LISTA DE EXERCÍCIOS 01

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "LISTA DE EXERCÍCIOS 01"

Transcrição

1 MTEMÁTIC Professores rthur, Denilton, Elizeu e Rodrigo LIST DE EXERCÍCIOS 0 0. (UCSal) Na figura a seguir, suponha que um observador encontra-se no ponto, à distância C 4 metros do pé de uma torre, vendo tal torre sob um ângulo 0 o. o deslocar-se metros em direção à torre, passará a vê-la do ponto, sob um ângulo 0 o. altura da torre, em metros, é: a) 8 b) c) 8 d) 4 e) 8 0 o 0 o C m 0. (UF) Um balão deia o solo verticalmente a uma distância 0 m de um observador. Sabendo-se que o balão está a uma altura de H metros no instante em que o ângulo de observação é, determine H. 0. (UCSal) Um observador, no ponto, vê o topo de um poste () e o topo de um prédio (C), conforme a figura a seguir. 0 Se as alturas do poste e do prédio são, respectivamente, m e 0m, então a distância, entre o poste e o prédio é, em metros: a) 8 b) 0 c) 0 4 d) 0 0 e) (UCSal) Uma escada está encostada em um prédio, fazendo com ele um ângulo de 0 o. Sabendo-se que a escada toca o prédio a 9m do solo, conclui-se que o comprimento da escada é aproimadamente: a) 9, m b) 0, m c), m d),7 m e), m C 0. (UCSal) Entre o plano da rua e o piso térreo de um edifício há um desnível de m. Da rua, acessa-se o piso térreo por meio de uma rampa com inclinação de 0 o em relação à horizontal. Qual é, aproimadamente, o comprimento da rampa? [Dados: cos 0 o 0,9 e sen 0 o 0,4] a), m b) 4, m c), m d),8 m e), m 0. (UCSal) Num terreno horizontal, têm-se dois postes verticais e. Do topo do poste, avista-se o pé do poste sob um ângulo de 0 o com a horizontal como mostra a figura abaio. Se a altura do poste é m, então a distância d entre os dois postes é aproimadamente: a), m b) 8, m c),7m d) 7,0 m e) 4,77 m 07. (UF) Uma estrada eleva-se 0, m a cada. Calcule em grau o ângulo de inclinação da estrada com a horizontal. 08. (UNE/00) Correndo numa praça circular de raio igual a 7 metros, um garoto descreve um arco de 78 metros de comprimento. medida desse arco, em radianos, é: a) b) c) d) e) 4 0 d

2 09. (UNE/99) Se um carrinho de controle remoto deu 0 voltas em uma pista circular de 4 cm de diâmetro, então ele percorreu, em cm: a) 0 b) 0 c) 40 d) 0 e) O menor ângulo formado pelos ponteiros de um relógio às h 4min. é: a) o b) 9 o c) o d) 87 o e) 4 o. (UEFS/00) Na figura, α é a medida angular do arco de círculo com centro em O. Com base nessa informação, pode-se afirmar que: a) α > 90 o b) α 90 o c) α o > 0 d) α o < 0 e) α, o µ.c. µ.c. α O µ.c.. (UNE/9) O raio de uma circunferência cujo comprimento é mede: a) b) d) c) 4 e). No quadrilátero a seguir, C cm, D cm, D Ĉ 0, D 90 e C Dˆ 90. medida, em cm, do perímetro do quadrilátero é: 4. (Efoa-MG) Na figura, qual é a medida do lado a do triângulo C? a) ( ) m b) m c) ( + ) m d) ( ) + m e) m. Sendo α 4 '" e β 8 40'48", calcule: a) α + β b) α β. Os ângulos de medidas θ e γ são tais que θ + γ 4 e θ γ 9 '0" Calcule θ e γ. 7. Num triângulo C isósceles de base C, o ângulo C tem medida  7 4'. Determine as medidas ˆ e Ĉ dos ângulos C e C, respectivamente. 8. Um triângulo tem ângulos internos de medidas rad, rad e rad. Epresse-os em graus Na figura abaio, a circunferência de centro O e raio R tem sobre si determinados os pontos, e C pelos ângulos centrais α e β. Sabe-se que α rad, β rad 4 e que o comprimento de é igual a cm. Determine: a) R; b) o comprimento de C, em centímetros. 0. Duas circunferências concêntricas em O têm sobre si determinados os arcos e CD pelo ângulo central α, conforme ilustra a figura abaio. a), b), c), d) 4, e), Sabendo-se que α rad, que o segmento C tem medida 0 cm e que o arco CD tem 0 cm de comprimento, determine: a) a medida de ; O b) o comprimento do arco.

3 . Durante uma competição, dois velocistas percorrem, emparelhados, um trecho circular de uma pista de atletismo. Um observador localizado no centro de curvatura dos arcos descritos pelos corredores nota que, acompanhando-os visualmente durante esse trecho da prova, teve que girar 0. Nesse intervalo de tempo, o atleta mais adiante percorreu m com velocidade v e o outro corredor, distante 9 m do seu oponente, manteve uma velocidade v. Considerando,, determine: a) a distância percorrida pelo velocista mais próimo; b) a razão entre as velocidades v e v, nessa ordem.. Calcule os ângulos formados pelos ponteiros de horas e minutos de um relógio quando ele estiver marcando os horários. a) 4h 0min; b) 4h 40min; c) h min.. O quíntuplo do suplemento do complemento de um ângulo é igual ao triplo do replemento do seu suplemento. O ângulo é: a) 0 b) 4 c) 0 d) 7 e) (UN-DPTD) No triângulo retângulo de hipotenusa 000 m e um cateto igual a 0 m, o ângulo α oposto a este cateto é: a) menor do que 0 o b) 0 c) 4 d) 0 e) maior que 0. O dobro do suplemento de um arco ecede em o triplo do complemento do dobro desse arco. Qual a medida, em graus, desse arco? a) 0 b) 8 c) d) 0 e) 8. Sejam r e s retas paralelas. medida na figura abaio é: 7. Na figura, C C CD, então ÂD é igual a: a) 7 b) 80 c) 90 d) 00 e) 0 8. Na figura abaio, o valor de y + z é: 9. Calcule os valores de e y na figura abaio, sabendo-se que OC é a bissetriz do ângulo ÔD. 0. razão entre a medida de um ângulo e o seu suplemento é. Calcule a medida desse ângulo. 7. O complemento da medida de um ângulo está para o seu suplemento na razão de. Calcule a medida desse ângulo.. (Cesgranrio-RJ) s retas r e s são paralelas. O valor do ângulo α, apresentado na figura, é:. Na figura, as retas r e s são paralelas. Calcule o valor de. a) 0 b) 70 c) 80 d) 90 e) 00

4 4. Sendo r paralela a s na figura, calcule o valor de Sendo {7, 8, 9}, obtenha o conjunto de partes do conjunto.. Na figura abaio, as retas r e s são paralelas. Calcule o valor de. 4. Para os conjuntos {a} e {a, {}}, podemos afirmar, corretamente, que: a). b). c). d) a. e) {}. 4. Obtenha e y, de modo que: {0,, } {0,, } e {, } {,, y}.. Sendo {, {},, {, }}, marque V ou F. a) ( ) b) ( ) {} c) ( ) {} d) ( ) {} P() (P() conjunto das partes de ) e) ( ) {, } f) ( ) {, } g) ( ) {, {}} h) ( ) {} i) ( ) n o de subconjuntos de é igual a. 7. Se {{ },, {0}}, podemos afirmar que: a) { } b) {0}. c) { }. d) {{0}, }. e) {{0}, }. 8. Diga se é verdadeira ou falsa cada uma das afirmações. a), b), c) 0 d) {0} e) {0} f), g), h) {} {, {}, {}, {, }} i) {} {, {, y}} 9. Se {,, {}, {, }}, então: a) {, } b) c) d) e) {} 4. (Vunesp) Suponhamos que e sejam subconjuntos do E, satisfazendo: 0. para todo E, se, então. 0. eiste E, tal que. Então, podemos afirmar que: a). b) eiste, tal que. c) eiste, tal que. d) contém. e) e não têm elementos em comum. 44. Consultec- No diagrama de Venn, a região sombreada representa o conjunto: a) C ( C) d) ( C ) b) C ( ) e) ( C ) c) C ( ) 4. Consultec- Na figura, a parte sombreada representa o conjunto: a) ( C) ( ) b) ( C) c) ( ) ( ) C d) ( C) ( C) e) C [ ]

5 4. (Mackenzie-SP) Numa escola, há n alunos. Sabe-se que alunos lêem jornal, lêem os jornais e, 0 lêem apenas um dos dois jornais e não lêem o jornal. O valor de n é: a) 49 b) 7 d) 7 c) 8 e) (FCMSC-SP) Feito eame de sangue em um grupo de 00 pessoas, constatou-se o seguinte: 80 delas têm sangue com fator Rh negativo, têm sangue do tipo O e têm sangue do tipo O com fator Rh negativo. O número de pessoas com sangue de tipo diferente de O e com fator Rh positivo é: a) 40 b) d) 0 c) 80 e) 48. (FGV-SP) Uma empresa entrevistou 00 de seus funcionários a respeito de três embalagens:, e C, para o lançamento de um novo produto. O resultado foi o seguinte: 0 indicaram a embalagem ; 0 indicaram a embalagem ; 90 indicaram a embalagem C; 0 indicaram as embalagens e ; 40 indicaram a embalagem e C; 0 indicaram a embalagem e C e 0 indicaram as três embalagens. Dos funcionários entrevistados, quantos não tinham preferência por nenhuma das embalagens? a) Os dados estão incorretos; é impossível calcular. b) Mais de 0. c). d) Menos de 0. e) (Consultec-) Consultadas 00 pessoas sobre as emissoras de TV a que habitualmente assistem, obteve-se o resultado seguinte: 80 pessoas assistem ao canal, 0 assistem ao canal e 70 assistem a outros canais distintos de e. O número de pessoas que assistem a e não assistem a é: a) 0 b) 0 d) 00 c) 80 e) 0 0. Numa sociedade há homens, mulheres que não usam óculos e 7 homens que usam óculos, Se forem 8 pessoas (ao todo) que usam óculos, a quantidade de mulheres que usam óculos é: a) 7 b) d) 8 c) e) 8. (Uneb-) Em um vestibular, 80 alunos acertaram pelo menos uma questão entre as questões n o e n o. Sabe-se que 70 deles acertaram a questão n o e 0 acertaram a questão n o. O número de alunos que acertaram ambas as questões é igual a: a) 40 b) d) 0 c) 0 e) 0

6 RESOLUÇÃO COMENTD 0. C. tg 0 o h h h 8 uc 8 0. tg 0 o H 0 H 0 H H 90 m o rad 0º 0 0. E. tg 0 0º 0 tg 0º 8 + y y 0 y cos 0 o 4 9 y y (,7) 0,

7 7 0. E. sen 0 o 0,4 y m y y 00, m tg 0 o d d d d (,7) 8, m 07. sen α α 4º 08.. r 7 m ρ 78 m α ρ 78 r C. r m C r C 4 0 volts 0 C cm 0.. α + β min 0º α º - α º α + β º min β min º0 4 min β 4 ( ) β, º 0

8 8. D. α rad 8º 0 α 7 α 84º90 α 8º0. C. C r r r.. cos 0º p , p, cm 4. C. cos 0º y h sen 0 o a + y a ( + ) m h h h. α + β 0º 8º α + β 7º 80 α + β 7º α β º4 44 o θ + y 4. o ' θ y 9 0 θ 4º 0 0 o 0 º7 4º θ 90 " y 44º 9 0 y º4 º 7 4 º 4 α - β º 8 9 4º 8º º 4 44

9 7. 79º 0 7º4' 7º 4 07º 8 07º 8 9 º 0 º9 78 R º9 C 8. rad º rad 0º rad º 4 9. C α rad 0 rad 4 rad C r rad r cm cm r r 0. 0 rad R 0 cm R O 0 cm 0 cm O 40 cm 0 rad 0 rad o rad 0º l a) l, m rad. a) º e 9º b) 0º e 00º c) 4º e 9º

10 0. [80º (90º )] [0º (80º )] (90º + ) (80º + ) º + 90º 4º 4. sen α E. (80 o ) o (90 o ) 0º º 70º 4 8. C. 80º (0º + 70º) 80º 7. a + a + b + b 80 a + b 80º (a + b) 80º a + b 90º 8. + y + + y 80 + y 80º + y + y y 4y + y 80º y 0º 0º 40º z 40º + 0 z 80º 40º 0º + 80º 00º

11 º 0 o 4 0º + 0º + 0º + y 80º y 00º y 0º 0. o 80 7 o o o o 80 90º 80 7º 4º.. 40º r 40º 0º 40º + 0º 70º 0º r 4. 0º 0º 70º 0º 0º + 40º 0º 0º 40º 40º 40º

12 . a + 0 a + 80 (a + 0º) a + 80º a + 0º a + 80º a 0º 0º + 0º 0º. a) V b) V c) V d) F e) V f) V g) V h) V i) V 7. E. 8. a) F b) V c) F d) F e) V f) V g) F h) F i) F 9. E. 40. P() {, {7}, {8}, {9}, {7, 8}, {7, 9}, {8, 9}, {7, 8, 9}} 4. E. 4. y ou 4.. E E C. 4. C. n n 8

13 47. C U R C 49. C H M O

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

Lista de Exercícios. b. Dado tg α =

Lista de Exercícios. b. Dado tg α = Lista de Exercícios 1. Nos triângulos retângulos representados abaixo, determine as medias x e y indicadas: a. 4. Calcule os valores de x e y nos triângulos retângulos representados a seguir. a. Dado sen

Leia mais

Roteiro Recuperação Geometria 3º trimestre- 1º ano

Roteiro Recuperação Geometria 3º trimestre- 1º ano Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo 3º tri PR2 -MTEMÁTI Ens. Fundamental 9º ano Prof. Marcelo LIS LIST DE ESTUDO REFORÇO 1 Trigonometria no Triângulo Retângulo Parte 1. No triângulo retângulo determine as medidas e indicadas. (Use: sen65º

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO. ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

Lista de exercícios Função Trigonométrica

Lista de exercícios Função Trigonométrica Lista de exercícios Função Trigonométrica 1- Um alpinista deseja calcular a altura de uma encosta que vai escalar. Para isso, afasta-se, horizontalmente, 80 m do pé da encosta e visualiza o topo sob um

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas. LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

Questão 03) Questão 01)

Questão 03) Questão 01) Questão 01) Gab: D De um ponto do chão situado a 150 m de distância de um edifício, vê-se o topo do prédio sob um ângulo de 60º, como mostra a figura, desenhada sem escala. Se for adotado = 1, 7, o ponto

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista

Leia mais

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) Na figura a seguir, o ponto O é o centro da circunferência, AB e AC são segmentos tangentes e o raio da circunferência mede o dobro de x. O perímetro

Leia mais

LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) (Eear) Duas cordas se cruzam num ponto distinto do centro da circunferência, conforme esboço. A partir do conceito de ângulo excêntrico interior, a

Leia mais

Matemática - 2C16/26 Lista 2

Matemática - 2C16/26 Lista 2 Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

Unidade 3 Geometria: semelhança de triângulos

Unidade 3 Geometria: semelhança de triângulos Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e

Leia mais

PA = 1,2 m. Após uma tacada na bola, ela se

PA = 1,2 m. Após uma tacada na bola, ela se 1. (Unifor 014) Sobre uma rampa de m de comprimento e inclinação de 0 com a horizontal, devem-se construir degraus de altura 0cm. Quantos degraus devem ser construídos? a) 4 b) c) 6 d) 7 e) 8. (Efomm 016)

Leia mais

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) 1 + 1 1 ) alcule: 1 1 a). 8. 8 b) ) alcule: a) 1 7 1 ( ) 64 9 1 b) 0 4) Resolva

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:?

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:? Módulo 07. Exercícios Lista de exercícios do Módulo 07 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Calcule os logarítmos:. log. log 6 6. log 4 4. log. log 7 7 6. log 7.

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor. Curso: Exercícios ESAF para Receita Federal 2013 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 03 Geometria/Trigonometria Professor: Valdenilson Garcia 2013 Copyright. Curso Agora eu Passo

Leia mais

COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A 2ª CERTIFICAÇÃO. PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG

COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A 2ª CERTIFICAÇÃO. PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A ª CERTIFICAÇÃO PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG. (Unisinos) As funções seno e cosseno de qualquer ângulo x satisfazem

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de

Leia mais

APROFUNDAMENTO/REFORÇO

APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA TRIÂNGULO RETÂNGULO 1. Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de

Leia mais

Ensino. cossec x sec x. cot gx 1. x, k. Utilizando-se as identidades. DEF, no qual DF 1. Aluno (a): Nº: Turma: 1ª série Bimestre: 2º

Ensino. cossec x sec x. cot gx 1. x, k. Utilizando-se as identidades. DEF, no qual DF 1. Aluno (a): Nº: Turma: 1ª série Bimestre: 2º Ensino Aluno (a): Nº: Turma: 1ª série Bimestre: º Disciplina: Matemática Razões Trigonométricas Professor (a): Capitão Barba Ruiva Data: / / cossec x sec x Questão 1 Seja M, com cot gx 1 kπ x, k. Utilizando-se

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

SEGUNDO ANO - PARTE UM

SEGUNDO ANO - PARTE UM MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF Prof. Me. Luis esar Friolani Data: / / Nota: Disciplina: Matemática luno (a): Nº: 9 no/ef Objetivo: Desenvolver os conceitos sobre razões trigonométricas no triângulo retângulo valiar se o aluno é capaz

Leia mais

01. (valor: 1,0) Calcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): 13 2 = x 2 x x 5. Resposta: x = 5.

01. (valor: 1,0) Calcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): 13 2 = x 2 x x 5. Resposta: x = 5. P 006G.a Série Matemática Geometria Fábio áceres/oliveira/osana lves 0. (valor:,0) alcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): a. = + 69 esposta: =. b. 0 cos0 6 esposta:

Leia mais

TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017

TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017 TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /017 1. Um aluno de engenharia civil (altura do aluno 1,70 m) decide calcular a altura de uma torre de transmissão localizada na avenida Paulista em São Paulo

Leia mais

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão

Leia mais

Disciplina: Matemática Data da entrega: 31/03/2015.

Disciplina: Matemática Data da entrega: 31/03/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (FUVEST-SP) - Dados: MÔB

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

Trigonometria Básica e Relações Métricas

Trigonometria Básica e Relações Métricas 1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno

Leia mais

Relações Métricas nos Triângulos. Joyce Danielle de Araújo

Relações Métricas nos Triângulos. Joyce Danielle de Araújo Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;

Leia mais

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ENSINO FUNDAMENTAL 9º ano LISTA DE EXERCÍCIOS PT 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA PARTE 1 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ) Para

Leia mais

LISTA DE ATIVIDADES III UNIDADE - REVISÃO

LISTA DE ATIVIDADES III UNIDADE - REVISÃO LISTA DE ATIVIDADES III UNIDADE - REVISÃO 01) (F.C.CHAGAS-SP) Um observador, no ponto A, vê o topo de um poste (B) e o topo de um prédio (C), conforme a figura. Se as alturas do poste e do prédio são,

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Para medir a largura de um lago,

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a 13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web ª. LISTA DE GEOMETRIA PLANA POLIEDRO - 07. (G - cps 05) A inclinação das vias públicas é um problema para o transporte. Na cidade de Dunedin, na Nova Zelândia, está localizada a rua Baldwin que, em seu

Leia mais

COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA 9 B 25 C

COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA 9 B 25 C COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA TRABALHO Data: /1/018 Nota: Estudante :. No. 1) O valor de no triângulo retângulo abaio é: a) 10. b) 1.

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3 (UNIRIO) Exercício 4. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3 (UNIRIO) Exercício 4. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Qual o valor, em radianos, de um ângulo que mede 150o? (a) π 2 (b) 2π 3 (c) 5π 6 (d) π 3 Exercício 2 Qual o valor, em graus, de um ângulo que mede (a) 210 (b) 230 (c) 270 7π

Leia mais

Conteúdos Exame Final e Avaliação Especial 2017

Conteúdos Exame Final e Avaliação Especial 2017 Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Unidade 6 Geometria: quadriláteros

Unidade 6 Geometria: quadriláteros Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere

Leia mais

LISTA DE EXERCÍCIOS 02

LISTA DE EXERCÍCIOS 02 MTEMÁTI Professores rthur, enilton, Elizeu e Rodrigo LIST E EXERÍIOS 0 0. (onsultec - ) Sendo P {X ÎN; < } Q {X Î Z; < < }, P ÇQ a) {0,, } b) {0,,, } c) {0,,,, } d) {,, 0,,, } e) {,,, 0,,, } 0. (onsultec

Leia mais

Trigonometria. Parte I. Página 1

Trigonometria. Parte I.  Página 1 Trigonometria Parte I 1 (Uerj 01) Um esqueitista treina em três rampas planas de mesmo comprimento a, mas com inclinações diferentes As figuras abaixo representam as trajetórias retilíneas AB= CD= EF,

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA A A` r B B` s C C` t A B P C S t r 1 r 2 x 6-5 15 3 r 3 B a β b ka B β kb A α c γ C A α kc γ C B B A C A C B a ka B A c C A kc C B B kc ka c

Leia mais

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é: Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual foi, em reais, o montante gerado por essa aplicação?

Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual foi, em reais, o montante gerado por essa aplicação? 18 Atividade extra UNIDADE VAMOS POUPAR DINHEIRO! Fascículo 6 Matemática Unidade 18 Função do Segundo Grau Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA

COLÉGIO RESSURREIÇÃO NOSSA SENHORA COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 01/06/2016 Disciplina: Matemática LISTA 10 Trigonometria no triângulo retângulo Período: 2 o Bimestre Série/Turma: 2 a série EM Professor(a): Wysner Max Valor:

Leia mais

Lista de Exercícios 3 - Gabriel Mendes (1º Ano)

Lista de Exercícios 3 - Gabriel Mendes (1º Ano) Lista de Exercícios 3 - Gabriel Mendes (1º Ano) 1 - (Unicamp-SP) Uma pessoa de 1,65 m de altura observa o topo de um edifício conforme o esquema abaixo. Para sabermos a altura do prédio, devemos somar

Leia mais

Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo

Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo Plano de ulas Matemática Módulo 9 Trigonometria no triângulo retângulo Resolução dos eercícios propostos Retomada dos conceitos PÍTULO 1 1 Os catetos medem 1 e 16 u.c. e o ilustrar esta situação, nota-se

Leia mais

CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A

CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A Preparar o Eame 01 016 Matemática A Página 19 88. 88.1. O ângulo CDA está inscrito na circunferência, portanto CDA. Assim: AD CD A ABCD A CDA AD CD AD Tem-se que, cos AD cos CD e sen CD sen. Portanto,

Leia mais

COLÉGIO MARQUES RODRIGUES - SIMULADO

COLÉGIO MARQUES RODRIGUES - SIMULADO COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P6 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 901 Questão 1 Um feixe

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

LISTA DE EXERCÍCIOS 9º ano 4º bim

LISTA DE EXERCÍCIOS 9º ano 4º bim LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}

Leia mais

LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE

LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE 1) Na figura, a circunferência de centro O está inscrita no triângulo ABC. A medida do ângulo inscrito x é: A) 126º B) 63º C) 62º D) 54º E) 108º 2) O triângulo

Leia mais

Projeto de Recuperação 1º Semestre - 2ª Série (EM)

Projeto de Recuperação 1º Semestre - 2ª Série (EM) Projeto de Recuperação 1º Semestre - 2ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Exercícios Matrizes e Determinantes Classificação de matrizes (pag. 0) 1,2,,4,6,8 Matrizes

Leia mais

GABARITO. Matemática D 11) B. Como β = C C = 3β.

GABARITO. Matemática D 11) B. Como β = C C = 3β. GRITO Matemática Semietensivo V. ercícios 0) Logo, = 0 + 0 + 0 = 70 Observe a figura: 9 6 0 X 0 gora considerando os dois relógios: 0) O relógio é uma circunferência, o ponteiro dos minutos leva ora para

Leia mais

TURMA: M. DATA DE ENTREGA: 01/set/2015 COMPONENTE CURRICULAR: Matemática I. PROFESSOR: Thiago Pardo Severiano

TURMA: M. DATA DE ENTREGA: 01/set/2015 COMPONENTE CURRICULAR: Matemática I. PROFESSOR: Thiago Pardo Severiano INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS NATAL CIDADE ALTA CURSO: Técnico Integrado em Multimídia TURMA: 1.20151.12807. M DATA DE ENTREGA: 01/set/2015 COMPONENTE

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

Colégio Cruz das Almas Ensino de qualidade, vencendo desafios com você.

Colégio Cruz das Almas Ensino de qualidade, vencendo desafios com você. Colégio Cruz das Almas Ensino de qualidade, vencendo desafios com você. III Unidade Série: ª Série º ANO Aluno(a): Nº Data: / / 010. Disciplina: Matemática Professor: Ramon Neiva Valor atribuído: Valor

Leia mais

Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Ano/Série: 9ª Data: / / LISTA DE GEOMETRIA

Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Ano/Série: 9ª Data: / / LISTA DE GEOMETRIA Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Ano/Série: 9ª Data: / / 2018. LISTA DE GEOMETRIA Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel

Leia mais

CICLO TRIGONOMÉTRICO

CICLO TRIGONOMÉTRICO TRIGONOMETRIA CICLO TRIGONOMÉTRICO DEFINIÇÃO O Círculo Trigonométrico ou ciclo Trigonométrico é um recurso criado para facilitar a visualização das proporções entre os lados dos triângulos retângulos.

Leia mais

MATEMÁTICA. Questões de 01 a 04

MATEMÁTICA. Questões de 01 a 04 GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,

Leia mais