Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES"

Transcrição

1 Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 - CAPES SISTEMAS LINEARES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez

2 Mtemátic Básic r Ciêncis Sociis I UNIDADE SISTEMA DE EQUAÇÕES LINEARES. INTRODUÇÃO: Sistems lineres recem, em gerl, em rolems, onde certs quntiddes recism ser determinds indiretmente. Como eemlo, odese tomr o seguinte rolem do cotidino: Três migos se encontrm em um lnchonete. O migo A comr um suco e um snduíche e g R$7,00 (sete reis). O migo B comr dois quies e um snduíche e tmém g R$7,00. O migo C comr um suco e um quie, gndo R$6,00. Qul o reço de cd roduto? A mtriz io indic quntidde de cd roduto comrd or cd um dos migos: snduíche quie suco A 0 B 0 C 0 Chmremos de X, X e X, resectivmente, o reço do suco, do snduíche e do quie. Podemos, então, montr um sistem mtricil: X X X Refere-se à tel cim Custo de cd roduto Vlor go or cd migo Vmos fzer multilicção ds mtrizes ( or ) que estão loclizds à esquerd do sinl de iguldde. Multilicmos cd linh d mtriz de ordem el colun d mtriz de ordem ordendmente, elemento or elemento, somndo-se os rodutos em seguid. Aós, fzemos um iguldde de mtrizes, resultndo no sistem liner.

3 Mtemátic Básic r Ciêncis Sociis I X X 0X 0X X X X 0X X X X X X X X Sistem liner O sistem liner tem como solução X = reis (reço do suco); X = reis (reço do snduíche) e X = reis (reço do quie), ou sej, solução do sistem liner cim é S {(,, )}. Utilizndo sistems, odemos resolver diversos rolems do nosso cotidino. Sistems lineres são, tmém, emregdos r resolver rolems comleos. Tis sistems são utilizdos n tomogrfi comutdorizd, onde feies de rio-x trvessm o coro e intensidde de síd do feie deende d ção comind ds regiões que ele trvess. Cd feie é como um ds coluns do sistem, e reunião d informção de vários feies ermitem cessr informção, em cd rte do interior do coro.. EQUAÇÃO LINEAR: É um equção d form..., onde i (i,,...n) n n são os coeficientes (reis ou comleos), i (i,,...n) são s incógnits e é o termo indeendente. Eemlos de equções lineres: y 7z w t 5g 0 A solução de um equção liner é dd elo conjunto de vlores que, o serem sustituídos ns incógnits, chegm um iguldde verddeir. Por eemlo, equção y z 5 resent como solução,y,z, um vez que 5. Os vlores,y,z tmém verificm equção. Pode-se, então, firmr que eistem infinits soluções (um número infinito de termos ordendos (,y,z)) que stisfzem equção dd.

4 Mtemátic Básic r Ciêncis Sociis I Qundo o termo indeendente for igul zero, equção liner denominse equção liner homogêne. Oservmos que um equção liner não resent termos d form, y, ou sej, cd termo d equção tem um únic incógnit, cujo eoente é semre igul à unidde (). Dus equções lineres são equivlentes, qundo têm s mesms soluções em um mesmo conjunto universo.. DEFINIÇÃO DE UM SISTEMA LINEAR: Um sistem de equções lineres ou sistem liner é um conjunto comosto or dus ou mis equções lineres. Um sistem liner de n equções e incógnits ode ser reresentdo d seguinte form: n n n n n n n n nn n n n n n n, (I) Sistem Liner onde (i,,,..., n)(j,,,..., n) são os coeficientes, i (i,,,..., n) os ij termos indeendentes e i (i,,,..., n) são s incógnits.. REPRESENTAÇÃO MATRICIAL DE UM SISTEMA LINEAR: Podemos reresentr um sistem liner n form mtricil, como no eemlo inicil:

5 Mtemátic Básic r Ciêncis Sociis I 5 n 5 n 5 nn n5 n n n n 5n n 5 n 5 n 5 n 5... (II) Mtriz ds incógnits Mtriz dos termos indeendentes Mtriz dos coeficientes

6 Mtemátic Básic r Ciêncis Sociis I Pr reresentrmos um sistem liner n form (I), rtir d form mtricil (II), relizmos dus oerções com s mtrizes que recem n form (II). Primeirmente, efetumos multilicção entre s mtrizes dos coeficientes (A) e mtriz ds incógnits (X) e, osteriormente, relizmos iguldde entre s mtrizes do roduto e dos termos indeendentes (B). Em notção simlificd, form mtricil é dd or A X B. 5. SOLUÇÃO DE UM SISTEMA LINEAR: Chmmos de solução de um sistem liner o conjunto ordendo de números reis,,,,,, que, colocdos resectivmente nos 5 6, n lugres ds incógnits, fzem com que tods s equções lineres fiquem verddeirs (isto é, igulddes numérics). y Eemlo: O sistem liner y como solução. Nesse cso, solução é únic. tem o conjunto S, Um sistem liner ode ter um únic solução, infinits soluções ou não ter solução. Qundo o sistem liner é homogêneo, isto é, o termo indeendente de tods s equções for nulo, e solução é ( 0,0,0 ), dizemos que solução é trivil. Cso o sistem dmit outr solução em que s incógnits não são tods nuls, solução é chmd de solução não trivil. 6. SISTEMAS LINEARES EQUIVALENTES: Dois sistems são equivlentes se dmitem o mesmo conjunto solução. Eemlo: Ddo um sistem liner, o seu conjunto solução ode ser igulmente determindo or inúmeros outros sistems de equções. Verificr se os seguintes sistems são equivlentes: () y 5 y 7 e 6

7 Mtemátic Básic r Ciêncis Sociis I () 5y y 9 Resolvendo o sistem (), isolndo vriável (incógnit) n segund equção, otemos: 7 y e sustituindo n rimeir, temos (7 y) y 5 y 9 y e, então, solução do sistem () é S {(, )}. Resolvendo o sistem (): d rimeir equção temos que 5y e sustituindo n segund, otemos (5y ) y 9 y y e, então, solução do sistem () é S {(, )}. Logo, como os dois sistems dmitem mesm solução, eles são equivlentes. Os sistems ) 0 ; ) 0 ; c) 7 8, são sistems equivlentes, ou sej, todos têm o mesmo conjunto solução S {(, )}. 7. CLASSIFICAÇÃO DE UM SISTEMA LINEAR: Os sistems lineres são clssificdos qunto o número de soluções que resentm. Se o sistem liner tiver elo menos um solução, dizemos que ele é ossível ou comtível, cso contrário, qundo o sistem não tem solução, dizemos que ele é imossível ou incomtível. O sistem ossível é determindo, qundo ele tem um únic solução e é indetermindo, qundo ele tem mis de um solução. O esquem seguir mostr clssificção de um sistem liner: 7

8 Mtemátic Básic r Ciêncis Sociis I Sistem Liner Possível (dmite solução) Imossível (SI - não tem solução) Determindo (SPD - solução únic) Indetermindo (SPI -infinits soluções) 7.. Sistem Possível e Determindo- SPD Um sistem liner é ossível e determindo qundo dmite um únic solução.. y Eemlo: y Isolndo n segund equção, ficmos com sustituí-lo n rimeir equção, otemos o resultdo: 6 y y 0y 6 0y y 0 5 y y y. Deois, o Sustituindo o vlor de y n rimeir equção, oteremos:

9 Mtemátic Básic r Ciêncis Sociis I logo, o r ordendo que corresonde à solução do sistem é 6,. Est é 5 únic, o que o crcteriz como um sistem liner ossível e determindo - SPD. Sendo ssim: y y , ortnto, s sentençs são verddeirs Verific-se que os coeficientes ds mesms incógnits, ns dus equções, não são roorcionis. Em outrs lvrs, é o trilo de e é metde de, ou Sistem Possível e Indetermindo (SPI) Um sistem é ossível e indetermindo qundo s dus equções forem totlmente roorcionis, ou sej, equivlentes. Eemlo: y (I) 6 y (II) As dus equções são totlmente equivlentes. Isto ode ser oservdo o vermos que 6 está r, ssim como está r, ssim como está r :. Além disso, se resolvermos o sistem or sustituição, 6 teremos, o isolr y em (I), y e, o sustituí-lo em (II), oteremos como resultdo: logo, odemos erceer que o sistem dmite infinits soluções. 9

10 Mtemátic Básic r Ciêncis Sociis I DICA: Qundo clculmos o determinnte d mtriz do sistem, no cso, 6, este result em: Sendo ssim, o determinnte não nulo indic que o sistem é determindo. Entretnto, se o determinnte for nulo, restrão dus ossiiliddes: SPI e SI. Então, seremos clssificá-lo, se eminrmos os termos indeendentes. No SPI, os termos indeendentes são totlmente roorcionis, já no SI não, como veremos seguir. 7.. Sistem Imossível (SI) Um sistem é imossível qundo s dus equções tiverem ens os coeficientes ds mesms incógnits em ms s equções roorcionis e qundo os termos indeendentes não estiverem n mesm roorção. Eemlo: 6y 5 (I) 9y (II) Os coeficientes ds mesms incógnits, ns dus equções, são roorcionis, ms os termos indeendentes não. Em outrs lvrs, está r, ssim como está r 9, orém não como 5 está r Além disso, se resolvermos o sistem or sustituição, teremos, 9 o isolr y em (I): 6y 5 5 y 6 e, o sustituí-lo em (II), teremos: 0

11 Mtemátic Básic r Ciêncis Sociis I logo, o sistem é imossível e não tem solução. 8. RESOLUÇÃO DE UM SISTEMA LINEAR: 8.. Por dição e sustituição: Podemos resolver um sistem liner or sustituição, ou sej, qundo isolmos um incógnit em um equção e sustituímos mesm n outr equção, conforme mostr o eemlo io: y Eemlo : Ddo o sistem, determine su solução: 5 y Isolndo incógnit n rimeir equção y e sustituindo- n segund, otemos: 5( y) y, então 8y e y / 8. Sendo o vlor de y, encontrmos o de, ( /8) (8 )/8 /8 7 / 9. Assim, o conjunto solução do sistem é S {(7 / 9, /8)}. Agor, resolvendo o mesmo sistem or dição: y 5 y ( 5) 5 0y 5 5 y somndo s dus equções, otemos o vlor d incógnit y, 8y y / 8, que sustituído, em qulquer um ds equções, fornece o vlor de, y ( /8) (8 )/8 /8 7 / 9 e determindo, ois só dmite solução S {(7 / 9, /8)}., logo, o sistem é ossível

12 Mtemátic Básic r Ciêncis Sociis I OBSERVAÇÂO: Em uls osteriores, veremos que s equções lineres, que formm o sistem ossível e determindo mostrdo cim, reresentm dus rets no lno crtesino que se intercetm (se cruzm) no onto (7/9,-/8). y 0 Eemlo: O sistem é ossível e indetermindo, ois y 0 y ns dus equções e dmite como solução: ( 0,0);(,);( 0, 0);(, ) etc. Novmente, frismos que todo sistem liner homogêneo é ossível, ois semre dmite solução trivil (0,0). OBSERVAÇÂO: Em uls osteriores, veremos que s equções lineres, que formm o sistem ossível e indetermindo mostrdo cim, reresentm rets rlels soreosts no lno crtesino, logo, eistem infinitos ontos que stisfzem ms s equções (ontos que ertencem ms s rets). y Eemlo : O sistem é um sistem imossível, ois não é ossível y encontrrmos dois números reis, cuj som sej e o mesmo temo. OBSERVAÇÂO: Em uls osteriores, veremos que s equções lineres, que formm o sistem imossível mostrdo cim, reresentm rets rlels (não soreosts) no lno crtesino, logo, não eistem ontos que ertençm às dus rets. 9. REGRA DE CRAMER: A regr de Crmer (Griel Crmer, mtemático e strônomo suíço (70-75) ) é emregd r resolver um sistem liner, em que o número de equções é igul o número de incógnits. Ddo o sistem, com três equções lineres e três incógnits, X Y Z X Y Z X Y Z ou n reresentção Mtriz Dos coeficientes Mtriz ds incógnits Mtriz dos termos indeendetes

13 Mtemátic Básic r Ciêncis Sociis I mtricil X Y Z, determine su solução: Podemos resolver o sistem cim, emregndo técnic de sustituição ou dição de equções lineres, ms um form rátic de resolver um sistem, ou mior é utilizndo Regr de Crmer. A Regr de Crmer consiste em : ) Clculr o determinnte d mtriz dos coeficientes (r isso, emregmos regr de Srrus ou de Llce), simolicmente indicdo or D ; ) Clculr os determinntes D,Dy e Dz que se otém de D, sustituindo, resectivmente, colun (dos coeficientes de X), colun (dos coeficientes de Y) e colun (dos coeficientes de Z) el colun dos termos indeendentes, ou sej, z D. D, y D e ) Clculr s incógnits fzendo: D X, D Dy Y e D D Z D z, desde que D 0.

14 Mtemátic Básic r Ciêncis Sociis I Eemlo: Resolver o sistem Cálculo do determinnte d mtriz dos coeficientes. A 5 det(a) D Cálculo do determinnte ds incógnits. 0 A 0 5 det(a) D 0 A 0 5 det(a ) D 0 A 0 det(a ) D 0 Cálculo ds incógnits. D D D 0, e 0, logo, o D D D sistem é ossível e determindo e tem solução S {(,,0 )}. 9.. A discussão de um sistem utilizndo Regr de Crmer: Discutir um sistem liner é ser se ele é ossível e determindo, ossível e indetermindo ou imossível. Então: Se D 0, o sistem é ossível e determindo;

15 Mtemátic Básic r Ciêncis Sociis I Se D 0 e D D D 0, o sistem é ossível e indetermindo; y z imossível. Se D 0 e elo menos um D n 0 (n =, y, z,...), o sistem é A Regr de Crmer é utilizd r resolver qulquer sistem, onde o número de equções (m) é igul o número de incógnits (n). Eemlo: Um cert escol de ensino médio tem 07 lunos, ns s e s séries, 7, ns s e s séries e 9, ns s e s séries. Qul o totl de lunos dess escol? Fzendo X= número de lunos n série, Y= número de lunos n série e Z =número de lunos n série, temos o sistem: X Y Y Z X Z 07 7, resolvendo el Regr de Crmer otemos: 0, 9 D 0 0 D , e D y D z D D y 90 Dz 58 Logo: X 6, Y 5 e Z 9 D D D O totl de lunos d escol é igul X+Y+Z=6 lunos. O sistem cim é ossível e determindo. Eemlo: Discut o sistem X my X Y Resolução: Clculndo os determinntes: D m m, m D m e D y 5

16 Mtemátic Básic r Ciêncis Sociis I fzendo: 0 m 0 m D D 0 m 0 m Resost: Pr que o sistem sej imossível m (D 0), r que sej ossível e determindo m (D 0), e não eiste um m tl que D D 0 ( m e m, resectivmente). A Regr de Crmer, emor simles n resolução de sistems de dus equções e dus incógnits ou três equções e três incógnits, não é recomendável sistems miores, dd comleidde dos cálculos envolvidos (or eemlo, um sistem qutro equções e qutro incógnits demndri o cálculo do cinco determinntes de qurt ordem). O método do esclonmento, que veremos seguir, é oercionlmente mis simles e é mis fácil de ser rogrmdo em comutdores. 0. ESCALONAMENTO DE UM SISTEMA: O método do esclonmento foi desenvolvido elo mtemático lemão Crl Friedrich Guss ( ) e osteriormente foi erfeiçodo or Wilhem Jordn (8-899). Eemlos de sistems esclondos: y y y z 5y z z 7 y 5z t y 8z t, z t 0 t 8 O sistem y z 0 y 5z y z 0 não está n form esclond. 0.. Oerções elementres: Antes de começrmos esclonr um sistem liner, vmos ver três tios de oerções elementres, que odem ser relizds sore um sistem liner 6

17 Mtemátic Básic r Ciêncis Sociis I de equções de form trnsformá-lo em um outro sistem equivlente mis simles que o nterior. N seqüênci, trlhremos com um eemlo r mostrr como funcionm esss oerções.. Permutção: trocr de lugr dus equções do sistem não lter solução do sistem; Trocr Linh com Linh y z y z 0 y 5z 9 y 5z 9 y z 0 y z. Multilicção: Sustituir um ds equções or um múltilo não nulo del mesm, não lter solução do sistem: Multilicr Linh elo número y z y z 0 y 5z 9 6y z 6 y z 0 y 5z 9. Adição: A dição de dus equções do sistem tmém não lter o conjunto solução: Adicionr Linh com Linh y z y z 0 y 5z 9 6y z 6 y z 0 6 y z 9 Cd um ds três oerções cim é chmd de oerção elementr. Assim, ddo um sistem liner, todo sistem otido rtir dele, or meio de um seqüênci finit de oerções elementres, é dito um sistem equivlente o sistem ddo. Vimos, nteriormente, que sistems equivlentes ossuem o mesmo conjunto solução. 0.. Resolução de sistems lineres or esclonmento: 7

18 Mtemátic Básic r Ciêncis Sociis I Bsicmente, há dois tios de sistems esclondos considerr: A) Primeiro tio: onde número de equções é igul o número de incógnits. Nesse cso, o sistem é determindo. B) Segundo tio: onde o número de equções é menor que o de incógnits. Nesse cso, o sistem é indetermindo. Pssos do método do esclonmento: Primeiro sso: Anulr os coeficientes d incógnit, d equção em dinte. Cso não sej, tornr o coeficiente d incógnit igul. Segundo sso: Deir de ldo equção e reetir o rimeiro sso com os coeficientes d róim incógnit, que tenh coeficiente diferente de zero, ns equções remnescentes (que sorm). Terceiro sso: Deir de ldo s dus rimeirs equções e reetir o rimeiro sso com os coeficientes d róim incógnit, que tenh coeficiente diferente de zero, ns equções remnescentes. Os róimos ssos são nálogos e devem ser seguidos, té que o sistem fique esclondo. Eemlo : Resolver o sistem y z 5 y z 8 y z 7 or esclonmento. Esse sistem é do rimeiro tio, ou sej, o número de equções é igul o número de incógnits. O coeficiente d incógnit é. Começmos multilicndo rimeir equção or (-) e dicionndo o resultdo à segund equção. Deois, multilicmos rimeir equção or (-) e dicionmos y z 5 terceir equção. Otemos o sistem equivlente 5y 6z. Dess 9y z 8 8

19 Mtemátic Básic r Ciêncis Sociis I form, nulmos os coeficientes d incógnit, d equção em dinte (Primeiro Psso). Multilicndo segund equção or (-/5), otemos y z 5 6 y z, gor, 5 5 9y z 8 multilicndo segund equção or (9) e dicionndo o resultdo à terceir equção, otemos: y z 5 6 y z 5 5 z 5 5. Pronto!!! O sistem está esclondo. Rest, gor, resolvê-lo. D terceir equção, tirmos que z. Sustituindo 6 n segund, otemos o vlor de y, y () y. Sustituindo y e z 5 5 n rimeir equção, otemos: ( ) () 5. O sistem é ossível e determindo e tem como solução (,, ). Eemlo: Sej o sistem y z y z 0, vmos escloná-lo: y 7z 8 y z y z y z 0 e, somndo segund, temos y z, y 7z 8 y 7z 8 sustituímos, então, equção el som del com rimeir multilicd or (-). y z y z y 7z 8 e, somndo terceir, temos y z y z, 5y 5z 0 9

20 Mtemátic Básic r Ciêncis Sociis I sustituímos, então, equção el som del com rimeir multilicd or (-). y z y z 5y 5z 0 e, somndo terceir, otemos y z y z, 0y 0z 0 Como últim equção é stisfeit r quisquer vlores de, y e z, el ode ser surimid do sistem. Assim, otemos o seguinte sistem esclondo, onde o número de incógnits é mior do que o número de equções e, ortnto, indetermindo. Admite infinits soluções. y z y z OBSERVAÇÂO: Se durnte o esclonmento, ocorrer um equção do tio 0 0y com 0, então, o sistem será imossível. 0

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic r Ciêncis Sociis Alicds I Rodrigo Brbos Sores . Sistems Lineres:..

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Sistemas Lineares Exercício de Fixação

Sistemas Lineares Exercício de Fixação Sistems Lineres Eercício de Fição Por: Griel Gutierre P Sores Instituto Federl de Educção, Ciênci e Tecnologi Prí Disciplin: Mtemátic Professor: Amrósio Elis Aluno: Mtrícul: Curso: Série: Turno: Sistems

Leia mais

MATEMÁTICA II - Engenharias/Itatiba DETERMINANTES. A quantidade D = ps-rq é definida como sendo o determinante da matriz quadrada.

MATEMÁTICA II - Engenharias/Itatiba DETERMINANTES. A quantidade D = ps-rq é definida como sendo o determinante da matriz quadrada. MTEMÁTI II - Engenhris/Itti o Semestre de Prof. Murício Fri - Série de Eercícios DETERMINNTES. Determinnte de ordem onsidere o sistem liner. s incógnits são e. Multilicndo rimeir eução r s or s, segund

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Capítulo VI GEOMETRIA ANALÍTICA NO PLANO

Capítulo VI GEOMETRIA ANALÍTICA NO PLANO Cítulo VI GEOMERIA ANALÍICA NO LANO Cítulo VI Geometri Anlític no lno Cítulo VI istem de Coordends no lno. Dois sistems, de coordends rectngulres no lno dizem-se igulmente orientdos se for ossível trnsortr

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações // Aul : Revisão de Probbilidde e sttístic Prof. Leonrdo Menezes Tóicos em Telecomunicções Sumário O que é esttístic O que é robbilidde Vriáveis letóris Distribuição de Probbilidde Alicções Mementos O

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana.

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana. PROCESSO SELETIVO/006 RESOLUÇÃO MATEMÁTICA Brz Mour Freits, Mrgreth d Silv Alves, Olímpio Hiroshi Miygki, Rosne Sores Moreir Vin QUESTÕES OBJETIVAS 0 Pr rrecdr doções, um Entidde Beneficente usou um cont

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares

Rresumos das aulas teóricas Cap Capítulo 4. Matrizes e Sistemas de Equações Lineares Rresumos ds uls teórics ------------------ Cp ------------------------------ Cpítulo. Mtrizes e Sistems de Equções ineres Sistems de Equções ineres Definições Um sistem de m equções lineres n incógnits,

Leia mais

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB.

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB. MÚLTIPL ESCOLH NOTÇÕES C : conjunto dos números compleos. Q : conjunto dos números rcionis. R : conjunto dos números reis. Z : conjunto dos números inteiros. N {0,,,,...}. N* {,,,...}. : conjunto vzio.

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M )

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática + = B =.. matrizes de M ) Se ( ij ) é um mtri, definid pel lei Universidde Federl de Viços Centro de Ciêncis Ets e ecnológics Deprtmento de Mtemátic LIS DE EXERCÍCIOS M 7 Prof Gem/ Prof Hugo/ Prof Mrgreth i j, se i j ij, clcule

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (II Determinntes) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Determinntes Índice 2 Determinntes 2

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos.

TÓPICOS. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema. Método de Gauss-Jordan. Sistemas homogéneos. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir ÓPICOS Equção liner. AUA 4 Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105 Colégio Snt Mri Exercícios de P.A. e P.G. Professor: Flávio Verdugo Ferreir. (UFBA) A som dos 0 e 0 termos d seqüênci bixo é: 8 n n 8. n ) -6 b) -8 c) 0 d)8 e) 6. (Unifor CE) Considere seqüênci n, 8 Qul

Leia mais

Congruências de grau 2 e reciprocidade quadrática. Seja p > 2 um número primo e a,b,c Z com a não divisívelpor p. Resolver

Congruências de grau 2 e reciprocidade quadrática. Seja p > 2 um número primo e a,b,c Z com a não divisívelpor p. Resolver Polos Olímicos de Treinmento Curso de Teori dos Números - Nível 3 Crlos Gustvo Moreir Aul 9 Congruêncis de gru e recirocidde qudrátic 1 Congruêncis de Gru Sej > um número rimo e,b,c Z com não divisívelor.

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

3.1 Integral Tripla em um bloco retangular e o Teorema de Fubini

3.1 Integral Tripla em um bloco retangular e o Teorema de Fubini Objetivos 3. Os objetivos dest Aul são: introduzir o conceito de integrl tril; enuncir o Teorem de Fubini que, nlogmente o cso d Integrl ul, ermite clculr integrl tril or meio d integrl reetid; utilizr

Leia mais

Prezados Estudantes, Professores de Matemática e Diretores de Escola,

Prezados Estudantes, Professores de Matemática e Diretores de Escola, Prezdos Estudntes, Professores de Mtemátic e Diretores de Escol, Os Problems Semnis são um incentivo mis pr que os estudntes possm se divertir estudndo Mtemátic, o mesmo tempo em que se preprm pr s Competições

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

CAPÍTULO 1 CIRCUITOS REATIVOS

CAPÍTULO 1 CIRCUITOS REATIVOS ÍUO UOS VOS UO VO M SÉ r que os equimentos eletrônicos (rádio, rdr etc.) ossm desemenhr sus unções, os circuitos resistivos, indutivos e ccitivos são combindos em ssocições, e. m virtude de tis ssocições

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Regras. Resumo do Jogo Resumo do Jogo. Conteúdo. Conteúdo. Objetivo FRENTE do Jogo

Regras. Resumo do Jogo Resumo do Jogo. Conteúdo. Conteúdo. Objetivo FRENTE do Jogo Resumo do Jogo Resumo do Jogo Regrs -Qundo for seu turno, você deve jogr um de sus crts no «ponto n linh do tempo» que estej correto. -Se você jogr crt corretmente, terá um crt menos à su frente. -Se você

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Algoritmos de Busca de Palavras em Texto

Algoritmos de Busca de Palavras em Texto Revisdo 08Nov12 A busc de pdrões dentro de um conjunto de informções tem um grnde plicção em computção. São muits s vrições deste problem, desde procurr determinds plvrs ou sentençs em um texto té procurr

Leia mais

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas

Tópicos Especiais de Álgebra Linear Tema # 2. Resolução de problema que conduzem a s.e.l. com única solução. Introdução à Resolução de Problemas Tópicos Especiis de Álgebr Liner Tem # 2. Resolução de problem que conduzem s.e.l. com únic solução Assunto: Resolução de problems que conduzem Sistem de Equções Lineres utilizndo invers d mtriz. Introdução

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Aula 09 Equações de Estado (parte II)

Aula 09 Equações de Estado (parte II) Aul 9 Equções de Estdo (prte II) Recpitulndo (d prte I): s equções de estdo têm form (sistems de ordem n ) = A + B u y = C + D u onde: A é um mtriz n n B é um mtriz n p C é um mtriz q n D é um mtriz q

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x DESAFIOS ENZO MATEMÁTICA 01-(FUVEST) Sejm x e y dois números reis, com 0

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295 Anuiddes equivlentes: $480 + $113 + $149 5 9% 5 VPL A (1, 09) $56, 37 A 5 9% 3,88965 5 9% 5 9% AE = = = = $14, 49 = 3,88965 AE B $140 $620 + $120 + 7 9% 7 VPL B (1, 09) $60, 54 = = = 5, 03295 7 9% 7 9%

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

RACIOCÍNIO LÓGICO Simplificado

RACIOCÍNIO LÓGICO Simplificado Sérgio Crvlho Weer Cmpos RACIOCÍNIO LÓGICO Simplificdo Volume ª edição Revist, tulizd e mplid Mteril Complementr PRINCIPAIS CONCEITOS E FÓRMULAS DO LIVRO RACIOCÍNIO SIMPLIFICADO - Vol. www.editorjuspodivm.com.r

Leia mais

Nota de aula_2 2- FUNÇÃO POLINOMIAL

Nota de aula_2 2- FUNÇÃO POLINOMIAL Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil

Leia mais

EXAME DE INGRESSO 2014 3º Período

EXAME DE INGRESSO 2014 3º Período PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA ÁREA DE ENGENHARIA DE COMPUTAÇÃO (141) ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO EXAME DE INGRESSO 2014 º Período NOME: Oservções Importntes: 1. Não

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito ns melhores fculddes IBMEC 03/junho/007 ANÁLISE QUANTITATIVA E LÓGICA DISCUSIVA 01. O dministrdor de um boliche pretende umentr os gnhos com sus pists. Atulmente, cobr $ 6,00 por um hor

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES Prof. Erivelton Gerldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0.

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0. Resolver o seguinte PPNL M (min) f() s. [, ] Pr chr solução ótim deve-se chr todos os máimos (mínimos) locis, isto é, os etremos locis. A solução ótim será o etremo locl com mior (menor) vlor de f(). É

Leia mais

Função de onda e Equação de Schrödinger

Função de onda e Equação de Schrödinger Função de ond e Equção de Schrödinger A U L A 4 Met d ul Introduzir função de ond e Equção de Schrödinger. objetivos interpretr fisicmente função de ond; obter informção sobre um sistem microscópico, prtir

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

CENTRO UNIVERSITÁRIO CATÓLICA DE SANTA CATARINA Pró-Reitoria Acadêmica Setor de Pesquisa

CENTRO UNIVERSITÁRIO CATÓLICA DE SANTA CATARINA Pró-Reitoria Acadêmica Setor de Pesquisa FORMULÁRIO PARA INSCRIÇÃO DE PROJETO DE INICIAÇÃO CIENTÍFICA. Coordenção/Colegido o(s) qul(is) será vinculdo: Engenhris Curso (s) : Engenhris Nome do projeto: MtLb Aplicdo n Resolução de Sistems Lineres.

Leia mais

a) sexto b) sétimo c) oitavo d) nono e) décimo

a) sexto b) sétimo c) oitavo d) nono e) décimo 1 INSPER 16/06/013 Seu Pé Direito ns Melhores Fculddes 1. Nos plnos seguir, estão representds dus relções entre s vriáveis x e y: y = x e y = x, pr x 0.. Em um sequênci, o terceiro termo é igul o primeiro

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais