1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

Tamanho: px
Começar a partir da página:

Download "1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial"

Transcrição

1 º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d função =

2 ) Construir o gráfico d função = ( ) ) Construir o gráfico d função f () = e

3 Observções: ) O gráfico de tod função eponencil f () = cort o eio do no ponto (0,). ) A função eponencil = não tem riz e nunc é negtiv. Lembre-se: = >0 pr R 3) D (f) = R e Im (f) = R * + 4) N função f() = : se 0 < <, f é decrescente se >, então f é crescente 5) N função = se > função se proim de zero qundo ssume vlores negtivos cd vez menores se 0 < < função se proim de zero qundo ssume vlores positivos cd vez miores. 3

4 Eercícios: ) N figur bio está representdo o gráfico de f() =., sendo um constnte rel.determine o vlor de f(3) ) As leis seguintes representm s estimtivs de vlores( em milhres de reis) de dois prtmentos A e B(dquiridos n mesm dt), pssdos t nos d dt de compr: t. Aprtmento A : v = 0 b. Aprtmento B : v = 6. t 8 ) Por quis vlores form dquiridos os prtmentos A e B, respectivmente? b) Pssdos 4 nos d compr, qul deles estrá vlendo mis? c) Qul é o tempo necessário( prtir d dt de quisição) pr que mbos tenhm iguis vlores? t k 3) N lei n(t) = ( 3 ), sendo k um constnte rel, está representd populção n(t) que um pequeno município terá dqui t nos, contdos prtir de hoje.sbendo que populção tul do município é de 0000 hbitntes, determine: ) o vlor de k b) populção do município dqui 3 nos 4) A populção de peies em um lgo está diminuindo devido contminção d águ por resíduos industriis.a lei n(t) = t- fornece um estimtiv do número de espécies vivs (n(t)) em função do número de nos(t) trnscorridos pós instlção do prque industril n região. ) Estime quntidde de peies que vivim no lgo no no d instlção do prque industril b) Algum tempo pós s indústris começrem operr, consttou-se que hvi no lgo menos de 490 peies. Pr que vlores de t vle ess condição? c) Um ONG divulgou que, se nenhum providênci for tomd, em um décd( prtir do início ds operções) não hverá mis peies no lgo. Tl firmção procede? 4

5 5) Um plicção finnceir obedece à regr M (t) = (,) t, em que M (t) é o montnte finl (cpitl + juros) pós t meses. O montnte o finl de 3 meses é: ) reis b) reis c) reis d) reis e) reis 6) O gráfico bio represent o crescimento de um populção de bctéris, que se reproduz rpidmente em um lbortório de pesquis. Sendo N (t), o número de bctéris no instnte t (t em hors), ddo por N(t) = b. t onde e b são constntes reis. N 4 t. Determine o vlor ds constntes e b b. Determine o número de bctéris pós 8 hors de observção. 7) Em um município, pós pesquis de opinião, consttou-se que o número de eleitores do cndidto A vriv em função do tempo t, em nos, de cordo com seguinte função: A (t) = (,6) t Considere estimtiv corret e que t = 0 refere-se o di de jneiro de 00. ) Clcule o número de eleitores do cndidto A em de jneiro de 00. b) O número de eleitores do cndidto A ument ou diminui cd no? Qul é t de umento ou decrescimento nul dos eleitores desse cndidto? c) Qul o número de eleitores do cndidto A em de jneiro de 0? I) Definição de ritmo Função Logrítmic Chm-se ritmo de b n bse o epoente que se que se deve elevr pr se tornr igul b. Ou sej: b b sendo b>0,>0 e 5

6 = bse do ritmo N iguldde b= ritmndo ou ntiritmo = ritmo Conseqüêncis d definição Sendo b>0,>0 e e m um número rel temos seguir lgums conseqüêncis d definição de ritmo: b obtemos : Eemplos : ) 3) ) pois pois pois qulquer, m m b b 0 b c b c ) Logritmo do produto: (>0,, >0 e >0) (. ) ) Logritmo do quociente: (>0,, >0 e >0) 3) Logritmo d potênci: (>0,, >0 e m ) Proprieddes opertóris dos ritmos m m. Eemplos: ) Clcule o vlor de em cd cso: ) 3 = 4 e) 3 8 = b) 8 = f) 3 = c) 7 = 3 g) 3 3 = d) 3 3 = 3 h) 3 3 4,5 = ) Ddos = 0,30 e 3 = 0,477, clculr: ) 5 d) 0,06 b) 8 e) 3 0,5 c) 36 6

7 II) FUNÇÃO LOGARÍTMICA A função f:ir + IR definid por f()=, com e >0, é chmd função rítmic de bse. O domínio dess função é o conjunto IR + (reis positivos, miores que zero) e o contrdomínio é IR (reis). Temos csos considerr: qundo >; qundo 0<<. GRÁFICO CARTESIANO DA FUNÇÃO LOGARÍTMICA Acompnhe nos eemplos seguintes, construção do gráfico em cd cso: ) = (nesse cso, =, o >) Atribuindo lguns vlores e clculndo os correspondentes vlores de, obtemos tbel e o gráfico bio: /4 /

8 ) = (/) (nesse cso, =/, o 0<<) Atribuindo lguns vlores e clculndo os correspondentes vlores de, obtemos tbel e o gráfico bio: /4 / Nos dois eemplos, podemos observr que: ) o gráfico nunc intercept o eio verticl; b) o gráfico cort o eio horizontl no ponto (,0). A riz d função é =; c) ssume todos os vlores reis, portnto o conjunto imgem é Im=IR. d) f() = b é crescente se > e é decrescente se 0 < <. Função invers Construir no mesmo plno crtesino s funções; ) f () = b) g() = c) h () = 8

9 Podemos observr que: ) Dom f = Im g e Im f = Dom g b) Há um simetri em relção o gráfico d f() e d h() em relção ret g () = Ests são crcterístics de funções inverss. Algums funções, sob lgums condições, dmitem função invers. g() = é função invers d função f () =. Indicmos função imvers por f - () Aplicções d Função Logrítmic I) Escl Richter A escl Richter é um escl rítmic: mgnitude (grus) de Richter corresponde o ritmo d medid ds mplitudes ds onds sísmics, 00 km do epicentro, A fórmul utilizd é: M = A Ao sendo A mplitude máim medid no sismógrfo e Ao um mplitude de referênci ( Ao é um constnte). Desse modo, se quisermos comprr s mgnitudes (M e M ) de dois terremotos em função d mpllitude ds onds gerds, podemos fzer: M M = ( A Ao) ( A Ao) A Que result: M M = A 9

10 Eemplo: Em 986, um terremoto em João Câmr (Rio Grnde do Norte) chegou derrubr qutro mil imóveis e tingiu 5 grus n escl Richter. É possível comprr, usndo epressão obtid, s mplitudes ds onds gerds por esse terremoto e pelo terremoto que cusou s tsunmis n Ási (9 grus) João Câmr: M e Tsunmi: M = 9 A M M = 5 9 = - 4 = A Obtemos: A = A Isto é, s onds do terremoto que cusou devstção n Ási são vezes miores que s do terremoto em João Câmr. II) Aplicções Juros Compostos. ) Um cpitl de R$ 000,00 foi plicdo juros compostos um t de 5% o no, gerndo pós certo período um resgte totl de R$ 36 6,09. Qul foi o tempo de plicção? ) Felipe plicou R$ 500,00 em um fundo de investimento que rende % o mês. Sbemos que o montnte (vlor inicil + juros recebidos) dess plicção, dqui n meses, pode ser epresso por M = C. ( + i) n. Dess form, ) Qul é o montnte dess plicção pós meio no? b) Qul é o tempo mínimo necessário que Felipe deve mnter o dinheiro plicdo fim de resgtr R$ 800,00? E pr resgtr R$ 000,00? 3) Dentro de t décds, contds prtir de hoje, o vlor (em reis) de um imóvel será ddo por V = ,9 t. ) Qul é o vlor tul desse imóvel? b) Qul é perd (em reis) no vlor desse imóvel durnte ª décd? c) Qul é o tempo necessário, em nos, pr que o vlor do imóvel sej R$ ,00? III) Crescimento populcionl 4) A populção de rtos de um metrópole está, nos dis de hoje, estimd em 5 milhões. Acreditse que tl populção poss umentr à t de 0% o no. Se isso relmente ocorrer, determine o tempo mínimo necessário pr que populção tinj: ) 0 milhões b) 30 milhões 5) O número de elementos de um determind espécie niml diminui à t de 0% o no. Em quntos nos ficrá reduzido à metde? (Indique o número inteiro mis próimo. Use = 0,30 e 3 = 0,477) Eercícios: )A função P = 60. (,04) t represent estimtiv do PIB em bilhões de dólres de no no t, dotndo-se seguinte convenção: T = 0 represent o no de 996 T = represent o no de 997, e ssim por dinte. Determine: )Qul é estimtiv do PIB em 005? b) Em que no o PIB será o dobro do que er em 996? E o triplo? 0

11 3) O número N (t) = , t permite o cálculo do número de bctéris eistentes em um cultur, o completr t hors do início de su observção(t = 0); Após qunts hors d primeir observção hverá bctéris ness cultur? )37 b) 35 c) 30 d) 7 e) 5 Utilize = 0,30 3= 0,48 4) Determine o vlor de : ) = b)log (5 ) 4. 5 = - 3 5) Se = 0,30, então o vlor rel de que stisfz sentenç = 5 + é: )3,5 b),3 c),3 d) 0 e) -,7 6) Clcule: ) ; b) 7) Se X =, clcule 8) Considerndo = 0,30 e 3 = 0,47, podemos firmr que 60 é igul : )0,4 b) 0,77 c),4 d),77 e) 0,77 9) Dqui t nos, o vlor de um utomóvel será V = 000. (0,75) t dólres. A prtir de hoje, dqui quntos nos ele vlerá metde do que vle hoje? )3 nos b),5 nos c) nos d) 4,5 nos e) 6 nos Outrs funções: ) Ds funções potêncis: f() = ) Se = n, onde n é um número nturl, temos s funções polinomiis Eemplos; f() = ; f() = ; f() = 3 b) Se =, temos f() = = c) Se = -, temos f() = ou f() =

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aul 7 _ Função Modulr, Eponencil e Logrítmic Professor Lucino Nóbreg FUNÇÃO MODULAR 2 Módulo (ou vlor bsolutode um número) O módulo (ou vlor bsoluto) de um número rel, que

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

Nota de aula_2 2- FUNÇÃO POLINOMIAL

Nota de aula_2 2- FUNÇÃO POLINOMIAL Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil

Leia mais

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295 Anuiddes equivlentes: $480 + $113 + $149 5 9% 5 VPL A (1, 09) $56, 37 A 5 9% 3,88965 5 9% 5 9% AE = = = = $14, 49 = 3,88965 AE B $140 $620 + $120 + 7 9% 7 VPL B (1, 09) $60, 54 = = = 5, 03295 7 9% 7 9%

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO)

CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) GESTÃO DE EMPRESAS CÁLCULO E INSTRUMENTOS FINANCEIROS I (2º ANO) Exercícios Amortizção de Empréstimos EXERCÍCIOS DE APLICAÇÃO Exercício 1 Um empréstimo vi ser reembolsdo trvés de reembolsos nuis, constntes

Leia mais

REVISÃO ENEM-VEST 2014 MEDICINA VESPERTINO

REVISÃO ENEM-VEST 2014 MEDICINA VESPERTINO AULA 01 FUNÇÃO DO 1º GRAU Professor Mrcelo Rento 1) (UP 014) Um empres de tái cobr R$,00 bndeird e R$,00 por km roddo e outr empres cobr R$ 3,00 por km roddo e não cobr bndeird. As dus trifs podem ser

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Funções e Limites. Informática

Funções e Limites. Informática CURSO DE: SEGUNDA LICENCIATURA EM INFORMÁTICA DISCIPLINA: CÁLCULO I Funções e Limites Informátic Prof: Mrcio Demetrius Mrtinez Nov Andrdin 00 O CONCEITO DE UMA FUNÇÃO - FUNÇÃO. O que é um função Um função

Leia mais

a) sexto b) sétimo c) oitavo d) nono e) décimo

a) sexto b) sétimo c) oitavo d) nono e) décimo 1 INSPER 16/06/013 Seu Pé Direito ns Melhores Fculddes 1. Nos plnos seguir, estão representds dus relções entre s vriáveis x e y: y = x e y = x, pr x 0.. Em um sequênci, o terceiro termo é igul o primeiro

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I Aprimorndo os Conhecimentos de Mecânic List 7 Grndezs Cinemátics I 1. (PUCCAMP-98) Num birro, onde todos os qurteirões são qudrdos e s rus prlels distm 100m um d outr, um trnseunte fz o percurso de P Q

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

Números Reais intervalos, números decimais, dízimas, números irracionais, ordem, a reta, módulo, potência com expoente racional.

Números Reais intervalos, números decimais, dízimas, números irracionais, ordem, a reta, módulo, potência com expoente racional. UNIVERSIDADE FEDERAL DE VIÇOSA UNIDADE DE APOIO EDUCACIONAL UAE MAT 099 - Tutori de Mtemátic Tópicos: Números Rcionis operções e proprieddes (frções, regr de sinl, som, produto e divisão de frções, potênci

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

(c) 600 dólares. (e) 60 mil dólares.

(c) 600 dólares. (e) 60 mil dólares. Vestibulr Insper 2014 1 B Análise Quntittiv e Lógic 1. De cordo com estimtiv do Fundo Monetário Interncionl, o Produto Interno Bruto (PIB) d Chin em 2012 foi de 8 trilhões e 227 bilhões de dólres. Considerndo

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas.

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas. Cpítulo II Funções Reis de Vriável Rel.. Função eponencil e logritmo. Funções trigonométrics directs e inverss. Função eponencil A um unção deinid por nome de unção eponencil de bse. ( ), onde, > 0 e,

Leia mais

EXAME DE INGRESSO 2014 3º Período

EXAME DE INGRESSO 2014 3º Período PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA ÁREA DE ENGENHARIA DE COMPUTAÇÃO (141) ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO EXAME DE INGRESSO 2014 º Período NOME: Oservções Importntes: 1. Não

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Estudo dos Logaritmos

Estudo dos Logaritmos Instituto Municipl de Ensino Superior de Ctnduv SP Curso de Licencitur em Mtemátic 3º no Prátic de Ensino d Mtemátic III Prof. M.Sc. Fbricio Edurdo Ferreir fbricio@ffic.br Situção inicil Estudo dos Logritmos

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone:   PARA QUEM CURSA A 1 a SÉRIE DO ENSINO MÉDIO EM Disciplina: MaTeMÁTiCa Nome: N.º: endereço: dt: Telefone: E-mil: Colégio PARA QUEM CURSA A SÉRIE DO ENSINO MÉDIO EM 05 Disciplin: MTeMÁTiC Prov: desfio not: QUESTÃO 6 O Dr. Mni Aco not os números trvés de um código especil.

Leia mais

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana.

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana. PROCESSO SELETIVO/006 RESOLUÇÃO MATEMÁTICA Brz Mour Freits, Mrgreth d Silv Alves, Olímpio Hiroshi Miygki, Rosne Sores Moreir Vin QUESTÕES OBJETIVAS 0 Pr rrecdr doções, um Entidde Beneficente usou um cont

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico Universidde bert do Nordeste e Ensino Distânci são mrcs registrds d Fundção Demócrito Roch. É proibid duplicção ou reprodução deste fscículo. ópi não utorizd é rime. Mtemátic e sus Tecnologis Mtemátic

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

Logaritmo. 1. (Espcex (Aman) 2014) Na figura abaixo, está representado o gráfico da função y = Iog x.

Logaritmo. 1. (Espcex (Aman) 2014) Na figura abaixo, está representado o gráfico da função y = Iog x. Logritmo 1. (Espce (Amn) 014) N figur io, está representdo o gráfico d função y = Iog. Nest representção, estão destcdos três retângulos cuj som ds áres é igul : ) Iog + Iog3 + Iog5 ) log30 c) 1+ Iog30

Leia mais

(Nova) Matemática, Licenciatura / Engenharia de Produção

(Nova) Matemática, Licenciatura / Engenharia de Produção Recredencimento Portri EC 7, de 5.. - D.O.U.... (ov) temátic, Licencitur / Engenhri de Produção ódulo de Pesquis: Prátics de ensino em mtemátic, contetos e metodois Disciplin: Fundmentos de temátic II

Leia mais

Manual de Operação e Instalação

Manual de Operação e Instalação Mnul de Operção e Instlção Clh Prshll MEDIDOR DE VAZÃO EM CANAIS ABERTOS Cód: 073AA-025-122M Rev. B Novembro / 2008 S/A. Ru João Serrno, 250 Birro do Limão São Pulo SP CEP 02551-060 Fone: (11) 3488-8999

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito ns melhores fculddes IBMEC 03/junho/007 ANÁLISE QUANTITATIVA E LÓGICA DISCUSIVA 01. O dministrdor de um boliche pretende umentr os gnhos com sus pists. Atulmente, cobr $ 6,00 por um hor

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras: Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Algoritmos de Busca de Palavras em Texto

Algoritmos de Busca de Palavras em Texto Revisdo 08Nov12 A busc de pdrões dentro de um conjunto de informções tem um grnde plicção em computção. São muits s vrições deste problem, desde procurr determinds plvrs ou sentençs em um texto té procurr

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes:

Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes: Questão 01 O polinômio P ( ) 10 0 81 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do polinômio. p ( ) 10 0 81 z bi z bi 1 z bi z ( ) bi z rel

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Fatoração e Produtos Notáveis

Fatoração e Produtos Notáveis Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)

Leia mais

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine:

COLÉGIO MACHADO DE ASSIS. 1. Sejam A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Para a função f: A-> B, definida por f(x) = 2x-1, determine: COLÉGIO MACHADO DE ASSIS Disciplin: MATEMÁTICA Professor: TALI RETZLAFF Turm: 9 no A( ) B( ) Dt: / /14 Pupilo: 1. Sejm A = { -1,1,2,3,} e B = {-3,-2,-1,0,1,2,3,4,5}. Pr função f: A-> B, definid por f()

Leia mais

CURSO de FÍSICA - Gabarito

CURSO de FÍSICA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES

Leia mais

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +.

Dessa forma o eixo ox é uma assíntota da função exponencial e assim valores de y < 0 não se relacionam com nenhum x do domínio, portanto Im = R +. 6 4. Função Eponencil É todo função que pode ser escrit n form: f: R R + = Em que é um número rel tl que 0

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105 Colégio Snt Mri Exercícios de P.A. e P.G. Professor: Flávio Verdugo Ferreir. (UFBA) A som dos 0 e 0 termos d seqüênci bixo é: 8 n n 8. n ) -6 b) -8 c) 0 d)8 e) 6. (Unifor CE) Considere seqüênci n, 8 Qul

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

Capítulo 1 Introdução à Física

Capítulo 1 Introdução à Física Vetor Pré Vestiulr Comunitário Físic 1 Cpítulo 1 Introdução à Físic Antes de começrem com os conceitos práticos d Físic, é imprescindível pr os lunos de Pré-Vestiulr estrem certificdos de que dominm os

Leia mais

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600 1 - INTRODUÇÃO Ests instruções têm por objetivo fornecer s orientções pr utilizção do critério pr cálculo d demnd de edifícios residenciis de uso coletivo O referido critério é plicável os órgãos d COPEL

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV dministrção Fse 9/junho/005 MTMÁTI 0. ntônio investiu qunti recebid de hernç em três plicções distints: do totl recebido em um fundo de rend fi; 40% do vlor herddo em um

Leia mais

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc.

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc. LADRILHAMENTOS Elvi Mureb Sllum Mtemtec-IME-USP A rte do ldrilhmento consiste no preenchimento do plno, por moldes, sem superposição ou burcos. El existe desde que o homem começou usr pedrs pr cobrir o

Leia mais

Sistemas Lineares Exercício de Fixação

Sistemas Lineares Exercício de Fixação Sistems Lineres Eercício de Fição Por: Griel Gutierre P Sores Instituto Federl de Educção, Ciênci e Tecnologi Prí Disciplin: Mtemátic Professor: Amrósio Elis Aluno: Mtrícul: Curso: Série: Turno: Sistems

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais