Matemática GEOMETRIA PLANA. Professor Dudan
|
|
- Wilson Castilhos Farinha
- 2 Há anos
- Visualizações:
Transcrição
1 Matemática GEOMETRIA PLANA Professor Dudan
2 Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A unidade usual de medida de ângulo, de acordo com o sistema internacional de medidas, é o grau, representado pelo símbolo, e seus submúltiplos são o minuto e o segundo. Temos que 1º (grau) equivale a 60 (minutos) e 1 equivale a 60 (segundos).
3 Tipos de Ângulo Geometria Plana Ângulos Complementares: dois ângulos são complementares se a soma de suas medidas é igual a 90. Neste caso, cada um é o complemento do outro. Na ilustração temos que: α + β = 90
4 Ângulos Suplementares: dois ângulos são Suplementares quando a soma de suas medidas é igual a 180. Neste caso, cada um é o suplemento do outro. Na ilustração temos que: Geometria Plana α + β = 180
5 Ângulos Replementares: dois ângulos são replementares quando a soma de suas medidas é igual a 360. Neste caso, cada um é o replemento do outro. Na ilustração temos que: Geometria Plana α + β = 360º
6 Exemplo: Assinale V para verdadeiro e F para falso nas sentenças abaixo ( ) 80º e 10º são suplementares. Geometria Plana ( ) 30º e 70º são complementares. ( ) 120º e 60º são suplementares. ( ) 20º e 160º são complementares. ( ) 140º e 40º são complementares. ( ) 140º e 40º são suplementares.
7 Ângulos de um Polígono Geometria Plana A soma dos ângulos internos de qualquer polígono depende do número de lados (n), sendo usada a seguinte expressão para o cálculo:
8 Diagonais de um polígono Geometria Plana Diagonal de um polígono é o segmento de reta que liga um vértice ao outro, passando pelo interior da figura. O número de diagonais de um polígono depende do número de lados (n) e pode ser calculado pela expressão:
9 Exemplo: Dada a figura abaixo, analise as sentenças I. O triângulo CDE é isósceles. II. O triângulo ABE é equilátero. III. AE é bissetriz do ângulo BÂD. é verdade que (A) somente a I é falsa. (B) somente a II é falsa. (C) somente a III é falsa. (D) são todas falsas. (E) são todas verdadeiras. Geometria Plana
10 Teorema de Pitágoras Geometria Plana O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que: Em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos. Por definição, a hipotenusa é o lado oposto ao ângulo reto, e os catetos são os dois lados que o formam. Assim podemos equacionar
11 Geometria Plana Exemplo Calcule o valor do segmento desconhecido no triângulo retângulo a seguir.
12 Geometria Plana Triângulos Retângulos PITAGÓRICOS Existem alguns tipos especiais de triângulos retângulos cujos lados são proporcionais a:
13 Geometria Plana Exemplo Roberto irá cercar uma parte de seu terreno para fazer um canil. Como ele tem um alambrado de 10 metros, decidiu aproveitar o canto murado de seu terreno (em ângulo reto) e fechar essa área triangular esticando todo o alambrado, sem sobra. Se ele utilizou 6 metros de um muro, do outro muro ele irá utilizar, em metros. (A) 7. (B) 5. (C) 8. (D) 6. (E) 9.
14 Geometria Plana Triângulo é uma figura geométrica formada por três retas que se encontram duas a duas e não passam pelo mesmo ponto, formando três lados e três ângulos. Para fazer o cálculo do perímetro de um triângulo basta fazer a soma da medida de todos os lados. A soma dos ângulos internos é sempre 180.
15 Geometria Plana Observando o triângulo podemos identificar alguns de seus elementos: A, B e C são os vértices. Os lados dos triângulos são simbolizados pelas letras a, b e c. Os triângulos ele tem 3 lados, consequentemente, 3 ângulos.
16 Geometria Plana Quanto à medida do seu lado Triângulo Equilátero: apresenta os três lados com a mesma medida. Triângulo Isósceles: apresenta dois lados com a mesma medida. Triângulo Escaleno: apresenta os três lados com medidas diferentes, ou seja, três lados de tamanhos diferentes.
17 Geometria Plana Quanto à medida dos ângulos Triângulo Acutângulo: apresenta os três ângulos internos menores agudos. Triângulo Obtusângulo: apresenta ângulo interno maior que 90 º ou obtuso. Triângulo Retângulo: apresenta um ângulo interno reto ou de 90 o.
18 Geometria Plana TRIÂNGULO RETÂNGULO
19 Área de Triângulos Geometria Plana A área de um triângulo é a metade do produto da medida da sua altura pela medida da sua base. Assim, a área do triângulo pode ser calculada pela fórmula: onde h é a altura do triângulo, b a medida da base.
20 Geometria Plana Exemplo Determinar a área do triângulo a seguir considerando que a sua base mede 23 metros e a altura 12 metros.
21 Geometria Plana Exemplo A área do triângulo sombreado da figura abaixo é
22 Geometria Plana TRIGONOMETRIA no TRIÂNGULO RETÂNGULO
23 Geometria Plana Composição do Triângulo Retângulo Catetos: correspondem aos lados que compõem o ângulo reto, formada por dois catetos: adjacente e oposto. Hipotenusa: lado oposto ao ângulo reto considerado o maior lado do triângulo retângulo.
24 Geometria Plana Relações Trigonométricas
25 PRINCIPAIS ÂNGULOS Geometria Plana
26 Geometria Plana Casos Especiais Caso : Coisa, 2Coisa e Coisa
27 Casos Especiais Geometria Plana Caso : Triangulo Retângulo Isósceles
28 Geometria Plana Exemplo Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas.
29 Geometria Plana Exemplo Encontre os valores de x e y nos triângulos retângulos abaixo.
30 Geometria Plana Exemplo No triângulo retângulo da figura abaixo, determine as medidas de x e y indicadas. (Use: sen 65 = 0,91; cos 65 = 0,42 ; tg 65 = 2,14)
31 Geometria Plana Exemplo Uma escada de 2m de comprimento está apoiada no chão e em uma parede vertical. Se a escada faz 30 com a horizontal, a distância do topo da escada ao chão é de: (A) 0,5 m (B) 1 m (C) 1,5 m (D) 1,7 m (E) 2 m
32 Geometria Plana QUADRILÁTEROS
33 Quadriláteros Geometria Plana Um quadrilátero é um polígono de quatro lados. Em geral, um quadrilátero será uma figura geométrica limitada por quatro lados, todos diferentes e que formam entre si quatro ângulos internos também diferentes. Em qualquer caso, a soma dos valores dos ângulos internos de um quadrilátero é sempre 360.
34 Geometria Plana Algumas Propriedades dos quadriláteros: 1. A soma dos seus ângulos internos é A soma dos seus ângulos externos é Todos os quadriláteros apresentam 2 diagonais.
35 Geometria Plana Exemplo Determine a medida dos ângulos indicados:
36 Classificação Geometria Plana Os quadriláteros classificam-se em paralelogramos e trapézios. Paralelogramos : são quadrilátero de lados opostos paralelos. Exemplos: Retângulo - Paralelogramo em que todos os ângulos são retos. O retângulo cujos lados são congruentes chama-se quadrado. Quadrado- Retângulo cujos lados tem medidas iguais. Losango, paralelogramo.
37 Exemplo Observe os paralelogramos e, considerando as propriedades estudadas, determine: a) MN e NP b) x e y
38 Trapézios: são quadrilátero que tem dois e só dois lados opostos paralelos. Exemplos: Trapézio Escaleno: tem todos os lados de medidas distintas. Trapézio Retângulo: tem dois ângulos retos. Trapézio Isósceles: tem os lados não paralelos com a mesma medida.
39 Principais Quadriláteros Trapézio Geometria Plana Características: Apresenta 2 lados paralelos apenas.
40 Geometria Plana Paralelogramo Características: Lados paralelos congruentes, ângulos opostos congruentes.
41 Geometria Plana Losango Características: Lados paralelos congruentes, todos os lados de mesma medida, ângulos opostos congruentes, diagonais cortam-se nos seus pontos médios e são perpendiculares entre si.
42 Retângulo Geometria Plana Características: Todos os ângulos internos são retos, lados paralelos congruentes, diagonais de mesma medida e que se cortam nos seus pontos médios.
43 Quadrado Geometria Plana Características: Todos os ângulos internos são retos, lados paralelos congruentes, todos os lados de mesma medida, diagonais de mesma medida, perpendiculares entre si e que se cortam nos seus pontos médios.
44 Geometria Plana Exemplo O perímetro e a área da sala representada na figura valem: (A) 20m e 15 m 2 (B) 18m e 17 m 2 (C) 20 m e 19 m 2 (D) 20m e 20 m 2
45 FIGURAS CIRCULARES
46 DEFINIÇÃO Geometria Plana De acordo com a Geometria Euclidiana, circunferência é o espaço geométrico de uma região circular que compreende todos os pontos de um plano, localizados a uma determinada distância, denominada raio, de um ponto chamado centro. Podemos definir o círculo como a região interna da circunferência. A circunferência limita o círculo, observe a ilustração a seguir:
47 Geometria Plana A circunferência e o círculo possuem um elemento denominado diâmetro, que constitui em um segmento que passa pelo centro da figura. Outro segmento importante pertencente às duas figuras é o raio, que corresponde à metade do diâmetro. Observe a figura:
48 E o famoso valor E O FAMOSO π? Há duas interpretações distintas quanto ao valor do π: Como constante matemática,costumamos definir PI como sendo a razão entre a circunferência e o diâmetro de um circulo, ou seja vale aproximadamente 3,14. Agora quando trabalhamos com ângulos, temos a seguinte relação: π rad = 180 Geometria Plana
49 1 CÍRCULO / CIRCUNFERÊNCIA Geometria Plana
50 Geometria Plana Exemplo Calcule o valor da área e do perímetro dos círculos abaixo:
51 2 SETOR CIRCULAR Geometria Plana
52 3 COROA CIRCULAR Geometria Plana
53 Geometria Plana Exemplo Determine a área da coroa circular da figura a seguir, considerando o raio da circunferência maior igual a 10 metros e raio da circunferência menor igual a 8 metros.
54 Comprimento ou Perímetro
55 Definição Geometria Plana O perímetro é a medida do contorno de um objeto bidimensional, ou seja, a soma de todos os lados de uma figura geométrica. Imagine a seguinte situação: Um fazendeiro quer descobrir quantos metros de arame serão gastos para cercar um terreno de pastagem com formato retangular. Como ele deveria proceder para chegar a uma conclusão? De maneira bem intuitiva, concluímos que ele precisa determinar as medidas de cada lado do terreno e então, somá-las, obtendo o quanto seria gasto. A esse procedimento damos o nome de perímetro.
56 Geometria Plana 1 TRIÂNGULO RETÂNGULO
57 2 TRIÂNGULO EQUILÁTERO Geometria Plana
58 3 QUADRADO Geometria Plana
59 4 - RETÂNGULO Geometria Plana
60 5 - LOSANGO Geometria Plana
61 6 - CÍRCULO Geometria Plana
62 Geometria Plana ÀREA Área é um conceito matemático que pode ser definida como quantidade de espaço bidimensional, ou seja, de superfície. Existem várias unidades de medida de área, sendo a mais utilizada o metro quadrado (m²) e os seus múltiplos e submúltiplos. Para não haver erro, lembre-se: Área é o que eu posso pintar
63 Geometria Plana
64 Exemplo Geometria Plana
65 Geometria Plana
66 Exemplo Geometria Plana
67 Geometria Plana
68 Geometria Plana
69 Geometria Plana
70 Geometria Plana
71
72 Geometria Plana
73 Geometria Plana
74 Cuidado! Primeiro, faremos um exemplo conhecendo as medidas do retângulo, depois faremos a generalização. Considere o retângulo Sua área será de: A 1 = 10 x 3 = 30 cm 2 Agora, vamos duplicar as medidas dos lados. A área desse novo retângulo será de A 2 = 20 x 6 = 120 cm 2 Observe que ao dobrar as medidas dos lados do retângulo sua área mais que dobrou, na verdade quadruplicou.
75 Geometria Plana Exemplo No desenho abaixo, uma cruz é formada por cinco quadrados de lado 1 justapostos. A área do quadrado ABCD é: (A) 4. (B) 5. (C) 6. (D) 7. (E) 8.
76 Geometria Plana Exemplo Seja o octógono EFGHIJKL inscrito num quadrado de 12cm de lado, conforme mostra a figura a seguir. Se cada lado do quadrado está dividido pelos pontos assinalados em segmentos congruentes entre si, então a área do octógono, em centímetros quadrados, é: (A) 98. (B) 102. (C) 108. (D) 112. (E) 120.
77 GEOMETRIA PLANA
78 COMO A FUNDATEC COBRA ISSO?
79 POLÍCIA MILITAR/RS O desnível entre a calçada e a garagem da residência de Pablo é de 1,5m. Sabe-se que a rampa de acesso da calçada para a garagem possui inclinação de 30 com a horizontal. O comprimento dessa rampa mede: (Dados: sem 30 = 0,5, cós 30/ = 0,86, tg 30 = 0,58) A)1,75 m aproximadamente. B)2m. C) 3m. D) 3,45 m aproximadamente. E)4m.
80 PREF DE LIBERATO SALZANO/RS Um jardim em formato circular medindo 4m de diâmetro foi construído no centro de uma praça. Qual é a área, em m², esse jardim? Utilize o valor de π=3,14. A) 12,56. B) 24,12. C) 32,48. D) 40,82. E) 50,24.
81 PREF DE FOZ OD IGUAÇU/PR O perímetro de um retângulo é de 2.040m. A medida de um lado desse retângulo é um quarto da medida do outro lado. As dimensões desse retângulo é: A) 51m e 102m. B)50m e 200m. C) 153m e 612m. D)102m e 408m. E)204m e 816m.
82 Questões FUNDATECE : C-A-E GABARITOS
Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:
GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
NOME: ANO: 3º Nº: PROFESSOR(A):
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles
DESENHO TÉCNICO ( AULA 02)
DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.
ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do
RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL
GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma
Relações Trigonométricas nos Triângulos
Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.
Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,
. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m
05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,
Revisional 3 Bim - MARCELO
6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são
Área das figuras planas
AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,
POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A
Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.
Geometria Plana. Exterior do ângulo Ô:
Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
Aula 21 - Baiano GEOMETRIA PLANA
Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.
PREPARATÓRIO PROFMAT/ AULA 8 Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:
EXERCICIOS - ÁREAS E ÂNGULOS:
EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos
PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS
TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto
MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169
MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;
PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA
PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Trigonometria Aula 0: Matrizes e Determinantes Trigonometria Deduzindo da própria palavra, trigonometria é a parte da geometria que estabelece relações métricas e angulares entre
Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.
Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,
Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial
CADERNO DE EXERCÍCIOS 2B
CADERNO DE EXERCÍCIOS 2B Ensino Fundamental Matemática Questão Conteúdo 1 Cálculo de área de circunferência, triângulo e quadrado. Habilidade da Matriz da EJA/FB H21 2 Equação do 1º grau H38 H39 3 Teorema
Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções:
EXERCÍCIOS DE REVISÃO: Quadriláteros Aluno (a): LISTA 08 Nº: Ano: 8º Unidade Barra Leandro Figueira Freitas Instruções: VOCÊ PODERÁ FAZER ESTAS QUESTÕES DIRETAMENTE NO CADERNO, OU, IMPRIMIR ESTAS FOLHAS
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.
Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados
ÁREAS. Segmento: ENSINO MÉDIO. 06/2018 Turma: 2 A. Tipo de Atividade: LISTA DE EXERCÍCIOS. 20 m. 30 m. 40 m. 50 m
Segmento: ENSINO MÉDIO Disciplina: MAT-GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/018 Turma: A ÁREAS 1) O quintal da casa de Manoel é formado por cinco quadrados ABKL, BCDE, BEHK,
Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE
Nome: Nº: Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Polígonos: - nomenclatura.
MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188
MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à 88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA
ATIVIDADES COM GEOPLANO QUADRANGULAR
ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade
1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.
Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são
MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à188
MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,
RETAS E CIRCUNFERÊNCIAS
RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos
Equipe de Matemática MATEMÁTICA
Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA 9 B 25 C
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA TRABALHO Data: /1/018 Nota: Estudante :. No. 1) O valor de no triângulo retângulo abaio é: a) 10. b) 1.
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado
O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS
O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS POLÍGONOS: PROPRIEDADES E CLASSIFICAÇÃO se prolongarmos os lados de um polígono obtêm-se os ângulos externos; Num polígono: os ângulos
Relações Métricas nos Triângulos. Joyce Danielle de Araújo
Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;
A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â
A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos
Professor Alexandre Assis. Lista de exercícios de Geometria
1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo
Roteiro Recuperação Geometria 3º trimestre- 1º ano
Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num
EMENTA ESCOLAR III Trimestre Ano 2014
EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro
Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que
Resposta da questão 1: [B] A figura apresenta um arco de circunferência com um quadrado inscrito e um triângulo retângulo em um de seus lados. O lado do quadrado é igual a hipotenusa do triângulo. Pelo
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
Desenho Mecânico. Prof. Carlos Eduardo Turino
Desenho Mecânico Prof. Carlos Eduardo Turino carlos.turino@toledoprudente.edu.br Objetivo da Aula Aplicar a construção de desenhos geométricos utilizando régua e compasso Conceitos Básicos Retas paralelas
Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência
Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos
ATIVIDADES COM GEOTIRAS
ATIVIDADES COM GEOTIRAS 1. Material: Geotiras i. Represente varias retas paralelas. ii. Represente duas retas concorrentes em um ponto. 2. Material: Geotiras Represente as seguintes poligonais: i. Poligonal
MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos
MATEMÁTICA FRENTE IV LIVRO 1 Capítulo 2 Triângulos I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A α γ C Deseja-se
GGM /10/2010 Turma M2
GGM00161-28/10/2010 Turma M2 Superfície retangular: Considere como unidade a superfície de um quadrado de lado u: E o retângulo de dimensão 5u e 3u: Superfície retangular: Considere como unidade a superfície
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.
MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais
a) 64. b) 32. c) 16. d) 8. e) 4.
GEOMETRIA PLANA 1 1) (UFRGS) Observe com atenção o retângulo ABCD, na figura abaixo. Considerando as relações existentes entre as sua dimensões e a diagonal, a área desse retângulo será igual a ) (UFRGS)
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante
SOLUCÃO DAS ATIVIDADES COM GEOTIRAS
SOLUCÃO DAS ATIVIDADES COM GEOTIRAS 1. Representação de retas nas seguintes posições: i. Retas paralelas ii. Retas concorrentes 2. Representação de poligonais: i. Aberta simples ii. Aberta não simples
SOLUCÃO DAS ATIVIDADES COM VARETAS
SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas
Matemática GEOMETRIA ESPACIAL. Professor Dudan
Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica
BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.
GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:
Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,
Matemática D Semi-Extensivo V. 2
Matemática D Semi-Etensivo V. Eercícios 0) 0) D 60 60 P y z y y z D 6 P é semelante a DP. 6 z ssim: D + z tg 60º z 6 0) P E 0) D y 0 y + y 00 y 9y + y 00 6 9y + 6y 00 6 y 00 6 y 6 y 8 6 Perímetro: 6 +
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Figuras no plano Retas, semirretas e segmentos de reta Ângulos: amplitude e medição Polígonos: propriedades e classificação Círculo e circunferência: propriedades e construção Reflexão, rotação
Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima.
01. Conceitos Primitivos: Ponto: é representado por uma letra maiúscula do nosso alfabeto. Reta: é representado por uma letra minúscula do nosso alfabeto. Plano: é representado por uma letra grega. 0.
FIGURAS PLANAS E O CÁLCULO DE ÁREAS
unifmu Nome: Professor: Ricardo Luís de Souza Curso de Design Matemática Aplicada Atividade Exploratória III Turma: Data: FIGURAS PLANAS E O CÁLCULO DE ÁREAS Objetivo: Rever o conceito de área de figuras
A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:
Quadriláteros Nesta aula vamos estudar os quadriláteros e os seus elementos: lados, ângulos internos, ângulos externos, diagonais, etc. Além disso, vamos definir e observar algumas propriedades importantes
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
Matemática Régis Cortes GEOMETRIA PLANA
GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d
CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO
CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema
TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA
TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo
AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles
GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois
Equilátero Isósceles Escaleno
TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que
Exercícios de Geometria Plana Tchê Concursos Prof. Diego
(001). Se a diferença entre o número de diagonais de dois polígonos convexos é 30 e um deles tem 5 lados a mais que o outro, então o número de lados de cada um dos polígonos é: (A) 5 e 10 (B) 6 e 11 (C)
ATIVIDADES COM GEOPLANO ISOMÉTRICO
ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade de comprimento
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
Colégio Santa Dorotéia
Área de Disciplina: Ano: º Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 019 Valor: xx,x pontos Aluno(a): Nº: Turma: QUEST 1 (UFG) Observe a figura: Nessa figura, o segmento
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
Axiomas e Proposições
Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos
Interbits SuperPro Web
POLÍGONOS REGULARES 1. No estudo da distribuição de torres em uma rede de telefonia celular, é comum se encontrar um modelo no qual as torres de transmissão estão localizadas nos centros de hexágonos regulares,
20/12/2017 ATIVIDADE DE AVALIAÇÃO FINAL
Geometria Gilberto Gualberto 9º 0/1/017 ATIVIDADE DE AVALIAÇÃO FINAL 1. A figura abaixo apresenta duas circunferências concêntricas, uma de raio m e outra de raio 4 m. Calcule a área da parte hachurada
QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área?
/ /017 QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. Considere que cada quadrícula da malha equivale
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar
Testes Propostos 15B e 16B: Triângulos e Quadriláteros
urso de Matemática Testes Propostos 15 e 16: Triângulos e Quadriláteros 01. om três segmentos e comprimentos iguais a 10cm, 12cm e 23cm... é possível apenas formar um triângulo retângulo é possível formar
Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.
GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida
2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura.
1 Projeto Jovem Nota 10 1. (Uerj 2004) No triângulo ABC abaixo, os lados BC, AC e AB medem, respectivamente, a, b e c. As medianas AE e BD relativas aos lados BC e AC interceptam-se ortogonalmente no ponto