1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1"

Transcrição

1 Lista 5: Derivada como taxa de variação e Diferencial - Cálculo Diferencial e Integral I Professora: Elisandra Bär de Figueiredo 1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1 y y=e x n x Figura 1: Exercício 1 2. Um forno industrial coze a temperatura constante de 608 graus centígrados. A temperatura do forno, desde o início em que é ligado até atingir a temperatura de cozedura, é dada por: T (t) = 20t2 + 5t + 32, t em minutos e T (t) em C. Determine: t + 2 (a) a temperatura inicial do forno? (b) a variação da temperatura no intervalo de tempo [2, 10]. (c) a variação instantânea da temperatura para t = O valor de um automóvel ao m de t anos é dado por V (t) = 50000e 0.12t, sendo V dado em reais e t em anos. (a) Por qual preço foi comprado o automóvel? (b) Represente gracamente a função e determine o valor aproximado do automóvel daqui a 5 anos. (c) A taxa de variação é negativa para qualquer valor de t. Justique esta armação e interprete este fato no contexto da situação. (d) Em que momento a taxa de variação é reais ao ano? (e) Mostre que o gráco V tem uma assíntota horizontal. situação? 4. Seja y = 3 3x + 2 a equação do movimento de uma partícula, determine: (a) a velocidade da partícula quando transcorridos 2s. Qual o seu signicado relativo à (b) a aceleração da partícula quando transcorridos 2s. ( ) 5. Um carro está a s = 16t t + 16 km a leste de uma parada no instante t horas. Pergunta-se: 1

2 (a) Qual é a velocidade no instante t = 1 h e qual é o sentido que ele se move? 4 (b) Qual a posição do carro quando sua velocidade é nula? 6. Dois corpos têm movimento em uma mesma reta segundo as equações s 1 = t 3 + 4t 2 + t 1 e s 2 = 2t 3 5t 2 + t + 2. Determine a velocidade e as posições desses dois corpos no instante em que as suas acelerações são iguais. Considere s 1 e s 2 em metros e t em segundos. 7. Dois pontos partem da origem do eixo x no instante t = 0 e se movem ao longo desse eixo de acordo com as equações x 1 = t 2 2t e x 2 = 8t t 2, com x 1 e x 2 em metros e t em segundos. (a) Em que instante os dois têm mesma velocidade? (b) Qual a velocidade desses pontos no instante em que eles têm a mesma posição? 8. A posição de uma partícula que se desloca ao longo do eixo y varia com o tempo x segundo a equação y = v 0 ( ) 1 e cx, x 0, onde v 0 e c são constantes positivas. Use a DEFINIÇÃO de c derivadas para determinar a velocidade da partícula no instante x. 9. Uma esfera aumenta de modo que seu raio cresce a razão de 12, 5 cm/s. Qual a variação do volume no instante em que o raio é de 15, 2 cm? 10. Dois carros, um dirigindo-se para leste com velocidade de 80 km/h, o outro dirigindo-se para sul com velocidade de 50 km/h, estão viajando em direção ao encontro das rodovias. A que velocidade os carros se aproximam um do outro, no momento em que o primeiro carro está a 400 m e o segundo está a 300 m da interseção das rodovias? 11. Um tanque de forma cônica invertido tem altura de 8 m, raio da base 2 m. O mesmo se enche de água à razão de 7 m 3 /min. Com que velocidade sobe o nível da água quando este se encontra a 4 m de profundidade? 12. Uma piscina tem 18 m de largura, 28 m de comprimento, 2 m de profundidade em um extremo e 8 m no outro, o fundo tem forma de um plano inclinado. Se a água está sendo bombeada para a piscina à razão de 0, 8 m 3 /min, com que velocidade se eleva o nível da água no instante em que ele esta a 1, 8 m na extremidade mais profunda? 13. Em que pontos da parábola y 2 18x = 0 a ordenada y cresce duas vezes mais depressa que a abscissa x? 14. Uma criança esta empinando uma pipa e movendo-se horizontalmente a 4 m/s. Supondo que a pipa permaneça sempre a 80 m de altura, sobre o nível do solo, qual é a velocidade com que a criança está soltando a corda da pipa quando esta corda medir 100 m? Obs: Despreze a altura da criança. 15. Um tanque tem a forma de um cilindro circular reto com raio da base de 5 m e altura de 10 m. Se instante t = 0s, a água começa a uir no tanque à razão de 25 m 3 /h, determine: (a) com que velocidade sobe o nível da água? (b) quanto tempo levará para encher o tanque? 16. Um balão está subindo verticalmente acima de uma estrada a uma velocidade constante de 1 m/s. Quando ele está a 17 m acima do solo, uma bicicleta que se desloca a uma velocidade 3 constante de 5 m/s passa por baixo dele. A que taxa a distância entre a bicicleta e o balão aumentará 3s depois? 2

3 17. O nível de café que escoa de um ltro cônico, de diâmetro e altura 15 cm, para uma cafeteira cilíndrica, de diâmetro e altura 15 cm, varia a uma taxa de cm/min. A que taxa o nível do café, na cafeteira, aumentará quando a altura de café no ltro for 5 cm? 18. Um cabo de cobre tem diâmetro de 1 cm a 0 C. Suponha que seu comprimento é de 1 m e não se altera com a variação da temperatura. Se seu diâmetro aumenta a uma velocidade de 0, 02cm/ C, Calcule a taxa de variação do volume desse cabo quando a temperatura está a 20 C. 19. Numa granja de frangos, o abastecimento de ração é automático. A ração está num reservatório que tem a forma de uma pirâmide de base quadrada com 2 m de lado e 6 m de altura, cujo vértice está voltado para baixo. Se o consumo de ração é de 0, 05 m 3 /h, com que velocidade desce o nível de ração quando este está a 2 m do vértice? 20. A altura de um triângulo cresce a razão de 1cm/ min e sua área aumenta a razão de 2cm 2 / min. Qual a taxa de variação da base do triângulo quando sua altura for 10cm e sua área 100cm Uma piscina tem 24m de comprimento e seus extremos são trapézios isósceles com altura de 6m, uma base menor 6m e uma base maior de 8m. A água está sendo bombeada para a piscina à razão de 10m 3 /mim. Com que velocidade o nível de água está subindo quando a profundidade da água é de 2m? 22. Um avião (A) voa a 124 m/s, paralelamente ao solo, a uma altitude de 1220 m no sentido oeste, tomando como referência um holofote (H), xado no solo, que o focaliza e que se encontra à esquerda da projeção vertical (P) do avião e sabendo que a luz do holofote deverá permanecer iluminando o avião, qual será a velocidade com que θ estará variando quando a distância entre o holofote e a projeção vertical do avião for de 610 m? 23. Às 7 : 00 horas dois navios partem de um ponto O em rotas que formam um ângulo de 120. Os navios A e B deslocam-se a 20 km/h e 25km/h, respectivamente. Determine qual é a velocidade de afastamento desses navios às 9 : 00 horas. 24. Use aproximações lineares para estimar o valor de 4 (a) 17 1 (g) 3 (b) (8, 06) (c) tan(44 ) (h) e 0,13 (d) ln(1, 05) (e) (i) arctan(1, 02) 99, 8 (j) (1, 01) 3 6 (f) (1, 2) 1,2 (k) Suponha que não temos uma fórmula para g(x), mas sabemos que g(2) = 4 e g (x) = x para todo x. Use uma aproximação linear para estimar g(1, 95) e g(2, 05). 26. A aresta de um cubo tem 30cm, com um possível erro de medida de 0,1cm. Use diferenciais para estimar o erro possível no cálculo (a) do volume do cubo. (b) da área da superfície do cubo. 27. Por meio de diferenciais obtenha uma fórmula aproximada do volume de uma na coroa cilíndrica de altura h, raio interior r e espessura r. Qual o erro decorrente do uso desta fórmula? 28. Estima-se em 12cm o raio de uma esfera com erro máximo de 0,05cm. Estime o erro máximo para no cálculo do volume da esfera. 3

4 29. Uma janela tem o formato de um quadrado com um semicírculo em cima. A base da janela mede 60cm com um possível erro na medida de 1mm. Use diferenciais para estimar o maior erro possível no cálculo da área desta janela. 30. Na medida que a areia escoa de um recipiente, vai formando uma pilha cônica cuja altura é sempre igual ao raio. Se, num dado instante, o raio é 10cm, use diferenciais para aproximar a variação do raio que ocasiona um aumento de 2cm 3 no volume da pilha. 31. A área de um quadrado de lado s é dada por s 2. Para um acréscimo s de s, ilustre geometricamente da e A da. 32. Aproxime, por meio de diferenciais, N = (2, 01) 4 3(2, 01) 3 + 4(2, 01) 2 5. Qual o valor exato de N? 33. Uma caixa em forma de cubo deve ter um revestimento externo com espessura de 1/4 cm. Se o lado da caixa é de 2 m, usando diferencial, encontre a quantidade de revestimento necessária. 34. Um material está sendo escoado de um recipiente, formando uma pilha cônica cuja altura é sempre igual ao raio da base. Se em dado instante o raio é 12 cm, use diferenciais para obter a variação do raio que origina um aumento de 2 cm 3 no volume da pilha. Respostas: 1. A = e3 2 u.a (a) 16 C. (b) 17,875 C. (c) 19,29 C por minuto. (a) reais. (b) (c) (d) 7,3 anos. (e) 4. (a) v(2) = 1 1 u.c./s (b) a(2) = 4 16 u.c./s2 5. (a) v(1/4) = 12km/h e está indo na direção oeste (b) s(1) = 8km 6. t = 3s; v 1 (3) = 52m/s; v 2 (3) = 25m/s; s 1 (3) = 65m; s 2 (3) = 14m 7. (a) 2,5s (b) t = 0s v 1 = 2cm/s e v 2 = 8cm/s; t = 5s v 1 = 8cm/s e v 2 = 2cm/s 8. v 0 e cx u.c./u.t πcm 3 /s km/h 4

5 11. 7 π m/min 12. 0,005m/min ou 0,025m/min, dependendo da interpretação da piscina. ( , 9 ) ,4m/s 15. (a) 1 m/h (b) 31,4h π , 46m/s cm/min , 4πcm 3 /min ,1125m/h ,6cm/min 21. 0,0625m/min 22. 0,08rad/s km/h 24.. (a) 65 = 2, (b) 4, 02 (c) 90 π 0, (d) 0, 05 (e) 9, 99 (f) 1, 2 (g) 26 0, (h) 0, 87 (i) π , (j) 1, 06 (k) 193 4, g(1, 95) 4, 15 e g(2, 05) 3, dv = 270cm 3 e da = 36cm V = 2πrh r =(Área lateral do cilindro interior) (Espessura) e E = πh( r) dv = 28, 8πcm da = 16, 7263cm dr = 1 50π cm 5

6 31. A região sombreada corresponde a da e A da está indicado ΔA-dA 32. N 3, 12 e N = 3, cm , cm 6

As listas de exercícios podem ser encontradas nos seguintes endereços: ou na pasta J18, no xerox (sala1036)

As listas de exercícios podem ser encontradas nos seguintes endereços:  ou na pasta J18, no xerox (sala1036) As listas de eercícios podem ser encontradas nos seguintes endereços: www.mat.ufmg.br/calculoi ou na pasta J8, no ero (sala06) TERCEIRA LISTA DE EXERCÍCIOS. Derive: a) y = 6 + b) y = c) d) y = + y = 0

Leia mais

Prof. Me. Armando Paulo da Silva paginapessoal.utfpr.edu.br/armando

Prof. Me. Armando Paulo da Silva paginapessoal.utfpr.edu.br/armando Prof. Me. Armando Paulo da Silva armando@utfpr.edu.br paginapessoal.utfpr.edu.br/armando Taxa de Variação Relacionada 1 Exemplo A: Um quadrado se expande de modo que seu lado varia a razão de 5 cm/s. Achar

Leia mais

Lista 3. Funções de Uma Variável. Derivadas III

Lista 3. Funções de Uma Variável. Derivadas III Lista 3 Funções de Uma Variável Derivadas III Taxas Relacionadas 5 Uma esteira transportadora está descarregando cascalho a uma taxa de 30m 3 /min formando uma pilha na forma de cone com diâmetro da base

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de

Leia mais

CÁLCULO I Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas

CÁLCULO I Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas de CÁLCULO I Aula n o 10: de, Velocidade, e Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará de 1 de 2 3 4 de de Suponha que y seja uma quantidade que depende de outra quantidade

Leia mais

Lista de Exercícios 3 1

Lista de Exercícios 3 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações

MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações Universidade Federal de Viçosa Departamento de Matemática MAT 140 (Cálculo I) 2017/I Lista de Derivadas e Aplicações 1) Determine a função derivada de f definida por: a) ( 2 + 4 5) 4 b) (2 4 7 3 ) e c)

Leia mais

Capítulo 3 - Derivada e Diferencial

Capítulo 3 - Derivada e Diferencial Caítulo 3 - Derivada e Diferencial f( + h) f(). Para as funções dadas abaio calcule lim : h!0 h (a) f() = (b) f() = (e) f() = cos (c) f() = (f) f() = tan() (g) f() = log a (); a R + (d) f() = sin(3) (h)

Leia mais

20 de setembro de MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas

20 de setembro de MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas MAT140 - Cálculo I - Taxa de Variação e Taxas Relacionadas 20 de setembro de 2015 Já vimos que se a seguinte equação s = f (t), representa a distância percorrida por uma partícula em um período de tempo

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

MAT146 - Cálculo I - Teorema do Valor Intermediário

MAT146 - Cálculo I - Teorema do Valor Intermediário MAT146 - Cálculo I - Teorema do Valor Intermediário Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Agora, veremos problemas em que temos de determinar a taxa de variação de uma variável,

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 014 Lista 6 Gráficos: Pontos críticos, máimos e mínimos, partes crescentes e decrescentes. L Hôpital.

Leia mais

Lista de exercícios Derivadas

Lista de exercícios Derivadas Lista de exercícios Derivadas 1 - (ENADE 2011) - Os analistas financeiros de uma empresa chegaram a um modelo matemático que permite calcular a arrecadação mensal da empresa ao longo de 24 meses, por meio

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

5.3 EXERCÍCIO pg. 191

5.3 EXERCÍCIO pg. 191 5 EXERCÍCIO pg 9 0 Numa granja experimental, constatou-se que uma ave em desenvolvimento pesa em gramas l 0 + (t + ) W(t),t + 60, 0, 60 onde t é medido em dias t 60 t 90, (a) Qual a razão de aumento do

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos

Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos INSTITUTO GAY-LUSSAC Disciplina: Física Ano: 2º Ensino Médio Professora: Daniele Santos Lista de Exercícios 04 Cinemática Vetorial e Composição de Movimentos Questão 1. Um automóvel percorre 6,0km para

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

Lista 1: Vetores - Engenharia Mecânica. Professora: Elisandra Bär de Figueiredo

Lista 1: Vetores - Engenharia Mecânica. Professora: Elisandra Bär de Figueiredo Professora: Elisandra är de Figueiredo Lista 1: Vetores - Engenharia Mecânica 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente

Leia mais

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real.

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real. 6/0/008 Fatec/Tatuí Calculo II - Taxas Relacionadas 1 Taxas Relacionadas Um problema envolvendo taxas de variação de variáveis relacionadas é chamado de problema de taxas relacionadas. Os passos a seguir

Leia mais

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02 Questão 01 Um grupo de alunos de uma escola deveria visitar o Museu de Ciência e o Museu de História da cidade. Quarenta e oito alunos foram visitar pelo menos um desses museus. 20% dos que foram ao de

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

BIMESTRAL - FÍSICA - 1ºBIMESTRE

BIMESTRAL - FÍSICA - 1ºBIMESTRE BIMESTRAL - FÍSICA - 1ºBIMESTRE Série: 3ªEM Gabarito 1- Uma pessoa percorreu, caminhando a pé, 6,0 km em 20,0 minutos. A sua velocidade escalar média, em unidades do Sistema Internacional, foi de: * 2,0

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo.

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. (UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina que foi preparada coube em

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada.

Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada. Matemática 2 01. Pedro tem 6 bolas de metal de mesmo peso p. Para calcular p, Pedro colocou 5 bolas em um dos pratos de uma balança e a que restou, juntamente com um cubo pesando 100g, no outro prato,

Leia mais

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa 1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste

Leia mais

Lista 1: Vetores. Professora: Elisandra Bär de Figueiredo. 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor:

Lista 1: Vetores. Professora: Elisandra Bär de Figueiredo. 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: Lista 1: Vetores Professora: Elisandra är de Figueiredo 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w com

Leia mais

Chapter 2 Movimento Retilíneo (movimento unidimensional)

Chapter 2 Movimento Retilíneo (movimento unidimensional) Chapter 2 Movimento Retilíneo (movimento unidimensional) (2-1) 1. Vamos supor que o movimento se dá ao longo de uma linha reta. A trajetória pode ser vertical, horizontal ou inclinada, mas deve ser retilínea.

Leia mais

REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA PLANA Questão 1 - (UNICAMP SP/015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular

Leia mais

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein # Ler todas as teorias # Refazer todos os exercícios dados em aula. # Refazer todos os exercícios feitos do livro. # Refazer

Leia mais

PROBLEMAS DE OTIMIZAÇÃO MÁXIMOS E MÍNIMOS UNIVERSIDADE SÃO JUDAS TADEU CURSO: ENGENHARIA TURMA: Nº DE ORDEM: RESUMO 1

PROBLEMAS DE OTIMIZAÇÃO MÁXIMOS E MÍNIMOS UNIVERSIDADE SÃO JUDAS TADEU CURSO: ENGENHARIA TURMA: Nº DE ORDEM: RESUMO 1 UNIVERSIDADE SÃO JUDAS TADEU DATA: CURSO: ENGENHARIA TURMA: Nº DE ORDEM: DISCIPLINA: CÁLCULO I Prof. Ms Rogério Lobo PROBLEMAS DE OTIMIZAÇÃO MÁXIMOS E MÍNIMOS Observe a função y = f(x), contínua e derivável,

Leia mais

FÍSICA PROFº JAISON MATTEI

FÍSICA PROFº JAISON MATTEI FÍSICA PROFº JAISON MATTEI QUEDA LIVRE Fórmulas: V h V. g. h Aceleração constante e igual g = 1 m/s Velocidade inicial sempre igual a zero. Despreza a resistência do ar. Objetos com formatos e massas diferentes,

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

FIS-14 Lista-04 Setembro/2012

FIS-14 Lista-04 Setembro/2012 FIS-14 Lista-04 Setembro/2012 1. A posição de uma partícula é descrita por r = 300e 0,500t mm e θ = 0,300t 2 rad, onde t é dado em segundos. Determine as intensidades da velocidade e da aceleração da partícula

Leia mais

25 Problemas de Óptica

25 Problemas de Óptica 25 Problemas de Óptica Escola Olímpica - Gabriel Lefundes 25 de julho de 2015 Problema 1. O ângulo de deflexão mínimo um certo prisma de vidro é igual ao seu ângulo de refração. Encontre-os. Dado: n vidro

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira Universidade Federal de Ouro Preto Departamento de Matemática MTM11 - T8 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira 1. Determine a equação geral da elipse que satisfaça as condições

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Aula Transformações

Aula Transformações Aula 6 6. Transformações O gráfico de uma função f permite obter os gráficos de outras funções, via transformações elementares. Para simplificar, nesta seção consideraremos somente funções cujo domínio

Leia mais

Trabalho. 1.Introdução 2.Resolução de Exemplos

Trabalho. 1.Introdução 2.Resolução de Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho Prof.: Rogério

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

denomina-se norma do vetor (x 1,..., x n ). (Desigualdade de Schwarz) Quaisquer que sejam os vetores u e v de R n, tem-se

denomina-se norma do vetor (x 1,..., x n ). (Desigualdade de Schwarz) Quaisquer que sejam os vetores u e v de R n, tem-se Teoria FUNÇÕES VETORIAIS Geometria do Espaço R n : O espaço R n é um espaço vetorial sobre R com as operações de soma e multiplicação por escalar definidas coordenada a coordenada. O número (x 1,..., x

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Posteriormente, as esferas são retiradas do recipiente. A altura da água, em cm, após a retirada das esferas, corresponde, aproximadamente, a:

Posteriormente, as esferas são retiradas do recipiente. A altura da água, em cm, após a retirada das esferas, corresponde, aproximadamente, a: Questão 01 PROVA OBJETIVA MATEMÁTICA Considere uma compra de lápis e canetas no valor total de R$ 9,00. O preço de cada lápis é R$ 1,00 e o de cada caneta é R$,00. A probabilidade de que se tenha comprado

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

Lista de exercícios Mecânica Geral III

Lista de exercícios Mecânica Geral III Lista de exercícios Mecânica Geral III 12.5 Uma partícula está se movendo ao longo de uma linha reta com uma aceleração de a = (12t 3t 1/2 ) m/s 2, onde t é dado em segundos. Determine a velocidade e a

Leia mais

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Mínimos Exercício 1 Determine os intervalos de crescimento e de decrescimento, calcule todos os limites necessários e esboce o gráfico de f, onde

Leia mais

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0). Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos ª PROA SUBSTITUTIA DE MATEMÁTICA 01 Aluno(a): Nº Ano: º Turma: Data: Nota: Professor(a): Cláudia e Gustavo alor da Prova: 5 pontos Orientações gerais: 1) Número de questões desta prova: 17 ) alor das questões:

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

DIFERENCIAIS E O CÁLCULO APROXIMADO

DIFERENCIAIS E O CÁLCULO APROXIMADO BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DIFERENCIAIS E O CÁLCULO APROXIMADO 1 a Edição Rio Grande 2017 Universidade Federal do Rio Grande - FURG

Leia mais

Lista de Exercícios 03: Derivadas e Aplicações

Lista de Exercícios 03: Derivadas e Aplicações Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologias Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental - UACTA Disciplina: Cálculo Professor: Paulo Pamplona

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento

Leia mais

Exercícios de Velocidade média Dom, 01 de Agosto de :38 - Última atualização Ter, 23 de Dezembro de :45

Exercícios de Velocidade média Dom, 01 de Agosto de :38 - Última atualização Ter, 23 de Dezembro de :45 VELOCIDADE MÉDIA (ESCALAR E VETOTIAL) www.nilsong.com.br I) RESUMO DAS PRINCIPAIS FÓRMULAS: o que diferencia velocidade escalar média do módulo do vetor velocidade média é o fato de ΔS ser considerado

Leia mais

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia. Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 Aproximações

Leia mais

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 17 de Outubro de 2014

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 17 de Outubro de 2014 Sumário 1 Questões de Vestibular 1 1.1 UFPR 2012.................................... 1 1.1.1 Questão 1................................. 1 1.1.2 Questão 2................................. 2 1.1.3 Questão

Leia mais

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

Movimento Uniformemente Variado (M.U.V.)

Movimento Uniformemente Variado (M.U.V.) Movimento Uniformemente Variado (M.U.V.) A principal característica do movimento uniformemente variado é a aceleração escalar constante. Quando um móvel qualquer se movimenta com aceleração escalar constante,

Leia mais

1. Seja V o volume de um cilindro tendo altura h e raio r e suponha que h e r variam com o tempo.

1. Seja V o volume de um cilindro tendo altura h e raio r e suponha que h e r variam com o tempo. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA DISCIPLINA: MAT0339 - Cálculo e Geometria Analítica para Arquitetos PROFESSOR: Vilmar Trevisan

Leia mais

Universidade Federal fluminense. Física I e Física XVIII

Universidade Federal fluminense. Física I e Física XVIII Universidade Federal fluminense Física I e Física XVIII Lista 02 Movimento Unidimensional e Queda Livre Questões: 1)A cada segundo o coelho percorre metade da distância restante entre seu nariz e um pé

Leia mais

MAT Cálculo I - POLI a Lista de Exercícios

MAT Cálculo I - POLI a Lista de Exercícios MAT 453 - Cálculo I - POLI - 003 a Lista de Eercícios. Calcule a derivada indicada em cada caso: a) y se y = ; b) y se y = ( ) d ; c) ; d + ( d) d d 3 + ); e) d500 3 d 500 (3 3 79 + 4).. Calcule dy por

Leia mais

PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ

PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ PROVA DE MATEMÁTICA PRIMEIRA ETAPA - 1997 - MANHÃ QUESTÃO 01 Durante o período de exibição de um filme, foram vendidos 2000 bilhetes, e a arrecadação foi de R$ 7.600,00. O preço do bilhete para adulto

Leia mais

EQUAÇÃO DE TORRICELLI E LANÇAMENTO VERTICAL EXERCÍCIOS

EQUAÇÃO DE TORRICELLI E LANÇAMENTO VERTICAL EXERCÍCIOS EQUAÇÃO DE TORRICELLI E LANÇAMENTO VERTICAL EXERCÍCIOS 1. Uma partícula, inicialmente a 2 m/s, é acelerada uniformemente e, após percorrer 8 m, alcança a velocidade de 6 m/s. Nessas condições, sua aceleração,

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera. Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência

Leia mais

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. leonardosantos.inf@gmail.com 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Atividade de: FÍSICA 4ª UL / 2015 Série: 1ª (E. P.)

Atividade de: FÍSICA 4ª UL / 2015 Série: 1ª (E. P.) Atividade de: FÍSICA 4ª UL / 2015 Série: 1ª (E. P.) Professor: Thiago Alvarenga Ramos Nota: Valor da Atividade: 2,0 Nome do(a) aluno(a): Nº Turma: 1 C 1 3 Use caneta azul ou preta e escreva com letra legível.

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

Óptica Geométrica. => vi = 2vE

Óptica Geométrica. => vi = 2vE Disciplina: Física para Olimpíadas Assunto: Óptica (Teoria e questões antigas da OBF 2ª fase) Professor: Gustavo Mendonça Óptica Geométrica 1) Introdução à Óptica Geométrica: Na Lousa! 2) Reflexão: Fenômeno

Leia mais

MATEMÁTICA. Use este espaço para rascunho.

MATEMÁTICA. Use este espaço para rascunho. MATEMÁTICA Use este espaço para rascunho 01 Cubos brancos de 1cm de aresta foram dispostos formando o paralelepípedo representado abaixo Em seguida, a superfície total desse paralelepípedo foi pintada

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7 Sumário 1 Movimento Circular 3 1.1 Lista de Movimento circular................................... 3 2 Cinemática do Ponto Material 7 3 Equilíbrio de Corpos no Espaço 9 3.1 Equilíbrio de Partícula.....................................

Leia mais

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3

a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3 Lista 06 Matemática Geometria Espacial 1. (Fuvest 015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número

Leia mais

DISCIPLINA: FÍSICA 1 - PDF PROFESSOR(A): ANDERSON Curso: E.M. TURMA: ( ) 3101 ( ) 3102 DATA:

DISCIPLINA: FÍSICA 1 - PDF PROFESSOR(A): ANDERSON Curso: E.M. TURMA: ( ) 3101 ( ) 3102 DATA: EXERCÍCIOS ON LINE 1º Bimestre DISCIPLINA: FÍSICA 1 - PDF PROFESSOR(A): ANDERSON Curso: E.M. TURMA: ( ) 3101 ( ) 3102 DATA: NOME: Nº.: 1) (Puccamp-SP) Dois trens trafegam em sentidos contrários com movimentos

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

10,0 5,0. Fx (N) 0,0. 0,0 3,0 6,0 x (m) se apenas a força dada atuar sobre ela? Respostas sem justificativas detalhadas não serão consideradas.

10,0 5,0. Fx (N) 0,0. 0,0 3,0 6,0 x (m) se apenas a força dada atuar sobre ela? Respostas sem justificativas detalhadas não serão consideradas. Universidade Federal de Santa Catarina Centro de Ciencias Físicas e Matemáticas Departamento de Física Física I (FSC 5101) Prof. Emmanuel G. de Oliveira Lista de exercícios III Versão de 29 de setembro

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

Movimento em duas e três dimensões

Movimento em duas e três dimensões Movimento em duas e três dimensões Professor: Carlos Alberto Disciplina: Física Geral I Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como representar a posição de um corpo em duas

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções 1: Mostre que a função f(x) = x 2 4x + cos x possui exatamente duas raízes: α 1 [0, 1.8] e α 2 [3, 5]. Considere as funções:

Leia mais

MATEMÁTICA. Questões de 01 a 04

MATEMÁTICA. Questões de 01 a 04 GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

5ª LISTA DE EXERCÍCIOS

5ª LISTA DE EXERCÍCIOS 5ª LISTA DE EXERCÍCIOS DISCIPLINA: Física Geral e Experimental I CURSO: Engenharia de Produção Noturno. 2º termo Prof. Dr. Elton Aparecido Prado dos Reis 01 - Um grupo de pessoas, por intermédio de uma

Leia mais

(Queda Livre, Lançamentos Verticais, velocidade media, mru, mruv, derivada e integrais)

(Queda Livre, Lançamentos Verticais, velocidade media, mru, mruv, derivada e integrais) Movimento vertical (Queda Livre, Lançamentos Verticais, velocidade media, mru, mruv, derivada e integrais) 1. Três bolinhas idênticas, são lançadas na vertical, lado a lado e em seqüência, a partir do

Leia mais

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P. 1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas

Leia mais