LISTA DE EXERCÍCIOS 01

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "LISTA DE EXERCÍCIOS 01"

Transcrição

1 MTEMÁTIC Professores rthur, Denilton, Elizeu e Rodrigo LIST DE EXERCÍCIOS 0 0. (UCSal) Na figura a seguir, suponha que um observador encontra-se no ponto, à distância C 4 metros do pé de uma torre, vendo tal torre sob um ângulo 0 o. o deslocar-se metros em direção à torre, passará a vê-la do ponto, sob um ângulo 0 o. altura da torre, em metros, é: a) 8 b) c) 8 d) 4 e) 8 0 o 0 o C m 0. (UF) Um balão deia o solo verticalmente a uma distância 0 m de um observador. Sabendo-se que o balão está a uma altura de H metros no instante em que o ângulo de observação é, determine H. 0. (UCSal) Um observador, no ponto, vê o topo de um poste () e o topo de um prédio (C), conforme a figura a seguir. 0 Se as alturas do poste e do prédio são, respectivamente, m e 0m, então a distância, entre o poste e o prédio é, em metros: a) 8 b) 0 c) 0 4 d) 0 0 e) (UCSal) Uma escada está encostada em um prédio, fazendo com ele um ângulo de 0 o. Sabendo-se que a escada toca o prédio a 9m do solo, conclui-se que o comprimento da escada é aproimadamente: a) 9, m b) 0, m c), m d),7 m e), m C 0. (UCSal) Entre o plano da rua e o piso térreo de um edifício há um desnível de m. Da rua, acessa-se o piso térreo por meio de uma rampa com inclinação de 0 o em relação à horizontal. Qual é, aproimadamente, o comprimento da rampa? [Dados: cos 0 o 0,9 e sen 0 o 0,4] a), m b) 4, m c), m d),8 m e), m 0. (UCSal) Num terreno horizontal, têm-se dois postes verticais e. Do topo do poste, avista-se o pé do poste sob um ângulo de 0 o com a horizontal como mostra a figura abaio. Se a altura do poste é m, então a distância d entre os dois postes é aproimadamente: a), m b) 8, m c),7m d) 7,0 m e) 4,77 m 07. (UF) Uma estrada eleva-se 0, m a cada. Calcule em grau o ângulo de inclinação da estrada com a horizontal. 08. (UNE/00) Correndo numa praça circular de raio igual a 7 metros, um garoto descreve um arco de 78 metros de comprimento. medida desse arco, em radianos, é: a) b) c) d) e) 4 0 d

2 09. (UNE/99) Se um carrinho de controle remoto deu 0 voltas em uma pista circular de 4 cm de diâmetro, então ele percorreu, em cm: a) 0 b) 0 c) 40 d) 0 e) O menor ângulo formado pelos ponteiros de um relógio às h 4min. é: a) o b) 9 o c) o d) 87 o e) 4 o. (UEFS/00) Na figura, α é a medida angular do arco de círculo com centro em O. Com base nessa informação, pode-se afirmar que: a) α > 90 o b) α 90 o c) α o > 0 d) α o < 0 e) α, o µ.c. µ.c. α O µ.c.. (UNE/9) O raio de uma circunferência cujo comprimento é mede: a) b) d) c) 4 e). No quadrilátero a seguir, C cm, D cm, D Ĉ 0, D 90 e C Dˆ 90. medida, em cm, do perímetro do quadrilátero é: 4. (Efoa-MG) Na figura, qual é a medida do lado a do triângulo C? a) ( ) m b) m c) ( + ) m d) ( ) + m e) m. Sendo α 4 '" e β 8 40'48", calcule: a) α + β b) α β. Os ângulos de medidas θ e γ são tais que θ + γ 4 e θ γ 9 '0" Calcule θ e γ. 7. Num triângulo C isósceles de base C, o ângulo C tem medida  7 4'. Determine as medidas ˆ e Ĉ dos ângulos C e C, respectivamente. 8. Um triângulo tem ângulos internos de medidas rad, rad e rad. Epresse-os em graus Na figura abaio, a circunferência de centro O e raio R tem sobre si determinados os pontos, e C pelos ângulos centrais α e β. Sabe-se que α rad, β rad 4 e que o comprimento de é igual a cm. Determine: a) R; b) o comprimento de C, em centímetros. 0. Duas circunferências concêntricas em O têm sobre si determinados os arcos e CD pelo ângulo central α, conforme ilustra a figura abaio. a), b), c), d) 4, e), Sabendo-se que α rad, que o segmento C tem medida 0 cm e que o arco CD tem 0 cm de comprimento, determine: a) a medida de ; O b) o comprimento do arco.

3 . Durante uma competição, dois velocistas percorrem, emparelhados, um trecho circular de uma pista de atletismo. Um observador localizado no centro de curvatura dos arcos descritos pelos corredores nota que, acompanhando-os visualmente durante esse trecho da prova, teve que girar 0. Nesse intervalo de tempo, o atleta mais adiante percorreu m com velocidade v e o outro corredor, distante 9 m do seu oponente, manteve uma velocidade v. Considerando,, determine: a) a distância percorrida pelo velocista mais próimo; b) a razão entre as velocidades v e v, nessa ordem.. Calcule os ângulos formados pelos ponteiros de horas e minutos de um relógio quando ele estiver marcando os horários. a) 4h 0min; b) 4h 40min; c) h min.. O quíntuplo do suplemento do complemento de um ângulo é igual ao triplo do replemento do seu suplemento. O ângulo é: a) 0 b) 4 c) 0 d) 7 e) (UN-DPTD) No triângulo retângulo de hipotenusa 000 m e um cateto igual a 0 m, o ângulo α oposto a este cateto é: a) menor do que 0 o b) 0 c) 4 d) 0 e) maior que 0. O dobro do suplemento de um arco ecede em o triplo do complemento do dobro desse arco. Qual a medida, em graus, desse arco? a) 0 b) 8 c) d) 0 e) 8. Sejam r e s retas paralelas. medida na figura abaio é: 7. Na figura, C C CD, então ÂD é igual a: a) 7 b) 80 c) 90 d) 00 e) 0 8. Na figura abaio, o valor de y + z é: 9. Calcule os valores de e y na figura abaio, sabendo-se que OC é a bissetriz do ângulo ÔD. 0. razão entre a medida de um ângulo e o seu suplemento é. Calcule a medida desse ângulo. 7. O complemento da medida de um ângulo está para o seu suplemento na razão de. Calcule a medida desse ângulo.. (Cesgranrio-RJ) s retas r e s são paralelas. O valor do ângulo α, apresentado na figura, é:. Na figura, as retas r e s são paralelas. Calcule o valor de. a) 0 b) 70 c) 80 d) 90 e) 00

4 4. Sendo r paralela a s na figura, calcule o valor de Sendo {7, 8, 9}, obtenha o conjunto de partes do conjunto.. Na figura abaio, as retas r e s são paralelas. Calcule o valor de. 4. Para os conjuntos {a} e {a, {}}, podemos afirmar, corretamente, que: a). b). c). d) a. e) {}. 4. Obtenha e y, de modo que: {0,, } {0,, } e {, } {,, y}.. Sendo {, {},, {, }}, marque V ou F. a) ( ) b) ( ) {} c) ( ) {} d) ( ) {} P() (P() conjunto das partes de ) e) ( ) {, } f) ( ) {, } g) ( ) {, {}} h) ( ) {} i) ( ) n o de subconjuntos de é igual a. 7. Se {{ },, {0}}, podemos afirmar que: a) { } b) {0}. c) { }. d) {{0}, }. e) {{0}, }. 8. Diga se é verdadeira ou falsa cada uma das afirmações. a), b), c) 0 d) {0} e) {0} f), g), h) {} {, {}, {}, {, }} i) {} {, {, y}} 9. Se {,, {}, {, }}, então: a) {, } b) c) d) e) {} 4. (Vunesp) Suponhamos que e sejam subconjuntos do E, satisfazendo: 0. para todo E, se, então. 0. eiste E, tal que. Então, podemos afirmar que: a). b) eiste, tal que. c) eiste, tal que. d) contém. e) e não têm elementos em comum. 44. Consultec- No diagrama de Venn, a região sombreada representa o conjunto: a) C ( C) d) ( C ) b) C ( ) e) ( C ) c) C ( ) 4. Consultec- Na figura, a parte sombreada representa o conjunto: a) ( C) ( ) b) ( C) c) ( ) ( ) C d) ( C) ( C) e) C [ ]

5 4. (Mackenzie-SP) Numa escola, há n alunos. Sabe-se que alunos lêem jornal, lêem os jornais e, 0 lêem apenas um dos dois jornais e não lêem o jornal. O valor de n é: a) 49 b) 7 d) 7 c) 8 e) (FCMSC-SP) Feito eame de sangue em um grupo de 00 pessoas, constatou-se o seguinte: 80 delas têm sangue com fator Rh negativo, têm sangue do tipo O e têm sangue do tipo O com fator Rh negativo. O número de pessoas com sangue de tipo diferente de O e com fator Rh positivo é: a) 40 b) d) 0 c) 80 e) 48. (FGV-SP) Uma empresa entrevistou 00 de seus funcionários a respeito de três embalagens:, e C, para o lançamento de um novo produto. O resultado foi o seguinte: 0 indicaram a embalagem ; 0 indicaram a embalagem ; 90 indicaram a embalagem C; 0 indicaram as embalagens e ; 40 indicaram a embalagem e C; 0 indicaram a embalagem e C e 0 indicaram as três embalagens. Dos funcionários entrevistados, quantos não tinham preferência por nenhuma das embalagens? a) Os dados estão incorretos; é impossível calcular. b) Mais de 0. c). d) Menos de 0. e) (Consultec-) Consultadas 00 pessoas sobre as emissoras de TV a que habitualmente assistem, obteve-se o resultado seguinte: 80 pessoas assistem ao canal, 0 assistem ao canal e 70 assistem a outros canais distintos de e. O número de pessoas que assistem a e não assistem a é: a) 0 b) 0 d) 00 c) 80 e) 0 0. Numa sociedade há homens, mulheres que não usam óculos e 7 homens que usam óculos, Se forem 8 pessoas (ao todo) que usam óculos, a quantidade de mulheres que usam óculos é: a) 7 b) d) 8 c) e) 8. (Uneb-) Em um vestibular, 80 alunos acertaram pelo menos uma questão entre as questões n o e n o. Sabe-se que 70 deles acertaram a questão n o e 0 acertaram a questão n o. O número de alunos que acertaram ambas as questões é igual a: a) 40 b) d) 0 c) 0 e) 0

6 RESOLUÇÃO COMENTD 0. C. tg 0 o h h h 8 uc 8 0. tg 0 o H 0 H 0 H H 90 m o rad 0º 0 0. E. tg 0 0º 0 tg 0º 8 + y y 0 y cos 0 o 4 9 y y (,7) 0,

7 7 0. E. sen 0 o 0,4 y m y y 00, m tg 0 o d d d d (,7) 8, m 07. sen α α 4º 08.. r 7 m ρ 78 m α ρ 78 r C. r m C r C 4 0 volts 0 C cm 0.. α + β min 0º α º - α º α + β º min β min º0 4 min β 4 ( ) β, º 0

8 8. D. α rad 8º 0 α 7 α 84º90 α 8º0. C. C r r r.. cos 0º p , p, cm 4. C. cos 0º y h sen 0 o a + y a ( + ) m h h h. α + β 0º 8º α + β 7º 80 α + β 7º α β º4 44 o θ + y 4. o ' θ y 9 0 θ 4º 0 0 o 0 º7 4º θ 90 " y 44º 9 0 y º4 º 7 4 º 4 α - β º 8 9 4º 8º º 4 44

9 7. 79º 0 7º4' 7º 4 07º 8 07º 8 9 º 0 º9 78 R º9 C 8. rad º rad 0º rad º 4 9. C α rad 0 rad 4 rad C r rad r cm cm r r 0. 0 rad R 0 cm R O 0 cm 0 cm O 40 cm 0 rad 0 rad o rad 0º l a) l, m rad. a) º e 9º b) 0º e 00º c) 4º e 9º

10 0. [80º (90º )] [0º (80º )] (90º + ) (80º + ) º + 90º 4º 4. sen α E. (80 o ) o (90 o ) 0º º 70º 4 8. C. 80º (0º + 70º) 80º 7. a + a + b + b 80 a + b 80º (a + b) 80º a + b 90º 8. + y + + y 80 + y 80º + y + y y 4y + y 80º y 0º 0º 40º z 40º + 0 z 80º 40º 0º + 80º 00º

11 º 0 o 4 0º + 0º + 0º + y 80º y 00º y 0º 0. o 80 7 o o o o 80 90º 80 7º 4º.. 40º r 40º 0º 40º + 0º 70º 0º r 4. 0º 0º 70º 0º 0º + 40º 0º 0º 40º 40º 40º

12 . a + 0 a + 80 (a + 0º) a + 80º a + 0º a + 80º a 0º 0º + 0º 0º. a) V b) V c) V d) F e) V f) V g) V h) V i) V 7. E. 8. a) F b) V c) F d) F e) V f) V g) F h) F i) F 9. E. 40. P() {, {7}, {8}, {9}, {7, 8}, {7, 9}, {8, 9}, {7, 8, 9}} 4. E. 4. y ou 4.. E E C. 4. C. n n 8

13 47. C U R C 49. C H M O

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.

MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:

2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede: 1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao

Leia mais

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO. ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

COOPERATIVA EDUCACIONAL DE PORTO SEGURO

COOPERATIVA EDUCACIONAL DE PORTO SEGURO OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.

Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes

Leia mais

Lista de exercícios Função Trigonométrica

Lista de exercícios Função Trigonométrica Lista de exercícios Função Trigonométrica 1- Um alpinista deseja calcular a altura de uma encosta que vai escalar. Para isso, afasta-se, horizontalmente, 80 m do pé da encosta e visualiza o topo sob um

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado

2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

Unidade 3 Geometria: semelhança de triângulos

Unidade 3 Geometria: semelhança de triângulos Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

Matemática - 2C16/26 Lista 2

Matemática - 2C16/26 Lista 2 Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

APROFUNDAMENTO/REFORÇO

APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA

EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) 1 + 1 1 ) alcule: 1 1 a). 8. 8 b) ) alcule: a) 1 7 1 ( ) 64 9 1 b) 0 4) Resolva

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de

Leia mais

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM

COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor. Curso: Exercícios ESAF para Receita Federal 2013 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 03 Geometria/Trigonometria Professor: Valdenilson Garcia 2013 Copyright. Curso Agora eu Passo

Leia mais

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM

TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA TRIÂNGULO RETÂNGULO 1. Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

01. (valor: 1,0) Calcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): 13 2 = x 2 x x 5. Resposta: x = 5.

01. (valor: 1,0) Calcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): 13 2 = x 2 x x 5. Resposta: x = 5. P 006G.a Série Matemática Geometria Fábio áceres/oliveira/osana lves 0. (valor:,0) alcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): a. = + 69 esposta: =. b. 0 cos0 6 esposta:

Leia mais

TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017

TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017 TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /017 1. Um aluno de engenharia civil (altura do aluno 1,70 m) decide calcular a altura de uma torre de transmissão localizada na avenida Paulista em São Paulo

Leia mais

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

Disciplina: Matemática Data da entrega: 31/03/2015.

Disciplina: Matemática Data da entrega: 31/03/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Trigonometria Básica e Relações Métricas

Trigonometria Básica e Relações Métricas 1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno

Leia mais

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ENSINO FUNDAMENTAL 9º ano LISTA DE EXERCÍCIOS PT 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA PARTE 1 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ) Para

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA

COLÉGIO RESSURREIÇÃO NOSSA SENHORA COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 01/06/2016 Disciplina: Matemática LISTA 10 Trigonometria no triângulo retângulo Período: 2 o Bimestre Série/Turma: 2 a série EM Professor(a): Wysner Max Valor:

Leia mais

Unidade 6 Geometria: quadriláteros

Unidade 6 Geometria: quadriláteros Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (FUVEST-SP) - Dados: MÔB

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

Lista de Exercícios 3 - Gabriel Mendes (1º Ano)

Lista de Exercícios 3 - Gabriel Mendes (1º Ano) Lista de Exercícios 3 - Gabriel Mendes (1º Ano) 1 - (Unicamp-SP) Uma pessoa de 1,65 m de altura observa o topo de um edifício conforme o esquema abaixo. Para sabermos a altura do prédio, devemos somar

Leia mais

1. Converta para a forma decimal: (a) (b) (c) (d) (e)

1. Converta para a forma decimal: (a) (b) (c) (d) (e) UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática 1 a Lista de Exercícios - Ângulos Matemática Básica II - 2015.1 Professor Márcio Nascimento Fontes: Practice Makes Perfect - Trigonometry

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA A A` r B B` s C C` t A B P C S t r 1 r 2 x 6-5 15 3 r 3 B a β b ka B β kb A α c γ C A α kc γ C B B A C A C B a ka B A c C A kc C B B kc ka c

Leia mais

AVALIAÇÃO BIMESTRAL I

AVALIAÇÃO BIMESTRAL I Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua

Leia mais

Trigonometria. Parte I. Página 1

Trigonometria. Parte I.  Página 1 Trigonometria Parte I 1 (Uerj 01) Um esqueitista treina em três rampas planas de mesmo comprimento a, mas com inclinações diferentes As figuras abaixo representam as trajetórias retilíneas AB= CD= EF,

Leia mais

Colégio Cruz das Almas Ensino de qualidade, vencendo desafios com você.

Colégio Cruz das Almas Ensino de qualidade, vencendo desafios com você. Colégio Cruz das Almas Ensino de qualidade, vencendo desafios com você. III Unidade Série: ª Série º ANO Aluno(a): Nº Data: / / 010. Disciplina: Matemática Professor: Ramon Neiva Valor atribuído: Valor

Leia mais

Projeto de Recuperação 1º Semestre - 2ª Série (EM)

Projeto de Recuperação 1º Semestre - 2ª Série (EM) Projeto de Recuperação 1º Semestre - 2ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Exercícios Matrizes e Determinantes Classificação de matrizes (pag. 0) 1,2,,4,6,8 Matrizes

Leia mais

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é: Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 45 RELAÇÕES MÉTRICAS EM UM TRIÂNGULO QUALQUER

MATEMÁTICA - 3 o ANO MÓDULO 45 RELAÇÕES MÉTRICAS EM UM TRIÂNGULO QUALQUER MTEMÁTIC - 3 o NO MÓDULO 45 RELÇÕES MÉTRICS EM UM TRIÂNGULO QULQUER D O 2R a C C b h a m c -m Como pode cair no enem Um navegador devia viajar durante duas horas, no rumo nordeste, para chegar a certa

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

MATEMÁTICA. Questões de 01 a 04

MATEMÁTICA. Questões de 01 a 04 GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA

COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA COLÉGIO MARISTA - PATOS DE MINAS º ANO DO ENSINO MÉDIO - 013 Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA ROTEIRO DE ESTUDO QUESTÕES Conteúdos: - Matemática Financeira - Geometria Plana

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Lista de exercícios 02 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio. Disciplina: Matemática

Lista de exercícios 02 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio. Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental a apresentação de uma lista legível, limpa e organizada. Rasuras podem invalidar a lista. Nas questões que

Leia mais

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo

Leia mais

LISTA DE EXERCÍCIOS 9º ano 4º bim

LISTA DE EXERCÍCIOS 9º ano 4º bim LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}

Leia mais

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas.

Exercícios de Razões Trigonométricas. b) Considerando o triângulo retângulo ABC da figura, determine as medidas a e b indicadas. Exercícios de Razões Trigonométricas a) No triângulo retângulo da figura abaixo, determine as medidas de x e y indicadas (Use: sen 65 = 0,91; cos 65 = 0,42 ; tg 65 = 2,14) b) Considerando o triângulo retângulo

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria

MATEMÁTICA A - 11o Ano Geometria -Trigonometria MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO MATEMÁTICA - 3 o ANO MÓDULO 57 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO N 10 cm 10 cm M 10 cm 1 rad 2 cm 1 cm 2 cm θ a c α C 4 5 B 3 α A Como pode cair no enem F 1 (ENEM) Um balão atmosférico, lançado em Bauru

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

Lista de exercícios 04

Lista de exercícios 04 Lista de exercícios 04 Aluno (a) : Série: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/05/2015. A lista deverá apresentar

Leia mais

Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: TC E MTEMÁTIC 7 a SÉRIE OLÍMPIC ENSINO FUNMENTL CLICK PROFESSOR Professor: Júnior LUNO(): Nº TURM: TURNO: T: / / COLÉGIO: 1. Faça o que se pede: I. Uma tira de papel retangular é dobrada ao longo da linha

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane

Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane 1) Um terreno quadrado tem 289m 2 de área. Parte desse terreno é ocupada por um galpão quadrado e outra, por uma calçada de 3m de

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Soluções dos Problemas do Capítulo 4

Soluções dos Problemas do Capítulo 4 Soluções do apítulo 4 155 Soluções dos Problemas do apítulo 4 Problema 1 h 10 14 Figura 57 x Seja h a altura do Pão de çúcar em relação ao plano horizontal de medição e seja x a distância de ao pé da altura

Leia mais

30's Volume 22 Matemática

30's Volume 22 Matemática 30's Volume Matemática www.cursomentor.com 0 de julho de 015 Q1. Um homem de x + 6 5 altura x + 97 m de altura está de pé próximo a um poste de m. Neste 50 5 caso qual a medida da sombra do homem neste

Leia mais

AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm)

AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm) LISTA GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 8. Na figura, a reta r é tangente às circunferências de centros A e B e raios cm e cm, respectivamente, nos pontos C e D, e a distância entre os centros

Leia mais

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. leonardosantos.inf@gmail.com 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática

Leia mais

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO

GABARITO PROVA B GABARITO PROVA A. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO Colégio Providência Avaliação por Área Matemática e suas tecnologias 1ª ETAPA Data: 11/05/2015 2ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 4 5 6 7 8 9 10

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

REVISÃO PROVA GLOBAL. Frações e números decimais. Prof. Danillo Alves

REVISÃO PROVA GLOBAL. Frações e números decimais. Prof. Danillo Alves Prof. Danillo Alves REVISÃO PROVA GLOBAL 1) ESTATÍSTICA; 2) TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO; 3) TRIÂNGULOS QUAISQUER. 4) Trigonometria na circunferência Frações e números decimais Professor: DANILLO

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB340 TOPOGRAFIA E GEOPROCESSAMENTO I PROF. DR. CARLOS ALBERTO VETTORAZZI REVISÃO DE

Leia mais

EXERCÍCIOS COMPLEMENTARES I DISCIPLINA: MATEMÁTICA II PROFESSORES: DATA: / / DATA PARA ENTREGA: / / (A) 2,5 (B) 7,5 (C) 10 (D) 15 (E) 30

EXERCÍCIOS COMPLEMENTARES I DISCIPLINA: MATEMÁTICA II PROFESSORES: DATA: / / DATA PARA ENTREGA: / / (A) 2,5 (B) 7,5 (C) 10 (D) 15 (E) 30 COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIOS COMPLEMENTARES I DISCIPLINA: MATEMÁTICA II PROFESSORES: DATA: / / ALUNO(A): DATA PARA ENTREGA: / / SÉRIE: 1º ANO (E.M.) A RESOLUÇÃO DEVERÁ CONSTAR NESTA

Leia mais

30's Volume 4 Física. 9 de janeiro de 2014

30's Volume 4 Física.  9 de janeiro de 2014 30's Volume 4 Física www.cursomentor.com 9 de janeiro de 2014 Q1. Uma escala de temperatura A se relaciona com uma escala de temperatura B de acordo com a expressão A = 20 + 10B. Está mesma escala B se

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

Módulo de Geometria Anaĺıtica 1. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado

Leia mais

Ângulo entre ponteiros do relógio 2016

Ângulo entre ponteiros do relógio 2016 Ângulo entre ponteiros do relógio 2016 Exemplos: Calcule o valor do menor ângulo entre os ponteiros dos relógios. a) 4h b) 4h 10min c) 4h 12 min www.nsaulasparticulares.com.br Página 1 de 9 d) 4h 38 min

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos

Leia mais

As listas de exercícios podem ser encontradas nos seguintes endereços: ou na pasta J18, no xerox (sala1036)

As listas de exercícios podem ser encontradas nos seguintes endereços:  ou na pasta J18, no xerox (sala1036) As listas de eercícios podem ser encontradas nos seguintes endereços: www.mat.ufmg.br/calculoi ou na pasta J8, no ero (sala06) TERCEIRA LISTA DE EXERCÍCIOS. Derive: a) y = 6 + b) y = c) d) y = + y = 0

Leia mais