Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo"

Transcrição

1 Plano de ulas Matemática Módulo 9 Trigonometria no triângulo retângulo

2 Resolução dos eercícios propostos Retomada dos conceitos PÍTULO 1 1 Os catetos medem 1 e 16 u.c. e o ilustrar esta situação, nota-se que o ângulo desta figura mede. Os 0 m podem ser interpretados como lados de um quadrado, e a ipotenusa, como sua diagonal, que também é bissetriz do ângulo reto. 0 0 m sen e acordo com o teorema de Pitágoras, temos: e M 0 m a Os catetos medem 9 e.18 u.c. cos e acordo com o teorema de Pitágoras, temos: ( ) ( ) 9 [ ] a) cos E a :M & :M tm & tm :M é isósceles. Logo, o segmento tmeu é bissetriz do ângulo a, e o ponto E é o ponto médio de tu. Portanto, a tg a 1 1?. a a 6 Há duas possibilidades para que Eugênio acerte. Primeira: usar o comprimento calculado da rampa e compará-lo com a tg θ; segunda: a partir da tg a, calcular a medida da rampa e compará-la ao resultado anunciado. solução apresentada refaz o camino de Eugênio. 1 1 b) tg + 1 θ m

3 Se o desnível é de m e a tg θ, calcular o valor do cateto : pode-se 0? 0 onecido, pode-se calcular, que é o comprimento da rampa: O cálculo de Eugênio não está correto. Possivelmente, ele não estava atento à solicitação do enunciado e confundiu a resposta correta com a medida, que faz parte do desenvolvimento da resolução. 7 d ipotenusa deste triângulo retângulo mede: solução do problema decorre da solução do sistema de equações: d d 6 d d ( 6 ) d d Se as equações forem comparadas: 6 d 8 Portanto, a distância entre as margens do rio é de 8 m. 9 d om o valor do cos θ e o valor da ipotenusa tu, podemos calcular a medida do cateto adjacente ao ângulo θ: 0, cm 0 cm a relação de Pitágoras, temos a altura : cm Se o ângulo β é o menor do triângulo, ele se opõe ao menor lado, que é o cateto de medida 0 cm. Logo: sen β 0 0 tg β 0 0 0,7 0,6; cos β 0 0 0,8; 6 P 1 P 6 m d e acordo com o esquema mostrado na figura, temos: tg d e tg d 6 Rio a P O 0 0 figura mostra o PO, reto em, com O (raio) e P. Logo: sen 0 0, 0,? ( ) 7, a Os triângulos e são isósceles, portanto, os ângulos de suas bases são congruentes. Uma vez que o ângulo do vértice é comum 1 + Se 7,69, a secante tpu mede aproimadamente 7, ,696 cm, o que pode ser aproimado para 1,7 cm.

4 1 às bases de ambos, os triângulos e são semelantes. Por isso: 6 8 omo os ângulos Q e Q são congruentes, Q é ponto médio e tqu, a mediatriz do segmento. s medidas do Q, reto em Q, são:, Q (metade de tu). O cálculo da tangente de Q, por sua vez, precisa do valor de Q, cateto do Q: Q Q 16 Q 18 9 Logo, tg Q ? 1 8. PÍTULO 1 Os raios medem, aproimadamente, 6, cm e a 8,66 cm. 0 o 1 r tg 0º r 1? 0,77 1 r 8,66 cm r1 r 1 r1 1 8,66 r 6, cm P (; ) os triângulos retângulos construídos na figura, temos: 1 sen cos r d b No, o segmento tu é cateto oposto ao ângulo de 0, e o segmento tu, cateto adjacente. omo tg 0 0, temos: X d 0 d Y os triângulos da figura, obtemos as seguintes relações: tg 1 d d d tg 60 0 d 0 d (0 d) Substituindo d por na segunda equação, temos: ( 0 ) [ ] Racionalizando a epressão: ? c O ângulo do vértice, interno ao, é suplementar ao ângulo de, portanto, mede 60. O cateto tu e a ipotenusa tu representam eatamente a trajetória que o avião realizou. Logo: tg sen 60 0 Portanto, o avião percorreu a distância de 60 km.

5 6 d figura mostra o triângulo retângulo v R v. esse triângulo, obtemos a razão: v tg 60 v Se a 60, temos: v sen 60 vr v v R O é semelante ao v R v, uma vez que a 60 é ângulo comum e ambos são retângulos. Logo: 60 7 c Observe a figura. 8 c m tg tg 1 R a segunda equação, sabe-se que e, ao substituir esse resultado na primeira equação: 0 + [ ] [ 1 ], 6 alculemos a medida do segmento tu no : tg 0 1 medida do segmento tu no é. alculemos a tangente do ângulo : tg 0 med 0 med a 60 a 0 Portanto, tg. 9 onsiderando que o telado esteja centralizado, a afirmação do problema está correta. O cateto adjacente ao ângulo de 0 mede m. Logo: tg 0 d altura de m é o cateto oposto ao ângulo de 0, e a rampa é a ipotenusa: 1 sen 0 11 c O cateto oposto ao ângulo de 0 mede u.c., e a ipotenusa equivale a dois raios: 1 1 sen 0 r r r 1 a 0 0 1, altura do triângulo isósceles é o cateto oposto ao ângulo de 0 do, retângulo. Logo: 1, 1 1, sen 0 1, tg 0 1, 0 0, 1, O perímetro do é 1 1. Portanto, é igual a

6 1 c 1 b s medidas da altura tmu e do cateto adjacente tmu podem ser calculadas por meio de razões no M, retângulo: M 1 M sen 0 M 1 M M cos 0 M O M tem altura M 1 e base M, logo, sua área é de cm. No E: sen No : 1 sen No : sen a o 0 o z = 1 E F No : sen 0 1 No : cos Observe as construções feitas no trapézio e a sequência de cálculos: tg No F, retângulo: 17 β β E z 1 b 1 [ ] z 1 1 z 1 No : sen 1 0, portanto, c é verdadeira. Se a 0º β 60, logo, no E: 16 0 o 0 o 0 o E tg 60 1 Sendo 1, o segmento teu mede cm, portanto, a afirmação a é verdadeira.

7 O E tem área de: afirmação b é falsa.? 1 cm², logo a No E, os lados tu e teu medem respectivamente cm e 1 cm. Para o E eistir, é necessário que o lado teu seja estritamente menor que a soma de e E, portanto, estritamente menor que cm E, 6. Logo, a afirmação d é verdadeira. PÍTULO 1 OI cm e O cm O ; tg 18? 1,70 18 tg , rampa deverá ter aproimadamente 1,1 m. o,8 sen 0,9 1,1 m,8,8 6 distância é de aproimadamente.9 metros. I cm sen sen? cos cos OI tg OI cm e acordo com o teorema de Pitágoras, temos: ( O) O 1 cm medida de é de aproimadamente 0,1. E E? tg med( ) 6 omo e são complementares, temos: tg 7 1 0,1 o o sen 0,176.9 m.00 m 7 a sen 0,0 r 600 r r 0,0 8 c Se a rampa tem 600 m e a velocidade do ciclista é de m/s, ele levará 600 segundos para subir a rampa. Esse tempo corresponde a, minutos. a) cos 0,9 0,9 11,0 1 b) o cos 0,9,6 Pelo Teorema de Pitágoras, 1,6 & 1,9 E 1 1 tg 0 17

8 E E? E E E 1 E sen 0 E E E Logo: E E E E E PÍTULO 1 a) O maior ângulo é de aproimadamente ,66 Portanto: 7 ( E) 1 ( E) E 7 9 e Se o ponteiro dos minutos gira 60 em uma 60 ora, ele girará 6 por minuto. 60 min Se o ponteiro se movimentou 6 a 6 por minuto, isso significa que o tempo gasto foi de 6 minutos. Logo, o novo orário apresentado no relógio é 11min. a Passadas 1min, o orário será min. Tomando por referência a posição dos ponteiros às 1, quando estão juntos, basta verificar o giro de cada um às min e calcular a medida do menor ângulo. Movimento do ponteiro dos minutos: 60 min min ? 60,66 tg tg 0, b) O maior ângulo é de aproimadamente 1. Os alunos podem sugerir a possibilidade de bola no ângulo. Nesse caso, o ângulo é menor, pois a bola percorre uma ipotenusa maior para a mesma altura da trave., β 11, tg tg 0, 1 11 escada alcança uma abertura máima de aproimadamente 0,8 m. sen ? 0,997 18, 8 m Se é a altura máima que a escada alcança, temos: 0, 8 m árvore tem aproimadamente,8 m de altura o 18 Movimento do ponteiro das oras: 1 ora 0 19? 0 ora 1 0' Se os dois ponteiros giram no mesmo sentido, o menor ângulo formado entre eles é resultado da diferença: ou 17, o 1, 1,7 tg 0,700? 1, 1, 8,8 m ssim: 8, 8 1, 7, 8 m

9 O perímetro e os ângulos internos medem, respectiva e aproimadamente,,66 cm, 9 e 11. β 7 d d o m o 1,8 m e acordo com o teorema de Pitágoras, temos: 1, 8 Portanto, o perímetro desse trapézio é de aproimadamente ( 1 1?,8) cm, ou seja,,66 cm. Logo: tg tg 1, omo a e β são suplementares, 180 9, isto é, b 11. parede tem 0,1 m de espessura, portanto, o cateto adjacente ao ângulo de mede m. álculo de d: cos d d d álculo pedido: d [ ] e acordo com o teorema de Pitágoras, temos uma solução alternativa: d? 8 d ,7 m 0 o 8 tg 0 1,7? 0,891 1, m 1,7 1,7 1,7 cos 0, m 0,7660 Logo, antes de quebrar-se, o bambu tina aproimadamente,6 m de altura. 6 altura do prédio é, aproimadamente, 70,98 m. tg 60 1,71 tg 0 Logo, temos: 1, 71 o , 71 1, 96 0, 71 1, 96 70, 98 m 6 a) Para calcular a distância entre e, é necessário calcular o valor de : sen distância entre e é de 1. b) Para calcular a área do, retângulo, é necessário calcular o valor de : 1 cos Logo, a área do é: +? 1 9 [ ] u.a. rio 19

10 9 distância entre os dois omens é [ 1 7 ] m. álculo de : tg 0 [ ] 1 m m H m 1, m H 0 o 1 w Na figura, a distância entre os dois omens é resultado da soma entre e w. Para calculá-las, aplicam-se as razões trigonométricas aos triângulos retângulos da figura. álculo de : tg 0 6 6? s medidas dos ângulos agudos dos triângulos à direita da figura não são conecidas. Em razão disso, se calcula o valor de w por semelança entre os dois triângulos, ambos com ângulos congruentes: w 1, ( w )? 1, 1 1, w, 1 1,? w, w, 1, 7 distância entre os dois omens é de [ 1 7 ] m. Eercícios de integração 1 Se, e são ângulos internos de um triângulo, temos: tnu e tmu medem 0 cm. 0 o cm N a M 1 sen 0 Portanto, o lado maior desse triângulo mede. O ângulo será de m 18 o, temos: cm tg tg 60 Uma vez que o 9NM é resultado da dobra do NM, o 9NM NM. 0 sen 18 sen 6 60 N9M NM MN MN9 N M N M9 (I)

11 cm N lém disso, tu tu e t9mu tu, o que resulta tu / t9mu. e, portanto, 9MN MN (ângulos alternos internos). (II) e (I) e (II) temos que MN & NM. omo a 60, concluímos que :NM é equilátero N M. onsiderando N M, temos a seguinte figura: N 0 o Obs.: N N (dobra do papel) M M :N9 sen Portanto, tn e tm medem 0 cm. 1 Uma vez que a distância entre Siene e leandria corresponde a.000 estádios e que essa distância corresponde a 1 1 da circunferência (60 : 7 1), como mostra o esquema, a circunferência da Terra mede.000 estádios (1?.000). b) Se 1 estádio corresponde a 17, m,.000 estádios equivalem a m ou 0.16, km. medida encontrada por Eratóstenes tina menos de 0 km a mais que a medida calculada oje. 7,69 1 o 1 o 0 o e acordo com o teorema de Pitágoras no, temos: () () 1 () () Logo: sen 1 1? 0, , 66 6 altura do poste telefônico é [ 1 6 ] m. m m z 1 a).000 estádios 8 m 0 o 0,008 estádio 0,06 estádio 0, 008 tg 0, , 06 leandria 7 o Siene e acordo com a figura: sen 60 m sen z ( ) z 0 6 z 6 z 6 Portanto, a altura do poste é [ 1 6 ] m. 1

12 7 a) km e EF 1,7 km F E 1, H altura do trapézio é cateto oposto ao ângulo de 60 no MRQ, logo: tg 60 om a altura é possível calcular a área do trapézio: 0 trapézio? 7 cm álculo de : cos 60 1 álculo de EF: tg , 7 b) distância percorrida foi de 1 km. o substituirmos essa quantidade pela variável, obtemos o valor desejado: 0, 8? 1 1, O preço da corrida de tái foi de R$ 1,0. a No : E z 0 o 0 o cos 0 8 Podemos verificar que, e que, portanto, 0. Logo, : é isósceles (tem ângulos internos congruentes). 9 c Portanto. No : temos: cos Portanto,. M Q P θ R N No E: cos 0? sen 0 z 1 z 1 z? z 9 Portanto, a área do E é obtida por: E 9? 7

13 Gabarito Retomada dos conceitos PÍTULO e 1 9 e. 18 a) b) 1 e e 6 O cálculo de Eugênio não está correto. 7 d 8 distância entre as margens é 8 m. 9 d a 11 a PÍTULO 1 Os raios medem, aproimadamente, 6, cm e 8,66 cm. a b d c 6 d 7 c 8 c 9 afirmação do problema está correta. d 11 c 1 a 1 c 1 b 1 b 16 a 17 a) verdadeira c) verdadeira b) falsa d) verdadeira PÍTULO 1 OI cm e O cm medida de tu é de aproimadamente 0,1. a) 11,0 b) 1,9 rampa deverá ter aproimadamente 1,1 m. 6 distância é de aproimadamente.9 m. 7 a 8 c 9 e a PÍTULO 1 a) O maior ângulo é de aproimadamente 18. b) O maior ângulo é de aproimadamente 1. escada alcança uma abertura máima de aproimadamente 0,8 m. árvore tem aproimadamente,8 m de altura. O perímetro e os ângulos internos medem, respectiva e aproimadamente,,66 cm, 9 e 11. ntes de quebrar-se, o bambu tina aproimadamente,6 m de altura. 6 altura do prédio é de, aproimadamente, 70,98 m. 7 d a) distância entre e é 1. b) área do é u.a. 9 distância entre os dois omens é 1 7 m.

14 Eercícios de integração 1 O lado maior mede. O ângulo será de 60. tnu e tmu medem 0 cm. a).000 estádios 7,69 6 altura do poste telefônico é 1 6 m. 7 a) km e EF 1,7 km. b) O preço da corrida de tái foi R$ 1,0. 8 Ver resolução na p. deste Plano de ulas. 9 c a

GABARITO. Matemática D 11) B. Como β = C C = 3β.

GABARITO. Matemática D 11) B. Como β = C C = 3β. GRITO Matemática Semietensivo V. ercícios 0) Logo, = 0 + 0 + 0 = 70 Observe a figura: 9 6 0 X 0 gora considerando os dois relógios: 0) O relógio é uma circunferência, o ponteiro dos minutos leva ora para

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) 1 + 1 1 ) alcule: 1 1 a). 8. 8 b) ) alcule: a) 1 7 1 ( ) 64 9 1 b) 0 4) Resolva

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações

Leia mais

Matemática D Semi-Extensivo V. 2

Matemática D Semi-Extensivo V. 2 Matemática D Semi-Etensivo V. Eercícios 0) 0) D 60 60 P y z y y z D 6 P é semelante a DP. 6 z ssim: D + z tg 60º z 6 0) P E 0) D y 0 y + y 00 y 9y + y 00 6 9y + 6y 00 6 y 00 6 y 6 y 8 6 Perímetro: 6 +

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos triângulos Resolução das atividades complementares Matemática M Trigonometria nos triângulos p. 4 ipotenusa de um triângulo retângulo mede 0 cm e o ângulo ˆ mede 60. Qual é a medida dos catetos? 5 cm; 5 cm y 60 o

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo 3º tri PR2 -MTEMÁTI Ens. Fundamental 9º ano Prof. Marcelo LIS LIST DE ESTUDO REFORÇO 1 Trigonometria no Triângulo Retângulo Parte 1. No triângulo retângulo determine as medidas e indicadas. (Use: sen65º

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

Soluções dos Problemas do Capítulo 4

Soluções dos Problemas do Capítulo 4 Soluções do apítulo 4 155 Soluções dos Problemas do apítulo 4 Problema 1 h 10 14 Figura 57 x Seja h a altura do Pão de çúcar em relação ao plano horizontal de medição e seja x a distância de ao pé da altura

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo o triângulo [] é um triângulo retângulo em, (porque [EF GH] é paralelepípedo

Leia mais

Matemática D Superintensivo

Matemática D Superintensivo GRITO Matemática Superintensivo ercícios 01) 03) R Q 60 0 0) Sendo = P Q + Q + R e = 90 + 90 + 60 = 0 R ntão P Q = 0 = 80 e 3 a = 80 = 0 o desenho temos que: a = 90 3 = 30 Portanto, 30 = π π 180 6 0) *

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao

Leia mais

Unidade 6 Geometria: quadriláteros

Unidade 6 Geometria: quadriláteros Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados

Leia mais

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF Prof. Me. Luis esar Friolani Data: / / Nota: Disciplina: Matemática luno (a): Nº: 9 no/ef Objetivo: Desenvolver os conceitos sobre razões trigonométricas no triângulo retângulo valiar se o aluno é capaz

Leia mais

Plano de Recuperação Semestral EF2

Plano de Recuperação Semestral EF2 Série/Ano: 9º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para

Leia mais

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono

Leia mais

Aula 21 - Baiano GEOMETRIA PLANA

Aula 21 - Baiano GEOMETRIA PLANA Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Matemática B Intensivo V. 2

Matemática B Intensivo V. 2 Matemática Intensivo V. Eercícios ) ) C ( ) (5 7) Usando a fórmula do ponto médio: X + X Y + Y C + 5 + 7 6 8 ( ) ERRT: considere (6 ). Temos d () d (C). ssim: ( 6) + ( b ) ( ) + ( 6 b) 9 + b 9 + b b +

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente B

Gabarito Extensivo MATEMÁTICA volume 1 Frente B Gabarito Etensivo MATEMÁTICA volume Frente B sen cos tan 0 5 60 0) E 5 5 6 9 +y=+8= sen0 y y 8 cateto oposto ipotenusa 0) m Seja O a origem no solo alinado verticalmente com o bastão. A medida OB será

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Nome: Nº: Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Polígonos: - nomenclatura.

Leia mais

Ficha de Trabalho nº 1

Ficha de Trabalho nº 1 Matemática Nome: Setembro 0 º no Nº Turma: Parte I Escolha Múltipla No triângulo, 5 cm Sabemos ainda que 60 área do triângulo é: e 0 cm () 75 cm () 75 cm () 7, 5 cm () 50 cm No referencial on está representado

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

MATEMÁTICA CADERNO 2 CURSO D. FRENTE 1 ÁLGEBRA n Módulo 7 Sistema de Inequações. n Módulo 8 Inequações Produto e Quociente

MATEMÁTICA CADERNO 2 CURSO D. FRENTE 1 ÁLGEBRA n Módulo 7 Sistema de Inequações. n Módulo 8 Inequações Produto e Quociente MATEMÁTICA CADERNO CURSO D ) I) x 0 As raízes são e e o gráfico é do tipo FRENTE ÁLGEBRA n Módulo 7 Sistema de Inequações ) I) x x 0 As raízes são e e o gráfico é do tipo Logo, x ou x. II) x x 0 As raízes

Leia mais

2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS

2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS SENO, COSSENO, TANGENTE CONTEÚDO Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS Observe os triângulos ABC e AEF. 6, 3,7,,0 1,,0 Esses triângulos têm em comum o ângulo Â. Os ângulos que: C ˆ e F ˆ

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens

Leia mais

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC). GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma

Leia mais

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette Lista de Estudo para a Prova de 1º Ano Prof. Lafayette 1. Um triângulo ABC é retângulo em A e os ângulos em B e C são, respectivamente, de 30 e 60. A hipotenusa mede 4. a) Faça um desenho representativo.

Leia mais

CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A

CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A Preparar o Eame 01 016 Matemática A Página 19 88. 88.1. O ângulo CDA está inscrito na circunferência, portanto CDA. Assim: AD CD A ABCD A CDA AD CD AD Tem-se que, cos AD cos CD e sen CD sen. Portanto,

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria

MATEMÁTICA A - 11o Ano Geometria -Trigonometria MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

RESPOSTAS ESPERADAS MATEMÁTICA

RESPOSTAS ESPERADAS MATEMÁTICA RESPOSTS ESPERDS MTEMÁTI Questão 1 a) omo o ângulo de giro do ponteiro é diretamente proporcional à velocidade, podemos escrever 10 40km x 104 km Desse modo, x 104 10 / 40 91 Resposta: O ângulo mede 91º

Leia mais

DISCIPLINA: GEOMETRIA 2ª Unidade Letiva / 2016 TURMA: PROFESSOR: ROSANA CARVALHO DATA: 17/06/16

DISCIPLINA: GEOMETRIA 2ª Unidade Letiva / 2016 TURMA: PROFESSOR: ROSANA CARVALHO DATA: 17/06/16 DISCIPLINA: GEOMETRIA 2ª Unidade Letiva / 2016 TURMA: PROFESSOR: ROSANA CARVALHO DATA: 17/06/16 9º ANO ASSUNTO: Conteúdo para Prova Oficial, Prova Geral e Atividade CONTEÚDO PARA ATIVIDADE: SEMELHANÇA

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.

Leia mais

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas. LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta)

Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta) Plano de Aulas Matemática Módulo 0 Ciclo trigonométrico ( volta) Resolução dos exercícios propostos Retomada dos conceitos CAPÍTULO 0,07 rad _ 80 rad x? x. 0, 07 rad _ x rad 80 a), rad C x C x C 0 x C

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto Portal

Leia mais

Gabarito: cateto oposto. sen(30 ) = = x = 85 cm. hipotenusa 2 1,7. x sen7 = x = 14 sen7 x = 14 0,12 x = 1,68 m 14. Resposta da questão 1: [A]

Gabarito: cateto oposto. sen(30 ) = = x = 85 cm. hipotenusa 2 1,7. x sen7 = x = 14 sen7 x = 14 0,12 x = 1,68 m 14. Resposta da questão 1: [A] Gabarito: Resposta da questão 1: Considere a situação Utilizando da relação de seno temos: cateto oposto 1 x sen(30 ) = = x = 85 cm. hipotenusa 1,7 Resposta da questão : Utilizando a relação de tangente

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MTEMÁTI - 3o ciclo 01 - a hamada Proposta de resolução 1. 1.1. omo a soma das frequências relativas é sempre 1, temos que Resposta: Opção 0, 3 0, 3 + a + 0, 4 = 1 a = 1 0, 3 0, 4 a = 1 0,

Leia mais

Resolução das atividades adicionais

Resolução das atividades adicionais PÍTULO 9 Resolução das atividades adicionais 65. Note que 7 + 4 5. Temos, portanto, que o triângulo é retângulo (Teorema de Pitágoras). Logo sua área é dada por 84. Então podemos dizer que a razão entre

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

Preparar o Exame Matemática A

Preparar o Exame Matemática A 07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes

Leia mais

Q1. (OBM) Escreva um número em cada quadrado da fila abaixo (figura 1), de modo que a soma de três números quaisquer vizinhos (consecutivos) seja 12.

Q1. (OBM) Escreva um número em cada quadrado da fila abaixo (figura 1), de modo que a soma de três números quaisquer vizinhos (consecutivos) seja 12. Pré-F 2017 Simulado #4 24 de maio de 2017 Q1. (OM) Escreva um número em cada quadrado da fila abaixo (figura 1), de modo que a soma de três números quaisquer vizinhos (consecutivos) seja 12. 5 Figura 1

Leia mais

Plano de Trabalho INTRODUÇÃO DESENVOLVIMENTO

Plano de Trabalho INTRODUÇÃO DESENVOLVIMENTO FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC-RJ. Professor: Joana Eunice Rodes de Oliveira - Matrículas: 09353525. Série: 1º ANO ENSINO MÉDIO (2º Bimestre) GRUPO 04. Tutora:

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos Resolução das atividades complementares Matemática M Trigonometria nos Triângulos p. 1 Em cada caso, calcule o seno, o cosseno e a tangente do ângulo agudo assinalado. a) b) sen γ = cos γ = tg γ 1 sen

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão Nome: Nº Turma: Aprete o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando, para

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169 MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,

Leia mais

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por:

Manual de Matemática. Trigonometria na Circunferência. A área de um triângulo qualquer pode ser definida por: A área de um triângulo qualquer pode ser definida por: a b sen C a c sen B b c sen A A = ou A = ou A = Eemplo: Determine a área do triângulo ABC. B c = cm 60º A a = 6 cm C a csenb A = 6 A = A = 6 cm Trigonometria

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2 ESOL SEUNÁRI OM º ILO. INIS OIMR º NO E ESOLRIE MTEMÁTI FIH E VLIÇÃO Nº Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das quais só

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA

Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA Simulado enem 013 3a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1 Simulado NM 013 Questão 1 lternativa: omo a soma das medidas dos ângulos de um triângulo é 180º, tem-se que α + β = 90º.

Leia mais

Matemática 3 Módulo 3

Matemática 3 Módulo 3 Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M. Módulo de Leis dos Senos e dos ossenos Razões Trigonométricas no Triângulo Retângulo. a série E.M. Leis dos Senos e dos ossenos Razões trigonométricas no triângulo retângulo. Eercícios Introdutórios Eercício.

Leia mais

1 = 0,20, teremos um aumento percentual de 20% no gasto com

1 = 0,20, teremos um aumento percentual de 20% no gasto com 6ROXomR&RPHQWDGDURYDGH0DWHPiWLFD 0. Suponha que o gasto com a manutenção de um terreno, em forma de quadrado, seja diretamente proporcional à medida do seu lado. Se uma pessoa trocar um terreno quadrado

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Razões Trigonométricas no Triângulo Retângulo. 1 a série E.M. Módulo de Leis dos Senos e dos ossenos Razões Trigonométricas no Triângulo Retângulo. a série E.M. Leis dos Senos e dos ossenos Razões trigonométricas no triângulo retângulo. Eercícios Introdutórios Eercício.

Leia mais

MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos

MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos MATEMÁTICA FRENTE IV LIVRO 1 Capítulo 2 Triângulos I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A α γ C Deseja-se

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Matemática 1º Ano - 2º Bimestre / 2013 PLANO DE TRABALHO 2 Tarefa 2 Cursista: Mariane Ribeiro do Nascimento Tutor: Bruno Morais 1 SUMÁRIO

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03 UNIVERSIDDE ESTDUL VLE DO CRÚ CENTRO DE CIÊNCIS EXTS E TECNOLOGI CURSO DE LICENCITUR EM MTEMÁTIC MTEMÁTIC ÁSIC II TRIGONOMETRI ula 03 Prof. Márcio Nascimento marcio@matematicauva.org 204. Razões Trigonométricas

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais