Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF."

Transcrição

1 Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais, formam segmentos correspondentes proporcionais. Algumas considerações preliminares O enunciado do Teorema de Tales será compreensível a partir da consideração, nesse primeiro momento, de alguns elementos básicos: um feixe de retas paralelas r, s e t que cortam as retas transversais u e v. Neste exemplo, o feixe de retas é formado por apenas três retas paralelas e duas transversais, mas outros feixes podem ser formados com maior número de retas paralelas contidas num mesmo plano. No feixe acima, destacam-se os seguintes elementos: Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. O teorema de Tales: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre quaisquer dos segmentos determinados em uma das transversais é igual à razão entre os segmentos correspondentes da outra transversal. No feixe de retas exemplificado anteriormente, podemos destacar, de acordo com o Teorema de Tales, as seguintes razões:

2 Aplicação do teorema

3 c) Fuvest SP) Três terrenos têm frente para a rua A e para a rua B, como na figura. As divisas laterais são perpendiculares à rua A. Qual a medida de frente para a rua B de cada lote, sabendo que a frente total para essa rua tem 180m? Com base no enunciado, vamos fazer umas anotações na imagem.

4 ATIVIDADES 1) Determine o valor de x, y e z em cada uma das figuras: a) b) c) d)

5 e) f) 2) Ao realizar a instalação elétrica de um edifício, um eletricista observou que os dois fios r e s eram transversais aos fios da rede central demonstrados por a, b, c, d. Sabendo disso, calcule o comprimento x e y da figura. Obs.: os fios da rede central são paralelos.

6 3) No triângulo ABC da figura abaixo temos que DE//BC Sabendo que a medida do lado BC do triângulo é 14 cm, calcule as medidas dos lados AB e AC o perímetro desse triângulo. 4) No triângulo da figura abaixo, as medidas são consideradas em centímetros. Se BC=32 cm, calcule o valor de x y. 5) No triângulo ABC a seguir, o segmento DE é paralelo ao segmento BC. Determine o valor de x aplicando a proporcionalidade entre segmentos paralelos cortados por segmentos transversais.

7 6) Observe a figura r // s // t. Calcule o valor de x de acordo com o Teorema de Tales. 7) Nas figuras, a//b//c, calcule o valor de x: a) b)

8 c) d) e) f)

9 Teorema de Pitágoras Considerado um dos mais importantes teoremas da Matemática, o Teorema de Pitágoras foi desenvolvido por Pitágoras de Samos, filósofo grego que viveu no séc. VI a.c., fundador da mística Escola Pitágorica. O Teorema de Pitágoras pode ser aplicado em qualquer triângulo retângulo no intuito de determinar uma das medidas quando conhecidas as outras duas. O Teorema não se restringiu somente ao triângulo retângulo, de acordo com estudos da época, eram conhecidos os números inteiros e as frações, sendo através das aplicações do Teorema iniciado o estudo dos números irracionais. O Teorema consistia na seguinte relação: A medida do quadrado da hipotenusa é igual à soma das medidas dos quadrados dos catetos Exemplos 1 Determine a medida da hipotenusa do triângulo representado pela figura a seguir: 2 Dado o triângulo retângulo a seguir, determine a medida do cateto y.

10 3) Calcule a altura do muro x: 4) Encontre o valor de c:

11 ATIVIDADES 1) Usando o teorema de Pitágoras encontre o valor de x nas seguintes figuras: a) b) c) d)

12 2) Um avião percorreu a distância de metros na posição inclinada, e em relação ao solo, percorreu metros. Determine a altura do avião. 3) Do topo de uma torre, três cabos de aço estão ligados à superfície por meio de ganchos, dando sustentabilidade à torre. Sabendo que a medida de cada cabo é de 30 metros e que a distância dos ganchos até à base da torre é de 15 metros, determine a medida de sua altura. 4) Calcule a metragem de arame utilizado para cercar um terreno triangular com as medidas perpendiculares de 60 e 80 metros, considerando que a cerca de arame terá 4 fios.

13 Lista 2

14 LISTA 3

15

16 Razões trigonométricas Catetos e Hipotenusa Em um triângulo chamamos o lado oposto ao ângulo reto de hipotenusa e os lados adjacentes de catetos. Observe a figura: HIPOTENUSA: BC CATETOS: AC E AB Seno, Cosseno e Tangente Considere um triângulo retângulo BAC: Hipotenusa:, m( ) = a. Catetos:, m( ) = b., m( ) = c. Ângulos:, e.

17 Seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. Assim: Cosseno de um ângulo agudo é a razão entre a medida do cateto adjacente a esse ângulo e a medida da hipotenusa. Assim:

18 Tangente de um ângulo agudo é a razão entre a medida do cateto oposto e a medida do cateto adjacente a esse ângulo. Assim: Exemplo:

19 Observações: 1. A tangente de um ângulo agudo pode ser definida como a razão entre seno deste ângulo e o seu cosseno. Assim: 2. A tangente de um ângulo agudo é um número real positivo. 3. O seno e o cosseno de um ângulo agudo são sempre números reais positivos menores que 1, pois qualquer cateto é sempre menor que a hipotenusa. SENO, COSSENO E TANGENTE DE 30º, 45º E 60º x sen x cos x tg x 30º 45º 60º 90º 1 0

20 Matemática 4º BIMESTRE 8ª série Aluno: Turma:

TEOREMA DE TALES. Um feixe de paralelas determina sobre duas transversais segmentos proporcionais.

TEOREMA DE TALES. Um feixe de paralelas determina sobre duas transversais segmentos proporcionais. TEOREMA DE TALES O teorema de tales foi desenvolvido por Tales de Mileto, que foi um filósofo, astrónomo e matemático grego muito importante, que viveu antes de Cristo, no século VI. É conhecido como o

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Matemática 1º Ano - 2º Bimestre / 2013 PLANO DE TRABALHO 2 Tarefa 2 Cursista: Mariane Ribeiro do Nascimento Tutor: Bruno Morais 1 SUMÁRIO

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

Matemática 9º ano 3º bimestre/2013 Plano de Trabalho

Matemática 9º ano 3º bimestre/2013 Plano de Trabalho Formação Continuada em Matemática Fundação CECIERJ/ CEDERJ Matemática 9º ano 3º bimestre/2013 Plano de Trabalho Tarefa 2: Triângulo Retângulo, Circunferência e Círculo, Trigonometria no Triângulo Retângulo.

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

Relações Métricas nos Triângulos. Joyce Danielle de Araújo

Relações Métricas nos Triângulos. Joyce Danielle de Araújo Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g)

9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) 9º ano Matemática 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) Matemática Avaliação Produtiva 02. Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 03. Determine

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

COLÉGIO MARQUES RODRIGUES - SIMULADO

COLÉGIO MARQUES RODRIGUES - SIMULADO COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P6 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 901 Questão 1 Um feixe

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Trabalho 1º Bimestre - 9ºano

Trabalho 1º Bimestre - 9ºano Matéria: Matemática Data de entrega: 23/03/2017 Valor: 10 Trabalho 1º Bimestre - 9ºano TEMA: Problemas envolvendo números inteiros Desenvolvimento e Descrição: 1. Trabalho Individual manuscrito em folha

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales Período: 1 o Bimestre Série/Turma: 1 a série EM Professor(a): Cleubim Valor: Nota: Aluno(a): Razão e Proporção

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE

REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens

Leia mais

Matemática Prof. Evandro de Freitas Exercícios de Fixação Teorema de Tales

Matemática Prof. Evandro de Freitas Exercícios de Fixação Teorema de Tales Matemática Prof. Evandro de Freitas Exercícios de Fixação Teorema de Tales 1) Nas figuras, a // b // c, calcule o valor de x. Acesse professorevandro.net! a) Resp.: 6 b) Resp.: 7 c) Resp.: 10,5 d) Resp.:

Leia mais

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ).

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ). Geometria Analítica Módulo 1 Revisão de funções trigonométricas, Vetores: Definições e aplicações Módulo, direção e sentido. Igualdades entre vetores 1. Revisão de funções trigonométricas a) Triângulo

Leia mais

Formação Continuada Nova EJA. Plano de Ação 2

Formação Continuada Nova EJA. Plano de Ação 2 Nome: Jones Paulo Duarte Regional: Centro Sul Tutora: Josiane da Silva Martins Formação Continuada Nova EJA Plano de Ação 2 INTRODUÇÃO Esse PA tem como objetivo enfatizar o assunto do capítulo 19 do 2º

Leia mais

MATEMÁTICA SEGUNDO ANO - PARTE UM

MATEMÁTICA SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM TRIGONOMETRIA NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos:

Leia mais

SEGUNDO ANO - PARTE UM

SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o

Leia mais

Axiomas e Proposições

Axiomas e Proposições Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de LISTA DE EXERCÍCIOS P4 º BIM 0 PARTE POTÊNCIAS ) Calcule: a) 0, b) 0, c) 0, d),4 e), f) 8 8, ) (PUC-SP) Calcule: a) 4 c) 4 e) 4 b) 4 d) 4 f) 4 ) (FUVEST SP) Qual a metade de 4) Calcule: a) 0 b)? ) Calcule

Leia mais

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos

Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos Lista: Trigonometria no triangulo retângulo, lei dos senos e cossenos 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen65º = 0,91; cos65º = 0,42 e tg65º = 2,14) 2. Determine no

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo

Leia mais

Plano de Trabalho INTRODUÇÃO DESENVOLVIMENTO

Plano de Trabalho INTRODUÇÃO DESENVOLVIMENTO FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ. Professor: Joana Eunice Rodes de Oliveira - Matrículas: 09353525. Série: 1º ANO ENSINO MÉDIO (2º Bimestre) GRUPO 04. Tutora:

Leia mais

Pela proporcionalidade existente no Teorema, temos a seguinte situação:

Pela proporcionalidade existente no Teorema, temos a seguinte situação: TEOREMA DE TALES Tales de Mileto foi um importante filósofo, astrônomo e matemático grego que viveu antes de Cristo. Ele usou seus conhecimentos sobre Geometria e proporcionalidade para determinar a altura

Leia mais

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Nome: Nº: Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Polígonos: - nomenclatura.

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Formação continuada em Matemática. Fundação CECIERJ

Formação continuada em Matemática. Fundação CECIERJ Formação continuada em Matemática Fundação CECIERJ Matemática 9º Ano 2º Bimestre / 2013 Plano de Trabalho Teorema de Pitágoras. Tarefa 2 Cursista: Roberta Costa Tutora: Maria Claudia Padilha Tostes. Sumário

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

8-Funções trigonométricas

8-Funções trigonométricas 8-Funções trigonométricas Laura Goulart UESB 25 de Março de 2019 Laura Goulart (UESB) 8-Funções trigonométricas 25 de Março de 2019 1 / 45 Vale mais ter um bom nome do que muitas riquezas; e o ser estimado

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano

Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /015 Aluno(a): Nº do Aluno: Série: Turma: 9º Ano Esta lista de exercícios possui pontuação extra e portanto é facultativa

Leia mais

Complemento Matemático 04 Ciências da Natureza I RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO Física - Ensino Médio Material do aluno

Complemento Matemático 04 Ciências da Natureza I RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO Física - Ensino Médio Material do aluno A Trigonometria é a parte da Matemática que estuda os triângulos e seus elementos, como ângulos, lados e alturas. Atualmente ela não fica limitada ao estudo dos triângulos. E podemos observar a presença

Leia mais

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Cauê / Yuri / Marcello / Diego / Rafael Os conteúdos essenciais do semestre. ÁLGEBRA: Capítulo

Leia mais

Colégio XIX de Março Educação do jeito que deve ser

Colégio XIX de Março Educação do jeito que deve ser Colégio XIX de Março Educação do jeito que deve ser 08 ª PROVA PARCIAL DE MATEMÁTIA Aluno(a): Nº Ano: 9º Turma: Data: 8/08/08 Nota: Professor(a): Gustavo e Claudia Valor da Prova: 40 pontos Orientações

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

Roteiro Recuperação Geometria 3º trimestre- 1º ano

Roteiro Recuperação Geometria 3º trimestre- 1º ano Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 2º TRIMESTRE MATEMÁTICA

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 2º TRIMESTRE MATEMÁTICA LISTA DE EXERCÍCIOS DE RECUPERAÇÃO º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: ª TURMA: UNIDADE: VV JC JP PC DATA: / /06 Obs.: Esta lista deve ser entregue resolvida no dia da prova de Recuperação. Valor:

Leia mais

Formação Continuada Nova EJA Plano de Ação 2- unidade 19 - Matemática: A Trigonometria do Triângulo Retângulo

Formação Continuada Nova EJA Plano de Ação 2- unidade 19 - Matemática: A Trigonometria do Triângulo Retângulo Formação Continuada Nova EJA Plano de Ação 2- unidade 19 - Matemática: A Trigonometria do Triângulo Retângulo Nome: Marcos Muralha Regional: Metropolitana VI Tutor: Prof. Eli de Abreu Formação Continuada

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os

Leia mais

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana

Leia mais

Professores: Elson Rodrigues, Gabriel Carvalho, Marcelo Almeida e Paulo Luiz

Professores: Elson Rodrigues, Gabriel Carvalho, Marcelo Almeida e Paulo Luiz Professores: Elson Rodrigues, Gabriel Carvalho, Marcelo Almeida e Paulo Luiz AULA 01 O que é semelhança em geometria Em um primeiro nível de raciocínio, podemos dizer que duas ou mais figuras são semelhantes

Leia mais

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno

Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno 01. Para essa atividade sugerimos inicialmente que você observe a ilustração abaio e responda aos questionamentos: 1 cm 1 cm a. Calcule a área dos dois quadrados menores que estão em destaque: b. Some

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF Prof. Me. Luis esar Friolani Data: / / Nota: Disciplina: Matemática luno (a): Nº: 9 no/ef Objetivo: Desenvolver os conceitos sobre razões trigonométricas no triângulo retângulo valiar se o aluno é capaz

Leia mais

30's Volume 15 Matemática

30's Volume 15 Matemática 30's Volume 1 Matemática www.cursomentor.com 9 de junho de 014 Q1. Considere os segmentos AB = x, BC =, CD = x + 1 e DE = x 18 e que AB = CD. Encontre x. BC DE Q. Em um triângulo ABC, AM é bissetriz interna

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA Série/Ano: 9º ANO Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br/capitcar 1 TRIGONOMETRIA A palavra Trigonometria

Leia mais

Lista de exercícios do teorema de Tales &

Lista de exercícios do teorema de Tales & Valor 2,0 Componente Curricular: Professor(a): Turno: Data: Matemática Matutino / /2013 luno(a): Nº do luno: Série: Turma: 8ª (81)(82)(83) Sucesso! Lista de Exercícios Lista de exercícios do teorema de

Leia mais

Formação Continuada em Matemática

Formação Continuada em Matemática Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 2º Bimestre 2013 Tarefa 2 Plano de trabalho: Relações Trigonométricas no Triângulo Retângulo Cursista: Vania Cristina

Leia mais

2. (Insper 2012) A figura mostra parte de um campo de futebol, em que estão representados um dos gols e a marca do pênalti (ponto P).

2. (Insper 2012) A figura mostra parte de um campo de futebol, em que estão representados um dos gols e a marca do pênalti (ponto P). 1. (Pucrj 013) Uma bicicleta saiu de um ponto que estava a 8 metros a leste de um hidrante, andou 6 metros na direção norte e parou. Assim, a distância entre a bicicleta e o hidrante passou a ser: a) 8

Leia mais

Conteúdos Exame Final e Avaliação Especial 2017

Conteúdos Exame Final e Avaliação Especial 2017 Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto

Leia mais

Disciplina: Matemática Data da entrega: 31/03/2015.

Disciplina: Matemática Data da entrega: 31/03/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Plano de Recuperação Semestral 1º Semestre 2017

Plano de Recuperação Semestral 1º Semestre 2017 Disciplina: MATEMÁTICA 1 - Álgebra Série/Ano: 9º ANO Professores: Tammy, Figo, Pupo, Laendle Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos

Leia mais

2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS

2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS SENO, COSSENO, TANGENTE CONTEÚDO Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS Observe os triângulos ABC e AEF. 6, 3,7,,0 1,,0 Esses triângulos têm em comum o ângulo Â. Os ângulos que: C ˆ e F ˆ

Leia mais

1) Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e)

1) Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) 1) Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) 2) Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 3) Determine x e y, sendo r, s e t retas paralelas. 4) Uma reta paralela

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ponto N é o pé da perpendicular traçada do ponto M para a reta OP, então

Leia mais

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1 Nome: Nº 10º IG 1ª Parte 1. Qual é o perímetro da estrela representada na figura ao lado, sabendo que é formada por quatro circunferências, cada uma com 5 cm de raio, um quadrado e quatro triângulos equiláteros?

Leia mais

Vamos conhecer mais sobre triângulos!

Vamos conhecer mais sobre triângulos! Vamos conhecer mais sobre triângulos! Aula 18 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Fonte: http://cache0.stormap.sapo.pt/fotostore0/fotos//f1/87/c6/06166_dfcbk.png Meta Apresentar

Leia mais

Prof: Heloiza Helena Rafael de Souza Tutor: BRUNO MOARES LEMOS Grupo: 01

Prof: Heloiza Helena Rafael de Souza Tutor: BRUNO MOARES LEMOS Grupo: 01 Formação continuada para professores de matemática Fundação CECIERJ/SEEDUC-RJ Colégio: E.E Lucas da Silva - 1 ano turma 1001 Prof: Heloiza Helena Rafael de Souza Tutor: BRUNO MOARES LEMOS Grupo: 01 Introdução

Leia mais

ORIENTAÇÕES DE ESTUDO REGULAÇÃO 3º BIMESTRE

ORIENTAÇÕES DE ESTUDO REGULAÇÃO 3º BIMESTRE Ano: 1º Ano E.M Disciplina: Matemática Professor: Fabiana ORIENTAÇÕES DE ESTUDO REGULAÇÃO 3º BIMESTRE - Organize um plano de estudos para esse período, dispondo de tempo suficiente e local apropriado para

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

SEMELHANÇA DE TRIÂNGULOS

SEMELHANÇA DE TRIÂNGULOS Hewlett-Packard SEMELHANÇA DE TRIÂNGULOS AULAS 01 e 02 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PRELIMINAR 1 NOÇÃO INTUITIVA... 1 DEFINIÇÃO DE TRIÂNGULOS SEMELHANTES... 1... 1

Leia mais

LISTA DE EXERCÍCIOS 9º ano 4º bim

LISTA DE EXERCÍCIOS 9º ano 4º bim LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados

Leia mais

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 9º Ensino Fundamental Professores: Elias e Elvira Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 018 Aluno(a): Nº: Turma:

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,

Leia mais