Boa Prova! arcsen(x 2 +2x) Determine:

Tamanho: px
Começar a partir da página:

Download "Boa Prova! arcsen(x 2 +2x) Determine:"

Transcrição

1 Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a): Aluno(a): Nota:. (.0 ptos) Determine dy d, onde. y = tg 5 +. y = Boa Prova! (+) 6 arcsen( +). sec( y) = + y. (.0 ptos) Seja f() = 4 +. Encontre os intervalos onde a função f é crescente ou decrescente.. (.0 ptos) Seja y = f() uma função que satisfaz as propriedades dadas na tabela abaio. y derivadas < y < 0, y > 0 y = 0, y > 0 < < 0 y > 0, y > y > 0, y = 0 0 < < y > 0, y < 0 y = 0, y < 0 < < y < 0, y < 0 0 y < 0, y = 0 < < y < 0, y > 0 y = 0, y > 0 > y > 0, y > 0 Determine:. Os pontos críticos de f;. Os intervalos onde o gráfico da função é côncavo para baio ou côncavo para cima;. Esboce o gráfico de f. 4. (.0 ptos) Dois postes verticais de m e, 5m de altura distam m um do outro. Determine o comprimento do menor cabo que, partindo do topo de um dos postes, toque o solo e termine no topo do outro poste.(veja figura ao lado). 5. (.0 ptos) Calcule as integrais abaio. 5. ( + ) d 5. + d 5. m m sen d.,5 m 5.4 sen( ) cos( ) + sen ( ) d (sugestão: faça u = + sen ( ) )

2 Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Manhã Prova Estágio Data: 5 de setembro de 006. Professor(a): Aluno(a): Nota:. (.0 ptos) Seja f() = 4 8. Determine:. Os pontos críticos de f; Boa Prova!. Os intervalos onde f é crescente ou decrescente;. Onde o gráfico de f é côncavo para cima e onde é côncavo para baio;.4 Os pontos de infleão de f;.5 O esboço do gráfico de f.. (.0 ptos) Derive as funções abaio. y = sen 5 (cos( )). y = arccos 4 (+). y = tg( ++ ). (.0 ptos) Pretende-se inscrever um retângulo em um triângulo retângulo isósceles cuja hipotenusa tem unidades de comprimento (Veja Figura abaio). Qual a maior área possível para o retângulo? Quais são suas dimensões? y 0 4. (.0 ptos) Calcule as integrais abaio. 5. ( 9 + ) d 5. sec(+ )tg(+ ) d, (sugestão: faça u = + ) 5. sen cos +sen d, (sugestão: faça u = sen 4 ). 5.4 d ( +)

3 Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Departamento de Matemática e Estatística Professor(a): Período 007. Turno: Manhã Aluno(a): Nota: Reposição da ª Prova 0/ 07 / 007 (,5 pt.) ) Verifique se a função f:, definida por diferenciável em =. se f ( ) é se (,5 pt.) ) Determine uma equação para a reta tangente ao gráfico de f() = ² -6-4 que seja paralela a reta y = -77. (4,0 pt.) ) Calcule a derivada da função indicada e simplifique o resultado quando possível. 9 a) ( t) 5t 7. t 8 r b) h ( s) s arcsec s arctg s 4 5 c) g( ) sec 5 cos d) y. sen. y onde y é uma função de. (,5 pt.) 4) Ache uma aproimação por diferenciais para f (,0 ), onde 4 f ( ) 4 5. (,5 pt.) 5) As etremidades de um cocho de,5m de comprimento são triângulos equiláteros cujos lados têm 60 cm de comprimento. Se a água está entrando no cocho à razão de 4 l/min, determine a taa em que o nível da água está subindo quando a profundidade da água é de 0 cm.. Boa prova!

4 Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Departamento de Matemática e Estatística Professor(a): Período: 007. Turno: Tarde Aluno(a): Nota: Reposição da ª Prova 0/ 07 / 007 (,5 pt) ) Use a definição de derivada de uma função, para calcular a derivada de f ( ) = em = 4. (,5 pt) )Encontre a equação da tangente a y em (,). (4,0 pt.) ) Calcule a derivada da função indicada e simplifique, sempre que possível, o resultado a) t ( t) t g b) f ( ) cot g. sec c) h ( ). arc sen d) y y, onde y é função de. (,5 pt.) 4)Um balão esférico está sendo inflado com gás. Por meio de diferenciais, aproime o aumento da área da superfície do balão quando o diâmetro varia de m para,0 m. 5 pt.) 5) Um míssil é lançado verticalmente de um ponto que está a 8 km de uma estação de rastreamento, e à mesma altura desta. Durante os primeiros 0 segundos de vôo, seu ângulo de elevação varia à razão constante de por segundo. Determine a velocidade do míssil quando o ângulo de elevação é 0. Boa prova!

5 UFCG/CAMPUS DE CAMPINA GRANDE/CCT PERÍODO: 07. Departamento de Matemática e Estatística Turno: Manhã Curso: Elétrica/Computação Aluno(a): Nota: ª. Prova 0//07 Não tire o grampo da prova e entregue todas as folhas de papel recebidas. Questão VALOR:,0 PONTOS, 0 Considere a função f ( ), 0. Esta função é diferenciável em 0? E, Em? Justifique de maneira convincente sua resposta. Questão VALOR:,0 PONTOS Determine a equação de uma reta tangente ao gráfico de f ( ) que seja paralela à reta y 4. Questão VALOR:,0 PONTOS Determine y ' em cada item a seguir: a- y 4 cos( ) e c- y 4 sin y b- y ln d- ( y ) y Questão 4 VALOR:,0 PONTOS a) Mostre que a função y ln satisfaz a equação y ' y( y ln ). b) Calcule y( 0) y'(0). Questão 5 VALOR:,0 PONTOS O volume de um balão esférico está aumentando a uma razão constante de m /min. a) Com que rapidez o raio do balão está aumentando quando este for eatamente 8 cm? b) Com que rapidez está aumentando a área superficial deste balão no mesmo instante? O único lugar onde sucesso vem antes do trabalho é no dicionário. Albert Einstein

6 Universidade Federal de Campina Grande - UFCG / CCT / UAME Data: /09/00 Aluno(a): Turno: Tarde Segunda Avaliação 00.. (,0 pts) Use a denição de derivada para calcular a derivada da função no ponto (, ). f() = + 4. (,5 pts) Calcule a derivada das seguintes funções: (a) y = cos(sen) (b) f() = sec( + 7) (c) y = ( + )e (d) f(t) = e 4 t+t (e) y = ln(θe θ ). (,5 pts) Determine a equação da reta tangente à curva quando t = π 4. C : ((t) = sec t, y(t) = tgt) 4. (,5 pts) Determine a equação da reta normal à curva y + = y 4 no ponto (, ). 5. (,0 pts) A posição de uma partícula que se desloca ao longo de uma reta coordenada é dada por s(t) = arctgt, com s em metros e t em segundos. Determine a velocidade e a aceleração da partícula para t = s. 6. (,5 pts)o comprimento l de um retângulo diminui a uma taa de cm/s, enquanto a largura w aumenta a uma taa de cm/s. Encontre as taas de variação para: a) a área; b) o perímetro; c) o comprimento da diagonal do retângulo; quando l = cm e w = 5 cm.

7 UFCG/CCT/UAME PERIODO:07. DISCIPLINA: CALCULO DIF. E INTEGRAL I TURNO: MANHA PROFº: DATA: 4//07 ALUNO(A) NOTA: º ESTÁGIO OBS: Não retire o grampo da prova. Entregue a prova com o mesmo número de folhas recebidas )(Ponto) Verifique se a função f() = 4 5 se se é derivável em =. )(Ponto) Determine, caso eistam, os pontos do gráfico de f() = cos + sen, com 0, em que a tangente é horizontal. )(4Pontos) Obtenha a derivada da função indicada e simplifique, sempre que possível o resultado: 6 a) f ( ) b) g( ) sen 6 4 c) h( ) arctg d) y cos (cos) arccos 4)(Ponto) Ache uma aproimação para f(,0) onde f() = diferenciais , usando 5)(Ponto) Ás 0 horas um carro A está 5Km ao sul do carro B. Se o carro A vai para o leste com velocidade constante de 60Km/h e o carro B vai para o norte com velocidade constante de 40Km/h, determine a razão na qual a distancia entre os carros varia ás 0:0h. 4 6)(Ponto) Verifique se a função f ( ) satisfaz as hipóteses do Teorema do Valor Médio em,4 e, em caso afirmativo, ache todos os números c em,4 tais que f b f a f c b a ( ) ( ) ( )( ). 7)(Ponto) Determine os etremos absolutos da função intervalo,, caso eistam. f ( ) no QUESTÃO OPTATIVA(Ponto) Se y é função de e satisfaz: y 6, mostre que 4 4 y 48 7 y BOA PROVA! FELIZ NATAL!

8 Universidade Federal de Campina Grande - UFCG / CCT / UAME Data: /09/00 Aluno(a): Turno: Manhã Segunda Avaliação 00.. (,0 pts) Use a denição de derivada para calcular a derivada da função no ponto (0, ). f() = +. (,5 pts) Calcule a derivada das seguintes funções: (a) y = sen( cos ) (b) f() = tg( ) (c) y = e + e (d) f() = e 4 + (e) y = ln(te t ). (,5 pts) Determine a equação da reta tangente à curva quando t = π. C : ((t) = t sent, y(t) = cos t) 4. (,5 pts) Determine a equação da reta normal à curva y 4 4y = 4 9 no ponto (, ). 5. (,0 pts) A posição de uma partícula que se desloca ao longo de uma reta coordenada é dada por s(t) = arccotgt, com s em metros e t em segundos. Determine a velocidade e a aceleração da partícula para t = s. 6. (,5 pts) O comprimento l de um retângulo diminui a uma taa de cm/s, enquanto a largura w aumenta a uma taa de cm/s. Encontre as taas de variação para: a) a área; b) o perímetro; c) o comprimento da diagonal do retângulo; quando l = cm e w = 5 cm.

9 Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia CCT Unidade Acadêmica de Matemática e Estatística - UAME (Computação e Eng. Elétrica) Turno: Manhã Professor(a): Período: 009. Aluno(a): Nota: Reposição da ª Prova 0 de junho de 009 ) (,0 pt) Seja f a função definida por f ( ). a) Verifique se f é derivável em 0 = ; b) Determine a equação da reta normal ao gráfico de f no ponto (,). ) (4,0 pts) Calcule a derivada de primeira ordem das seguintes funções: a) ( ) f ; b) g ( ) log tg c) h( ) ; ; d) ( ) arc sec q. ) (,0 pts) Encontre os dois pontos onde a curva y y 7 cruza o eio e justifique que as tangentes à curva nesses pontos são paralelas. Qual é o coeficiente angular comum dessas retas? 5 ) (,0 pts) Se duas resistências com R e R ohms estão conectadas em paralelo em um circuito elétrico, resultando em uma resistência com R ohms, o valor de R é dado pela equação. R R R Se R diminui a uma taa de ohms/segundo e R aumenta a uma taa de 0,5 ohms/segundo, a que taa R varia quando R = 75 ohms e R = 50 ohms? Boa Prova e um Ótimo mês Junino

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações Universidade Federal de Viçosa Departamento de Matemática MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações 1) Determine a função derivada de f definida por: a) ( 2 + 4 5) 4 b) (2 4 7 3 ) e c)

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

As listas de exercícios podem ser encontradas nos seguintes endereços: ou na pasta J18, no xerox (sala1036)

As listas de exercícios podem ser encontradas nos seguintes endereços:  ou na pasta J18, no xerox (sala1036) As listas de eercícios podem ser encontradas nos seguintes endereços: www.mat.ufmg.br/calculoi ou na pasta J8, no ero (sala06) TERCEIRA LISTA DE EXERCÍCIOS. Derive: a) y = 6 + b) y = c) d) y = + y = 0

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

MAT Cálculo I - POLI a Lista de Exercícios

MAT Cálculo I - POLI a Lista de Exercícios MAT 453 - Cálculo I - POLI - 003 a Lista de Eercícios. Calcule a derivada indicada em cada caso: a) y se y = ; b) y se y = ( ) d ; c) ; d + ( d) d d 3 + ); e) d500 3 d 500 (3 3 79 + 4).. Calcule dy por

Leia mais

Lista de Exercícios 3 1

Lista de Exercícios 3 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em 007. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a+ a, >, e a) f (

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique.

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique. INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A 008. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a a, >, e a) f ( ) =, = (a = )

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

Lista de Exercícios 03: Derivadas e Aplicações

Lista de Exercícios 03: Derivadas e Aplicações Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologias Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental - UACTA Disciplina: Cálculo Professor: Paulo Pamplona

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

4.1 Funções Deriváveis

4.1 Funções Deriváveis 4. Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que: MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

6. Aplicações da Derivada

6. Aplicações da Derivada 6 Aplicações da Derivada 6 Retas tangentes e normais - eemplos Encontre a equação da reta tangente e da normal ao gráfico de f () e, em 0 Represente geometricamente Solução: Sabemos que a equação da reta

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Lista de Exercícios do capítulo 4

Lista de Exercícios do capítulo 4 Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

Deduzimos a equação do ciclóide na proxima seção.

Deduzimos a equação do ciclóide na proxima seção. Chapter Curvas Paramétricas Introdução e Motivação: No estudo de curvas cartesianas estamos acostumando a tomar uma variável como independente e a outra como dependente, ou seja = f() ou = h(). Porem,

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática MAT- - Cálculo Diferencial e Integral I Bacharelado em Matemática - 200 a Lista de eercícios I. Limite de funções. Calcule os seguintes ites, caso eistam: 2 3 + 9 2 + 2 + 4 2 + 6 5 ) 2 3 2 2 2) + 4 + 8

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t. MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

7.1 Mudança de Variável (método de substituição)

7.1 Mudança de Variável (método de substituição) 7. Mudança de Variável (método de substituição) 0. 0. 0. 05. 07. 08. 0... e 5 (res. e 5 =5 + C) sen a (res. a cos a + C; a 6= 0) sen () 7 (res. cotg + C) (res. jln 7j + C) tan (res. ln jcos j + C) cot

Leia mais

Lista 3. Funções de Uma Variável. Derivadas III

Lista 3. Funções de Uma Variável. Derivadas III Lista 3 Funções de Uma Variável Derivadas III Taxas Relacionadas 5 Uma esteira transportadora está descarregando cascalho a uma taxa de 30m 3 /min formando uma pilha na forma de cone com diâmetro da base

Leia mais

M23 FICHA DE TRABALHO DERIVADAS I PARTE. 3. Na figura estão representadas:

M23 FICHA DE TRABALHO DERIVADAS I PARTE. 3. Na figura estão representadas: M FICHA DE TRABALHO DERIVADAS I PARTE. Na figura estão representadas: Parte do gráfico de uma função f diferenciável em ; Uma recta r tangente ao gráfico de f no ponto de abcissa. O valor de f (), derivada

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

Cálculo - James Stewart - 7 Edição - Volume 1

Cálculo - James Stewart - 7 Edição - Volume 1 Cálculo - James Stewart - 7 Edição - Volume. Eercícios. Eplique com suas palavras o significado da equação É possível que a equação anterior seja verdadeira, mas que f? Eplique.. Eplique o que significa

Leia mais

Exercícios Referentes à 1ª Avaliação

Exercícios Referentes à 1ª Avaliação UNIVESIDADE FEDEAL DO PAÁ CUSO DE LICENCIATUA EM MATEMÁTICA PLANO NACIONAL DE FOMAÇÃO DE DOCENTES DA EDUCAÇÃO BÁSICA - PAFO Docente: Município: Discente: 5ª Etapa: Janeiro -fevereiro - ) Calcule as integrais

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

Matemáticas Gerais. (Licenciatura em Geologia) Caderno de exercícios (exercícios propostos e tabelas) Armando Gonçalves e Maria João Rodrigues

Matemáticas Gerais. (Licenciatura em Geologia) Caderno de exercícios (exercícios propostos e tabelas) Armando Gonçalves e Maria João Rodrigues Matemáticas Gerais (Licenciatura em Geologia Caderno de eercícios (eercícios propostos e tabelas Armando Gonçalves e Maria João Rodrigues Departamento de Matemática Faculdade de Ciências e Tecnologia da

Leia mais

(Exames Nacionais 2000)

(Exames Nacionais 2000) (Eames Nacionais 000) 1.a) Seja [ABC] um triângulo O ângulo, assinalado na figura, tem o seu vértice no centro isósceles em que BA = BC. Seja α da Terra; o seu lado origem passa no perigeu, o seu lado

Leia mais

Derivada de funções na forma paramétrica

Derivada de funções na forma paramétrica Derivada de funções na forma paramétrica Sejam ( t) y y( t) (1) duas funções da mesma variável t [a,b]. Tomando e y como as coordenadas de um ponto P, podemos dizer que a cada valor de t, corresponde um

Leia mais

EXERCÍCIOS ADICIONAIS

EXERCÍCIOS ADICIONAIS EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo

Leia mais

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013)

MATEMÁTICA I ECONOMIA (5598) Ficha de exercícios 1 (2012/2013) Universidade da Beira Interior - Departamento de Matemática MATEMÁTICA I ECONOMIA (5598) Ficha de eercícios (0/03). Determine o conjunto dos pontos interiores, eteriores e fronteiros dos seguintes conjuntos:

Leia mais

MAT096. Tutoria de Cálculo Diferencial e Integral

MAT096. Tutoria de Cálculo Diferencial e Integral UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Eatas e Tecnológicas - CCE Departamento de Matemática MAT096 Tutoria de Cálculo Diferencial e Integral Apostila DMA - UFV 010 Sumário 1 Função 4 1.1 Noções

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

(Testes intermédios e exames 2005/2006)

(Testes intermédios e exames 2005/2006) 158. Indique o conjunto dos números reais que são soluções da inequação log 3 (1 ) 1 (A) [,1[ (B) [ 1,[ (C) ], ] (D) [, [ 159. Na figura abaio estão representadas, em referencial o. n. Oy: parte do gráfico

Leia mais

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x.

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x. Professora: Elisandra Bär de Figueiredo Lista 4: Derivadas - Cálculo Diferencial e Integral I f( + h) f() 1. Para as funções dadas abaio calcule lim. h 0 h( (a) f() ) (b) f() (e) f() cos (c) f() 1 (f)

Leia mais

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241 Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada Eercícios de Derivada Eercícios de Fiação Cálculo I (0/) IM UFRJ Lista : Derivadas Prof Milton Lopes e Prof Marco Cabral Versão 7040 Fi : Determine a equação da reta tangente ao gráco de f() no ponto =

Leia mais

Universidade Federal do ABC Prova 1 de FUV (2017.1) Versão 1 A-Diurno

Universidade Federal do ABC Prova 1 de FUV (2017.1) Versão 1 A-Diurno Prova 1 de FUV (20171 Versão 1 A-Diurno Justifique suas afirmações Respostas sem justificativa não serão consideradas Escreva seu nome em todas as folhas A prova pode ser escrita pelo lápis, mas respostas

Leia mais

Material de Apoio. Roteiro para Esboçar uma Curva 1

Material de Apoio. Roteiro para Esboçar uma Curva 1 Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Cálculo M I Prof a Yane Lísle Material de Apoio Roteiro para Esboçar uma Curva A lista a seguir pretende servir como um guia

Leia mais

Primeiro Teste de Cálculo Infinitesimal I

Primeiro Teste de Cálculo Infinitesimal I Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5

Leia mais

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE CE65 - ELEMENTOS BÁSICOS DE ESTATÍSTICA ª. PARTE. FUNÇÕES.- Sistema de Coordenadas Cartesianas ou Plano Cartesiano A localização de pontos num plano é bastante antiga na Matemática e data aproimadamente

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

20 de setembro de MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas

20 de setembro de MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas 20 de setembro de 2015 Já vimos que se a seguinte equação s = f (t), representa a distância percorrida por uma partícula em um período de tempo

Leia mais

Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas. Funções Quadráticas

Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas. Funções Quadráticas Lista 8 Bases Matemáticas Funções Quadráticas, Eponenciais, Logarítmicas e Trigonométricas Funções Quadráticas Esboce o gráfico das seguintes funções, indicando em quais intervalos as funções são crescentes

Leia mais

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75 MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

1. Seja V o volume de um cilindro tendo altura h e raio r e suponha que h e r variam com o tempo.

1. Seja V o volume de um cilindro tendo altura h e raio r e suponha que h e r variam com o tempo. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA DISCIPLINA: MAT0339 - Cálculo e Geometria Analítica para Arquitetos PROFESSOR: Vilmar Trevisan

Leia mais

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1 Lista 5: Derivada como taxa de variação e Diferencial - Cálculo Diferencial e Integral I Professora: Elisandra Bär de Figueiredo 1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

9 Integrais e Primitivas.

9 Integrais e Primitivas. Eercícios de Cálculo p. Informática, 006-07 9 Integrais e Primitivas. E 9- Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f() = sin, F (π) = 3.

Leia mais

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x)

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x) 7. Regras Básicas e Derivação 0. regra a soma: [f () + g ()] 0 = f 0 () + g 0 () 0. regra a iferença [f () g ()] 0 = f 0 () g 0 () 0. regra o routo [f () :g ()] 0 = f () g 0 () + f 0 () g () 04. regra

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

TRIGONOMETRIA III) essa medida é denominada de tangente de α e indicada

TRIGONOMETRIA III) essa medida é denominada de tangente de α e indicada MTEMÁTIC TRIGONOMETRI. TRIÂNGULO RETÂNGULO.. Definição Define-se como triângulo retângulo a qualquer triângulo que possua um de seus ângulos internos reto (medida de 90º). Representação e Elementos Catetos:

Leia mais

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2 MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES 008 LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES. Calcular a soma superior e inferir de f ( =. sen( no intervalo [0,] com divisões.,86 u.a. e,6 u.a.. Esboce o gráfico e aproime com

Leia mais

PROFMAT AV2 MA

PROFMAT AV2 MA PROFMAT AV MA 11 011 Questão 1. Calcule as seguintes epressões: [ ] (1,0) (a) log n log n (1,0) (b) log a/ log, onde a > 0, > 0 e a base dos logaritmos é fiada arbitrariamente. (a) Como = n 1/n 3, temos

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

GABARITO COMENTADO EN Prova Amarela(2º Dia)

GABARITO COMENTADO EN Prova Amarela(2º Dia) PROFESSORES: Carlos Eduardo (Cadu) ndré Felipe Bruno Pedra nderson Izidoro le Ricardo Rafael Sabino Noronha Jean Pierre QUESTÃO 0 (E) Temos da solução do sistema: y 5 y 6 y 9 y y 6 9 5 y 6 6 y 8 Reescrevendo

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo Cálculo I (015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.015 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio

Leia mais

Exercícios para as aulas TP

Exercícios para as aulas TP Generalidades sobre funções reais de variável real. FichaTP0. Considere os gráficos correspondentes a duas funções reais de variável real: y y 5-0 4-5 4 3-3 - - 0 3 4 - Indique para cada uma delas: (a)

Leia mais

5.1 Noção de derivada. Interpretação geométrica de derivada.

5.1 Noção de derivada. Interpretação geométrica de derivada. Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas

Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas Lista 8 Bases Matemáticas Funções Quadráticas, Eponenciais, Logarítmicas e Trigonométricas Funções Quadráticas Esboceográficodas seguintes funções, indicando em quais intervalos as funções são crescentes

Leia mais