se f (, ) tan w. f 1 sec (tan ) e f tan ln(tan )

4 a APS Cálculo II 8. Usando as regras de derivação, encontre as derivadas parciais das seguintes funções: (a) f (, ) 1 6- (b) f (, ) f (, ) 1 e f (, ) 1 (c) f (, ) e / f (, ) ( ) e f (, ) ( ) (d) f (, ) tan ( ) / f e (, ) e f e (, ) / f (, ) [ sec ( )]( ) e f (, ) [ sec ( )]( ).

5 a APS Cálculo II ada a função f (, ) e f (a) (, ), calcule: f (b) (, ) f (, ) 8 e f (, ) 7 e (c) Verifique a igualdade seguinte: f f. f f =18 e

6 a APS Cálculo II 10. Se a temperatura T depende do tempo t e da altitude h, de acordo com a regra: 5t 10t h T t, h 10, então calcule: (a) Como varia a temperatura em relação ao tempo, no instante t 1 horas, num ponto de altitude h0 100 metros? (b) Como varia a temperatura em relação à altitude, no instante t 1 horas, num ponto de altitude h0 100 metros?

7 a APS Cálculo II 11. e acordo com a lei do gás ideal para um gás confinado, se P Newton por unidade quadrada é a pressão, V unidades cúbicas é o volume, e T graus a temperatura, temos a fórmula: P V k T [equação (1)] onde k é uma constante de proporcionalidade. Suponha que o volume de gás em um certo recipiente seja 100 cm e a temperatura seja 90 0 e k 8. (a) Encontre a taa de variação instantânea de P por unidade de variação em T, se V permanecer fio em P Logo, quando T 90 e V 100, 0,08 é a resposta desejada. T (b) Use o resultado de (a) para aproimar a variação de pressão se a temperatura aumentar para 9 0 C. 0,16 N / m (c) Encontre a taa de variação instantânea de V por unidade de variação em P se T permanecer fio em V 15 = P 9 (d) Suponha que a temperatura permaneça constante. Use o resultado de (c) para encontrar a variação aproimada no volume para produzir a mesma variação na pressão, obtida em (b). 9 0

8 a APS Cálculo II O volume V de um cone circular é dado por V 4 4s, onde s é o comprimento da geratriz e o diâmetro da base. (a) Encontre a taa de variação instantânea do volume em relação à geratriz se o valor 16, enquanto a geratriz s varia. Calcule essa taa de variação no instante em que s 10 cm. V 0 cm / cm s 9 (b) Suponha que o comprimento da geratriz permaneça constante com o valor de s 10 cm. Considerando que o valor do diâmetro varia, encontre a taa de variação do volume em relação ao diâmetro quando 16 cm. V 16 cm / cm 9 Nos eercícios a seguir, verifique se as funções dadas são diferenciáveis na origem, isto é, ( 0, 0 ) (0,0). 1. f (, ). Logo, f não é diferenciável na origem.

9 a APS Cálculo II, se (, ) ( 0, 0) 14. f (, ). 0, se (, ) ( 0, 0) 6-8 Logo, f não é diferenciável na origem. etermine, se eistir, o plano tangente ao gráfico das funções dadas nos pontos indicados. 15. w + nos pontos: a) P 1 (0,0,0); b) P (1,1,).

10 a APS Cálculo II w nos pontos: a) P 1 (0,0,0); b) P (1,1, ). 17. ada a função w +. a) etermine uma aproimação para o acréscimo da variável dependente quando (, ) passa de (1,1) para (1,001;1,0). w 0,01. b) Calcular w quando as variáveis independentes sofrem a variação em a). w 0,0181 c) Calcular o erro obtido da aproimação de dw como w. 18. Calcule a diferencial total da função: w z e. 0,00081 dw ( z z e ) d ( z z e ) d e z dz

11 a APS Cálculo II Nos itens a) e b), calcule o valor aproimado para a variação da área na figura quando os lados são modificados de: a) 4cm e cm para 4,01cm e,001cm, num retângulo; 4 b) cm e 1cm para,01cm e 0,5cm, num triângulo retângulo. 0,04cm. 1 0,495cm. 0. Calcular o valor aproimado de (1,001),0. (1,001),0 1,00.

12 a APS Cálculo II 1. O diâmetro e a altura de um cilindro circular reto medem, com um erro provável de 0, pol em cada medida, respectivamente, 1 pol e 8 pol. Qual é, aproimadamente, o máimo erro possível no cálculo do volume? 6-11 H dv 16,8 pol 1. ada a superfície z, se no ponto 4,, e são acrescidos de, qual é 10 a variação aproimada de z? z 0,01075

13 a APS Cálculo II. As dimensões de uma caia são 10 cm, 1 cm e 15 cm. Essas medidas têm um possível erro de 0,0 cm. Encontre, aproimadamente, o máimo erro no cálculo do volume. 6-1 z Logo: V 9 cm. 4. A altura de um cone circular é de h 100 pol e decresce a razão de 10 pol / seg. O raio da base é de r 50 pol e cresce a razão de 5 pol / seg. Com que velocidade está variando o volume, quando h 100 pol e r 50 pol? h r Portanto, o volume cresce à taa de 6180 pol / seg no dado instante

14 a APS Cálculo II 5. Use a lei do gás ideal com k 10 para encontrar a taa de variação da temperatura no instante em que o volume do gás é 10 cm e o gás está sob uma pressão de 8 din / cm, se o volume cresce à taa de cm / seg e a pressão decresce à taa de 0,1 din / cm ( din, unidade de força) por segundo. 6-1 A temperatura cresce à taa de 0,4 graus por segundo no dado instante. 6. Sabendo que z f (, ) é definida por 4 z z 5, determine z z e. z 4 z 1 e z ( ) z 1 4

15 a APS Cálculo II 7. Quais as dimensões de uma caia retangular sem tampa com volume 4 m e com a menor área de superfície possível? z 6-14 (,, z ) (,,1).

16 a APS Cálculo II Integrais uplas e Triplas 8. Seja a região delimitada pelos gráficos das equações, 18 e 0. Se f é uma função contínua arbitrária em, epresse a integral dupla f (, )da em termos de integrais iteradas utilizando apenas: (a) Teorema 1; (b) Teorema. (a) Teorema 1 1 (6,0) (9,) 18 (b) Teorema (6,0) (9,) Calcular I 9. e dd, onde é a região do plano delimitada entre 4 e Região : 4 9 Região : 0 r r r

17 a APS Cálculo II e 4 e 0. Calcular o volume do sólido delimitado superiormente pelo gráfico de z 4, inferiormente pela região delimitada por, 0, 0 e e lateralmente pelo cilindro vertical cuja base é o contorno de. z 4 (0,, ) 1 7 (,0,) 1 1 (,1,1) 15 V unidades de volume. 4

18 a APS Cálculo II 1. Calcular a área da região delimitada por 1 e. Calcular pelas duas formas: a) (Teorema 1) b) (Teorema ) 1 Por (7), A da u.a. (unidades de área)

19 a APS Cálculo II. Calcular I T dv, onde T é o sólido delimitado pelo cilindro 5, pelo z 8 e pelo plano. z T 5 z0 z I 4

20 a APS Cálculo II. Calcular I T 7-19 ( )dv, onde T é a região delimitada pelo plano, pelo parabolóide z e pelo cilindro a. z a T a a a z 0 A região T é limitada inferiormente por z 0 e superiormente por z que, em coordenadas cilíndricas, tem equação z r. Observação: Levando-se em conta que a região T se enquadra no caso (i), pode-se escrever a equação (1) representada pela (1). ' h ( r, ) h ( r, ) 1 f ( rcos, rsin, z)dz rdrd (1) Onde h 1 e h delimitam T inferior e superiormente. é a projeção de T sobre o plano descrita em coordenadas polares. a 6 I

21 a APS Cálculo II 4. Calcular I T e inferiormente pelo cone 7-0 zdv, onde T é a região limitada superiormente pela esfera z 16 z. T Esféra 4 Cone f 4 I

22 a APS Cálculo II 5. eterminar o centro de massa da chapa homogênea da figura abaio. a 7-1 R a a a a 19a (, ) 0, 15

23 a APS Cálculo II 7-6. Calcular a integral I e dd. 7. Calcular I I e sin da onde é a região delimitada por 0, e. 8 I

24 a APS Cálculo II 7-8. Calcular I da onde é o triângulo OAB da figura a seguir. 1 B A I 8

25 a APS Cálculo II 9. Usando coordenadas polares, escrever na forma de uma integral iterada, a integral I f (, ) dd onde é a região delimitada por a 0, a I 0 asin 0 f ( r cos, rsin ) r drd 40. Calcular I dd, sendo a região delimitada por a 0, a 0.

26 a APS Cálculo II 7-5 I Calcular I dd, sendo a região limitada pelas curvas:, 4, e I

27 a APS Cálculo II 4. Calcular I ( ) dd, sendo o paralelogramo limitado pelas retas: 0, 1, e

28 a APS Cálculo II Calcular I ) ( ) I ( dd, onde é a região delimitada pela circunferência ( ) ( ) 4. Obs.: Aconselha-se o uso de duas transformações: 1 a : u e v ; a : coordenadas polares.

29 a APS Cálculo II 7-8 I Calcular o volume do sólido no primeiro octante delimitado por z e pelo cilindro que contorna a região delimitada por e. z Sólido 1 1 Região V unidades de volume 60

30 a APS Cálculo II 45. Calcular o volume do sólido abaio do plano delimitado por z 9. z V 81

31 a APS Cálculo II 46. Calcular o volume do sólido no primeiro octante, delimitado pelos cilindros 16 e z z V 18 unidades de volume

32 a APS Cálculo II 47. Calcular o volume do tetraedro dado na figura abaio. 7-1 z 1 V 1 unidade de volume

33 a APS Cálculo II 48. Calcule a área da região delimitada por, e A 4 unidades de área

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h) 1 LISTA E CÁLCULO III (A) Integrais uplas 1. Em cada caso, esboce a região de integração e calcule a integral: (c) (d) 1 y y a a 2 x 2 a 1 y 1 2 2 x x 2 y 2 dxdy; a 2 x 2 (x + y)dydx; e x+y dxdy; x 1 +

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Lista 1 - Cálculo III

Lista 1 - Cálculo III Lista 1 - Cálculo III Parte I - Integrais duplas sobre regiões retangulares Use coordenadas cartesianas para resolver os exercícios abaixo 1. Se f é uma função constante fx, y) = k) e = [a, b] [c, d],

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

Lista de Exercícios 3 1

Lista de Exercícios 3 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

Integrais Duplos e Triplos.

Integrais Duplos e Triplos. Capítulo 4 Integrais uplos e Triplos. 4.1 Integrais uplos xercício 4.1.1 Calcule os seguintes integrais. a. e. 1 1 e 1 2x+2 15xy + 1y 2 dy dx b. y x dx dy 4 x 2y) dy dx f. 4 1 π 6 2 π 2 x 1 6xy 3 + x )

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2016 MAT55 - Cálculo iferencial e Integral para ngenharia III a. Lista de xercícios - o. semestre de 6. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585. 8 x sin

Leia mais

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da UNIVEIDADE FEDEAL DA INTEGAÇÃO LATINO-AMEICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO II - MAT3 15 a Lista de exercícios Nos

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

3 Cálculo Integral em R n

3 Cálculo Integral em R n 3 Cálculo Integral em n Exercício 3.. Calcule os seguintes integrais. Universidade da Beira Interior Matemática Computacional II Engenharia Informática 4/5 Ficha Prática 3 3 x + y dxdy x y + x dxdy e 3

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

Cálculo III-A Módulo 4

Cálculo III-A Módulo 4 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada Cálculo III-A Módulo 4 Aula 7 Integrais Triplas Objetivo Compreender a noção de integral tripla.

Leia mais

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla.

Cálculo IV EP4. Aula 7 Integrais Triplas. Na aula 1, você aprendeu a noção de integral dupla. agora, você verá o conceito de integral tripla. Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Cálculo IV EP4 Aula 7 Integrais Triplas Objetivo

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008 1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

Integrais Múltiplas. Integrais duplas sobre retângulos

Integrais Múltiplas. Integrais duplas sobre retângulos Integrais Múltiplas Integrais duplas sobre retângulos Vamos estender a noção de integral definida para funções de duas, ou mais, variáveis. Da mesma maneira que a integral definida para uma variável, nos

Leia mais

20., 1 y da da, 1 xy da Esboce o sólido cujo volume é dado pela integral iterada x 2y dx dy 24.

20., 1 y da da, 1 xy da Esboce o sólido cujo volume é dado pela integral iterada x 2y dx dy 24. 5. Eercícios etermine e 5 f, d f, d.. f,. f, e Calcule a integral iterada. p. 6 d d. 5. sen dd 6. p 7. ( cos ) d d 8. 9.. d d. v u v du dv. p. r sen u du dr. 5 Calcule a integral dupla. 5. sen da,, p,

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

{ y} Cálculo III. 1 - Funções de Várias Variáveis

{ y} Cálculo III. 1 - Funções de Várias Variáveis 1 Cálculo III 1 - Funções de Várias Variáveis Em muitos casos, o valor de uma grandeza depende do valor de duas ou mais outras. O volume de água de um reservatório, por exemplo, depende das chuvas e da

Leia mais

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1 Lista 5: Derivada como taxa de variação e Diferencial - Cálculo Diferencial e Integral I Professora: Elisandra Bär de Figueiredo 1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

y (x 0 ) = f (x 0 ) 2a = f (x 0 ) a = f (x 0 ) 2

y (x 0 ) = f (x 0 ) 2a = f (x 0 ) a = f (x 0 ) 2 Cálculo - Capítulo 3. - Aproimação quadrática 1 Capítulo 3. - Aproimação quadrática 3..1 - Aproimação quadrática para funções de uma variável 3.. - Aproimação quadrática para funções de duas variáveis

Leia mais

Cálculo III-A Lista 6

Cálculo III-A Lista 6 Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo III-A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine

Leia mais

9 Integrais e Primitivas.

9 Integrais e Primitivas. Eercícios de Cálculo p. Informática, 006-07 9 Integrais e Primitivas. E 9- Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f() = sin, F (π) = 3.

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

Lista de Exercícios do capítulo 4

Lista de Exercícios do capítulo 4 Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo

Leia mais

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016 COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Problemas de Otimização Objetivos da Aula Utilizar o Cálculo Diferencial para resolução de problemas. 1 Problemas de Otimização Nessa

Leia mais

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t. MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera. Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência

Leia mais

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas:

Cálculo 3A Lista 6. Exercício 1: Apresente uma parametrização diferenciável para as seguintes curvas planas: Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada álculo 3A Lista 6 Eercício : Apresente uma parametrização diferenciável para as seguintes curvas

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS

FUNÇÕES DE VÁRIAS VARIÁVEIS FUNÇÕES DE VÁRIAS VARIÁVEIS Introdução Considere os seguintes enunciados: O volume V de um cilindro é dado por V r h onde r é o raio e h é a altura. Um circuito tem cinco resistores. A corrente deste circuito

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa 1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Mínimos Exercício 1 Determine os intervalos de crescimento e de decrescimento, calcule todos os limites necessários e esboce o gráfico de f, onde

Leia mais

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P. 1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

Capítulo Aproximação linear e diferenciais

Capítulo Aproximação linear e diferenciais Cálculo 2 - Capítulo 3.1 - Aproimação linear e diferenciais 1 Capítulo 3.1 - Aproimação linear e diferenciais 3.1.1 - Aproimação linear 3.1.2 - Diferenciais Vamos, neste capítulo, generaliar os conceitos

Leia mais

Lista de Exercícios 03: Derivadas e Aplicações

Lista de Exercícios 03: Derivadas e Aplicações Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologias Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental - UACTA Disciplina: Cálculo Professor: Paulo Pamplona

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que: MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),

Leia mais

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia. Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 Aproximações

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 2010 13/12/2009 INSTRUÇÕES 1. Confira, abaio, o seu número de inscrição, turma e nome. Assine no local indicado. Conhecimentos Específicos 2. Aguarde autorização para abrir o caderno

Leia mais

MAT Cálculo I - POLI a Lista de Exercícios

MAT Cálculo I - POLI a Lista de Exercícios MAT 453 - Cálculo I - POLI - 003 a Lista de Eercícios. Calcule a derivada indicada em cada caso: a) y se y = ; b) y se y = ( ) d ; c) ; d + ( d) d d 3 + ); e) d500 3 d 500 (3 3 79 + 4).. Calcule dy por

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Primeiro Teste de Cálculo Infinitesimal I

Primeiro Teste de Cálculo Infinitesimal I Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5

Leia mais

Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas. 1. Calcular I =

Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas. 1. Calcular I = 1 Lista 4 de Cálculo Diferencial e Integral II Integrais Triplas 1. Calcular I = (x 1)dV, sendo T a região do espaço delimitada pelos planos y =, z =, T y + z = 5 e pelo cilindro parabólico z = 4 x.. Determinar

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

Exercícios Resolvidos Mudança de Coordenadas

Exercícios Resolvidos Mudança de Coordenadas Instituto uperior écnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Mudança de Coordenadas Eercício Considere o conjunto {(, R : < < ; < < + } e a função g : R R definida

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

As listas de exercícios podem ser encontradas nos seguintes endereços: ou na pasta J18, no xerox (sala1036)

As listas de exercícios podem ser encontradas nos seguintes endereços:  ou na pasta J18, no xerox (sala1036) As listas de eercícios podem ser encontradas nos seguintes endereços: www.mat.ufmg.br/calculoi ou na pasta J8, no ero (sala06) TERCEIRA LISTA DE EXERCÍCIOS. Derive: a) y = 6 + b) y = c) d) y = + y = 0

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

3ª Ficha de Trabalho

3ª Ficha de Trabalho SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado

Leia mais

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma: Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

número de unidades deste produto que deve ser vendida para que se obtenha um lucro de 144 dólares é: a) 324 b) 543 c) 128 d) 342 e) 345

número de unidades deste produto que deve ser vendida para que se obtenha um lucro de 144 dólares é: a) 324 b) 543 c) 128 d) 342 e) 345 CONHECIMENTOS ESPECÍFICOS 1 Uma bomba d água eleva água para uma caixa que tem o formato e as dimensões (metros) indicadas pela figura abaixo Sabe-se que a bomba d água tem uma vazão de 50 litros por minuto

Leia mais

Problemas de Máximos e mínimos

Problemas de Máximos e mínimos roblemas de Máimos e mínimos rof. Me. Arton Barboni ) Obter dois números positivos cuja soma seja 60 e o produto o maior possível. * Supor, R + S = + = 60 (I) =. (II) De (I), segue que = 60 (III). Substituindo

Leia mais

3.4. Determine o(s) ponto(s) da curva x =cost, y =sent, z =sen(t/2) mais distante(s) da origem.

3.4. Determine o(s) ponto(s) da curva x =cost, y =sent, z =sen(t/2) mais distante(s) da origem. 3.1. Locallize e classifiqueospontoscríticosdafunçãoz = f (x, y). Determine se a função tem máximo ou mínimo absoluto em seu domínio. (a) z = xy (b) z =ln(xy) 2x 3y (c) z = xy 2 + x 2 y xy (d) z = x 2

Leia mais

EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio

EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio EMENTA ESCOLAR I Trimestre Ano 2017 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 2 ano do Ensino Médio Datas 14/fevereiro 17/fevereiro 21/fevereiro 24/fevereiro 28/fevereiro 03/março

Leia mais

CSE-MME Revisão de Métodos Matemáticos para Engenharia

CSE-MME Revisão de Métodos Matemáticos para Engenharia CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET CÁLCULO IV

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET CÁLCULO IV UNIVESIDADE ESTADUAL DE SANTA CUZ - UESC PÓ-EITOIA DE GADUAÇÃO - POGAD DEPATAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GUIA DE ESTUDO N 0 2 CÁLCULO IV OBJETIVOS: Proporcionar o ábito de leitura no

Leia mais

Cálculo III. por PAULO XAVIER PAMPLONA

Cálculo III. por PAULO XAVIER PAMPLONA Cálculo III por PAULO XAVIER PAMPLONA CCTA/UFCG 15 Conteúdo 1 Funções de Várias Variáveis 4 1.1 Conceito de Funções de Várias Variáveis.................... 4 1. omínio e Imagem................................

Leia mais

ENG1200 Mecânica Geral Semestre Lista de Exercícios 8 Centróides, Momentos de Inércia, Círculo de Mohr

ENG1200 Mecânica Geral Semestre Lista de Exercícios 8 Centróides, Momentos de Inércia, Círculo de Mohr ENG00 Mecânica Geral Semestre 201.2 Lista de Eercícios 8 Centróides, Momentos de nércia, Círculo de Mohr 1 Prova P201.1 (P) - De determinada área (figura) são conhecidos os valores do momento de inércia

Leia mais

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do

Leia mais

GEOMETRIA ESPACIAL

GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL - 016 1. (Unicamp 016) Considere os três sólidos exibidos na figura abaixo, um cubo e dois paralelepípedos retângulos, em que os comprimentos das arestas, a e b, são tais que a b 0.

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

Lista 3. Funções de Uma Variável. Derivadas III

Lista 3. Funções de Uma Variável. Derivadas III Lista 3 Funções de Uma Variável Derivadas III Taxas Relacionadas 5 Uma esteira transportadora está descarregando cascalho a uma taxa de 30m 3 /min formando uma pilha na forma de cone com diâmetro da base

Leia mais

Caderno de Prova. Matemática. Universidade Federal da Fronteira Sul Processo Seletivo Edital n o 001/2011.

Caderno de Prova. Matemática. Universidade Federal da Fronteira Sul Processo Seletivo Edital n o 001/2011. Universidade Federal da Fronteira Sul Processo Seletivo Edital n o 00/20 http://uffs.sel.fepese.org.br Caderno de Prova agosto 7 7 de agosto das 4 às 7 h 3 h de duração* 40 questões S06 Matemática Confira

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais