f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

Tamanho: px
Começar a partir da página:

Download "f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;"

Transcrição

1 Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid por f() =, com R + e 1, é chmd função eponencil de se. O domínio dess função é o conjunto R (reis) e o contrdomínio é R + (reis positivos, miores que zero). (i) Cso qundo > 1. EQUAÇÕES EXPONENCIAIS Tod equção n qul incógnit prece em epoente. E: 1) 3 = 81 = ; ) 5 = 16 = 9; 3) = - 1 = 1; ) = 0 = 0 e = INEQUAÇÕES EXPONENCIAIS Eemplos de ineqüções eponenciis: 1) 3 > 81 > ; ) - 1 válido pr todo rel; 3) ; ) < 0 < < 3). f() é crescente e Im = R + Ep. L.1

2 Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Pr resolver devemos relizr dois pssos importntes: 1º) redução dos dois memros d ineqüção potêncis de mesm se; º) plicção d propriedde: - Se > 1, s desigulddes têm mesmo sentido, então: m > n m > n ou m < n m < n - Se 0 < < 1, s desigulddes têm sentidos diferentes, então: 1) m > n m < n ou m < n m > n + TOP. EXERCÍCIOS RESOLVIDOS > A inequção pode ser escrit : >. Multiplic ndo mos os ldos por temos : > 11, - Portnto S = IR (reis negtivos).. LOGARITMO Definição: sendo > 0, > 0 e 1. = =, Dess form: = se do ritmo; = ritmndo (ou ntiritmo); = ritmo. E. : 1) ) 3) 5 3 = 5 16 = 1 = 0 pois pois pois = 3 = 16 = 1.1. CONSEQÜÊNCIAS DA DEFINIÇÃO Sendo > 0, > 0 e 1 e m um número rel qulquer, temos: (i) 1 = 0 (ii) = 1 (iii) m = = m (iv) (v) = c = c.. PROPRIEDADES OPERATÓRIAS DOS LOGARITMOS ou sej : ( 1+ 16). > > 11 e dí, < 1 Porém, < 1 0 <. Como se () é mior que1, otemos : 0 < < 0 1) Logritmo do produto: (. y) = + ( > 0, 1, > 0 e y > 0) ) Logritmo do quociente: = y y y Ep. L.

3 Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP ( > 0, 1, > 0 e y > 0) 3) Logritmo d potênci: m = m. O domínio dess função é o conjunto R + (reis positivos, miores que zero) e o contrdomínio é R (reis). (i) Cso qundo > 1.3. COLOGARITMO ( > 0, 1, > 0 e m R) Chmmos de coritmo de um número positivo num se ( > 0, 1) e indicmos co o ritmo inverso desse número n se 1 co = ( > 0, 1 e > 0) Como 1 = 1 = 0 =, f() é crescente e Im = R (ii) Cso qundo 0 < < 1 podemos tmém escrever: co =.. MUDANÇA DE BASE Em lgums situções podemos encontrr no cálculo vários ritmos em ses diferentes. Como s proprieddes rítmics só vlem pr ritmos num mesm se, é necessário fzer, ntes, conversão dos ritmos de ses diferentes pr um únic se conveniente. Pr fzer mudnç de um se pr um outr se us-se: = 5. FUNÇÃO LOGARÍTMICA A função f: R + R definid por com f() =, 1 e > 0, é chmd função rítmic de se. f() é decrescente e Im = R 6. EQUAÇÕES LOGARÍTMICAS Tod equção que envolve ritmos com incógnit precendo no ritmndo, n se ou em mos. E: (i) 3 = 5 = 3; (ii) ( - 1) = 3 = - e = ; (iii) ( + 3) + ( - 3) = 7 = ; (iv) + 1 ( - ) = = Ep. L.3

4 Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Sustituindo y n segund equção temos: TOP. EXERCÍCIOS RESOLVIDOS 3..(7 - ) = = 1 => 5. = 15 1) 3 (+5) = Condição de eistênci: + 5 > 0 => > -5 3 ( + 5) = => + 5 = 3 => = 9-5 => = Como = stisfz cond. eist., =3 => = 10 3 Sustituindo = 10 3 em y = 7 - temos: y = => y = 7-3 y = => y= 10. Então, o conjunto solução é S = {(10 3 ;10 )}. S = {}. ) ( ) = 1 Condição de eistênci: > 0 e > 0 ( ) = 1; semos que 1 = (), então ( ) = () => = = => = 16 Como = 16 stisfz, S = {16}. 3) Resolv o sistem: + y = y = 1 Condições de eistênci: > 0 e y > 0 Temos: + y = 7 => y = 7-7. INEQUAÇÕES LOGARÍTMICAS Tod inequção que envolve ritmos com incógnit precendo no ritmndo, n se ou em mos. E: 1) > 0 > 1; ) ( + 3) 1 3 < 1. Pr resolver inequções rítmics, devemos relizr dois pssos importntes: 1º) redução dos dois memros d inequção ritmos de mesm se; º) plicção d propriedde: - Se > 1, s desigulddes têm mesmo sentido, então: m > n m > n > 0 - Se 0 < < 1, s desigulddes têm sentidos diferentes, então: m > n 0 < m < n Ep. L.

5 Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP TOP. EXERCÍCIOS RESOLVIDOS EXERCÍCIOS 1) ( + ) > 8 Condições de eistênci: + > 0, ou sej, > - (S 1 ) Como se () é mior que 1, temos: O conjunto solução é + > 8 e, dí, > 6 (S ) S = S 1 S = { R > 6}. Portnto solução finl é intersecção de S 1 e S, como está representdo o io no desenho: ) ( 3 ) 0 Condições de eistênci: > 0 e 3 > 0 Como 1 = 0, inequção pode ser escrit ssim: ( 3 ) 1 Sendo se () mior que 1, temos: Como 3 3 = 1, então, e, dí, 3, porque se (3) é mior que 1. Portnto S = { R 3}. 1) (UFLA/99) O vlor de n epressão ( 6 ) ( ) = 8 é: ) () ) 0 c) d) (8) e) 3 ) (ITA/99) A inequção 5 ( + 3) ( + 3) 1/5 ( + 3) é stisfeit pr todo S. Então: ) S = ]-3, -] [-1, + [ d) S = ]-, + ] ) S = ]-, -3[ [-1, + [ e) S = ]-,-3[ ]-3, + [ c) S = ]-3, -1] 3) (UFOP/001-º) Considere s firmtivs io: I. Se 5 = e 7 =, então 1 = + II = III. = Assinle lterntiv corret: ) Apens firmtiv II é verddeir. ) Tods s firmtivs são flss. c) Apens firmtiv I é verddeir. d) Tods s firmtivs são verddeirs. e) Apens firmtiv III é verddeir. ) (FGV/00) Adotndo-se os vlores = 0,30 e 3 = 0,8, riz d equção 5 = 60 vle proimdmente: ),15 ),8 c) 1 d),5 e),67 5) (UFV/97) Se ( + ) = +, então é igul : ) 1/ ) 1/3 c) d) 1 e) 5/6 6) (FUVEST/001) sendo P = (, ) um ponto qulquer d circunferênci de centro n origem e rio 1, que stisfç > 0 e ±, pode-se firmr que Ep. L.5

6 Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP 3 1 vle: ) 0 ) 1 c) - d) e) 7) (VUNESP/00) Num fáric, o lucro origindo pel produção de peçs é ddo em milhres de reis pel função L() = 10 (100 + ) + k, com k constnte rel. ) Sendo que não hvendo produção não há lucro, determine k. ) Determine o número de peçs que é necessário produzir pr que o lucro sej igul mil reis. CÁLCULOS RESPOSTAS 1) C; ) A; 3) A; ) D; 5) D; 6) C; 7) ) k = -; ) 900 peçs. Ep. L.6

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 7 _ Função Modular, Exponencial e Logarítmica Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aul 7 _ Função Modulr, Eponencil e Logrítmic Professor Lucino Nóbreg FUNÇÃO MODULAR 2 Módulo (ou vlor bsolutode um número) O módulo (ou vlor bsoluto) de um número rel, que

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

Professora: Profª Roberta Nara Sodré de Souza

Professora: Profª Roberta Nara Sodré de Souza MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

Módulo e Equação Modular (valor absoluto)?

Módulo e Equação Modular (valor absoluto)? Mtemátic Básic Unidde 6 Função Modulr RANILDO LOES Slides disponíveis no nosso SITE: https://ueedgrtito.wordpress.com Módulo e Equção Modulr (vlor bsoluto)? - - - - R uniddes uniddes Definição, se, se

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

LISTA 100 EXERCÍCIOS COMPLEMENTARES

LISTA 100 EXERCÍCIOS COMPLEMENTARES LISTA 00 EXERCÍCIOS COMPLEMETARES LOGARITMOS: Definição e Proprieddes PROF.: GILSO DUARTE Questão 0 Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proim de log 46 é 0),0

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Nota de aula_2 2- FUNÇÃO POLINOMIAL

Nota de aula_2 2- FUNÇÃO POLINOMIAL Universidde Tecnológic Federl do Prná Cmpus Curiti Prof. Lucine Deprtmento Acdêmico de Mtemátic Not de ul_ - FUNÇÃO POLINOMIAL Definição 8: Função polinomil com um vriável ou simplesmente função polinomil

Leia mais

(Nova) Matemática, Licenciatura / Engenharia de Produção

(Nova) Matemática, Licenciatura / Engenharia de Produção Recredencimento Portri EC 7, de 5.. - D.O.U.... (ov) temátic, Licencitur / Engenhri de Produção ódulo de Pesquis: Prátics de ensino em mtemátic, contetos e metodois Disciplin: Fundmentos de temátic II

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0

Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0 FUNÇÃO EXPONENCIAL REPRESENTAÇÃO Atenção y y x x y y : bse x Um situção muito comum de função exponencil é quel em que um determind grndez, que pr um instnte t = el present um medid y y, prtir deste instnte,

Leia mais

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB.

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB. MÚLTIPL ESCOLH NOTÇÕES C : conjunto dos números compleos. Q : conjunto dos números rcionis. R : conjunto dos números reis. Z : conjunto dos números inteiros. N {0,,,,...}. N* {,,,...}. : conjunto vzio.

Leia mais

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..

Leia mais

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE TEORIA DOS LIMITES Professor: Alendre LIMITES. NOÇÃO INTUITIVA DE LIMITE Vmos nlisr o comportmento gráfico d função f ( ) qundo tende pr. ) Primeirmente vmos tender vriável por vlores inferiores, ou sej,

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9 setor 07 070409 070409-SP Aul 5 FUNÇÃO (COMPOSIÇÃO DE FUNÇÕES) FUNÇÃO COMPOSTA Sej f um função de A em B e sej g um função de B em C. Chm-se função compost de g com f função h definid de A em C, tl que

Leia mais

APOSTILA. Matemática Aplicada. Universidade Tecnológica Federal do Paraná UTFPR. Lauro César Galvão

APOSTILA. Matemática Aplicada. Universidade Tecnológica Federal do Paraná UTFPR. Lauro César Galvão POSTIL Mtemátic plicd Universidde Tecnológic Federl do Prná UTFPR Césr Glvão Índices SISTEMTIZÇÃO DOS CONJUNTOS NUMÉRICOS...-. CONJUNTOS NUMÉRICOS...-.. Conjunto dos números nturis...-.. Conjunto dos números

Leia mais

Fatoração e Produtos Notáveis

Fatoração e Produtos Notáveis Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)

Leia mais

Exercícios. . a r. 2º Caso: Agrupamento. É uma aplicação do 1º caso, só que o termo comum aparece em grupos. 3º Caso: Diferença de dois quadrados

Exercícios. . a r. 2º Caso: Agrupamento. É uma aplicação do 1º caso, só que o termo comum aparece em grupos. 3º Caso: Diferença de dois quadrados Mtemátic Básic Ftorção Aul. Definição Ftorr um epressão lgéric consiste em trnsformá-l num produto. É um prolem de grnde interesse n Álger, nálogo o d decomposição de um número em ftores primos. º Cso:

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

I REVISÃO DE CONCEITOS BÁSICOS

I REVISÃO DE CONCEITOS BÁSICOS I REVISÃO DE CONCEITOS BÁSICOS. Elementos Básicos de Mtemátic. Regrs de Sinis ADIÇÃO: - qundo os números tem o mesmo sinl, somm-se os módulos e tribui-se o resultdo o sinl comum. E: (+)+(+9)=+4 ou 4 (-)+(-)=

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem List de Mtemáti Bási 009- (RESPOSTAS) 4 RESPOSTAS DA LISTA - Números reis: proprieddes lgéris e de ordem Pr filitr onsult, repetimos qui os xioms e s proprieddes lgéris e de ordem listds em ul. À medid

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

n. 6 SISTEMAS LINEARES

n. 6 SISTEMAS LINEARES n. 6 SISTEMAS LINEARES Sistem liner homogêneo Qundo os termos independentes de tods s equções são nulos. Todo sistem liner homogêneo dmite pelo menos solução trivil, que é solução identicmente nul. Assim,

Leia mais

EXERCÍCIIOS 1º ENS. MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS. 1. A representação correta do conjunto. a) b) c) d) e) n.d.a. A=...

EXERCÍCIIOS 1º ENS. MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS. 1. A representação correta do conjunto. a) b) c) d) e) n.d.a. A=... EXERCÍCIIOS º ENS MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS A representção corret do conjunto A / ),,,, b),,,,0,, c),,,0, d),,,0,, e) nd Dê o conjunto A B, sbendo que A z / e B Z / 5 A {} B {-,0,,}

Leia mais

1,0,1,2. EXERCÍCIIOS 1º ENS. MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS. 1. A representação correta do conjunto. e) n.d.a.

1,0,1,2. EXERCÍCIIOS 1º ENS. MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS. 1. A representação correta do conjunto. e) n.d.a. EXERCÍCIIOS º ENS MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS A representção corret do conjunto A / ),,,, b),,,,0,, c),,,0, d),,,0,, e) nd Dê o conjunto A B, sbendo que z / B Z / A e A {} B {-,0,,}

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

3n 3 3 3n. R = k(1,1) t. Pessoa Anos de Formação (t) Fator de Carreira (k) A B C

3n 3 3 3n. R = k(1,1) t. Pessoa Anos de Formação (t) Fator de Carreira (k) A B C Aul 0 Potencição 0) (PUC-SP) Simplificndo epressão ) n 9 ) n + n d) 6 7 6 9 n n n, otém-se 0) (Insper) Um nlist de recursos humnos desenvolveu o seguinte modelo mtemático pr relcionr os nos de formção

Leia mais

Testes de Radiciação

Testes de Radiciação Testes de Rdicição ) O vlor de 7 9 é ) ) Vlor d epressão ) 7 0 é : ) O número. ) é rcionl e menor que é rcionl e mior que é rcionl e menor que é rcionl e mior que não é rel ) (UFRGS) Se = e = ) número

Leia mais

Revisão EXAMES FINAIS Data: 2015.

Revisão EXAMES FINAIS Data: 2015. Revisão EXAMES FINAIS Dt: 0. Componente Curriculr: Mtemátic Ano: 8º Turms : 8 A, 8 B e 8 C Professor (): Anelise Bruch DICAS Use s eplicções que form copids no cderno; Use e buse do livro didático, nele

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Universidade Federal de Rio de Janeiro

Universidade Federal de Rio de Janeiro Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================

Leia mais

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações:

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações: (9) 5-0 O ELITE RESOLVE IME 0 DISURSIVS MTEMÁTI MTEMÁTI QUESTÃO 0 5 O polinômio P ( ) + 0 0 + 8 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do

Leia mais

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I Frequência

Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão. Análise Matemática I Frequência Instituto Politécnico de Brgnç Escol Superior de Tecnologi e Gestão Análise Mtemátic I Frequênci Durção d prov: h min Dt: // Tolerânci: 5 min Cursos: EQ, IG, GEI Resolução Grupo I g π. ) Considere função

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

Módulo 02. Sistemas Lineares. [Poole 58 a 85]

Módulo 02. Sistemas Lineares. [Poole 58 a 85] Módulo Note em, leitur destes pontmentos não dispens de modo lgum leitur tent d iliogrfi principl d cdeir Chm-se à tenção pr importânci do trlho pessol relizr pelo luno resolvendo os prolems presentdos

Leia mais

UNIDADE 1 ARITMÉTICA BÁSICA. Divisibilidade por 5 Um número é divisível por 5 se o último algarismo for 0 ou 5. Exemplos: 235, 4670,

UNIDADE 1 ARITMÉTICA BÁSICA. Divisibilidade por 5 Um número é divisível por 5 se o último algarismo for 0 ou 5. Exemplos: 235, 4670, Inclusão pr vid Mtemátic A UNIDADE ARITMÉTICA BÁSICA MÚLTIPLO DE UM NÚMERO Sendo, b e c números nturis e. b = c, diz-se que c é múltiplo de e b. Eemplo: Múltiplos de M() = {0,, 6, 9,...} Observções: O

Leia mais

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que:

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que: MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO º GRAU - Dd unção = +, determine Dd unção = +, determine tl que = Escrev unção im, sendo que: = e - = - - = e = c = e - = - A ret, gráico de

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba MATEMÁTICA BÁSICA NOTAS DE AULA

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba MATEMÁTICA BÁSICA NOTAS DE AULA Ministério d Educção Universidde Tecnológic Federl do Prná Cmpus Curitib MATEMÁTICA BÁSICA NOTAS DE AULA SUMÁRIO. FRAÇÕES.... Adição e Subtrção.... Multiplicção.... Divisão.... Número Misto.... Conversão

Leia mais

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio

COLÉGIO SANTO IVO Educação Infantil - Ensino Fundamental - Ensino Médio COLÉGIO SANTO IO Educção Infntil - Ensino Fundmentl - Ensino Médio Roteiro de Estudo pr Avlição do 3ºTrimestre - 016 Disciplin: Mtemátic e Geometri Série: 1ª Série EM Profª Cristin Nvl Orientção de Estudo:

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundmentos de Mtemátic Discret pr Computção 6) Relções de Ordenmento 6.1) Conjuntos Prcilmente Ordendos (Posets( Posets) 6.2) Extremos de Posets 6.3) Reticuldos 6.4) Álgers Boolens Finits 6.5)

Leia mais

MATEMÁTICA. MATEIRAL DE APOIO 1 ano do E.M. Este material contém uma seleção de exercícios para auxiliar na aprendizagem de matemática.

MATEMÁTICA. MATEIRAL DE APOIO 1 ano do E.M. Este material contém uma seleção de exercícios para auxiliar na aprendizagem de matemática. MATEMÁTICA MATEIRAL DE APOIO no do EM Este mteril contém um seleção de eercícios pr uilir n prendizgem de mtemátic Jiro Weber 0 EXERCÍCIIOS º ENS MÉDIO CONJUNTOS NUMÉRICOS OPERAÇÕES ENTRE CONJUNTOS A representção

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 - CAPES SISTEMAS LINEARES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic r

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, tal que 0 < a?, chamamos função eponencial de ase a a função f de R R que associa a cada real o número a. Podemos escrever, tamém: f: R R a Eemplos

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Fich de Trlho Álger - Rdicis Mtemátic - 0 o no Fich de Trlho Álger - Rdicis Grupo I. Sejm e dois números nturis diferentes que tis que x =. onclui-se então que x pode ser ddo por qul ds expressões ixo?

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2.

Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Colaboração Prof. Walter Paulette. Elaborado por. Seção 2. Mtemátic I Elordo por Prof. Gerson Lchtermcher, Ph.D. Prof. Rodrigo Leone, D.Sc. Seção Colorção Prof. Wlter Pulette Versão 009-1 ADM 01004 Mtemátic I Prof. d Disciplin Luiz Gonzg Dmsceno, M. Sc. Seção

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I

Cálculo Numérico Módulo III Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo III Resolução Numéric de Sistems Lineres Prte I Prof: Reinldo Hs Sistems Lineres Form Gerl... n n b... n n b onde: ij n n coeficientes i incógnits b i termos independentes... nn

Leia mais

FÓRMULA DE TAYLOR USP MAT

FÓRMULA DE TAYLOR USP MAT FÓRMULA DE TAYLOR USP MAT 5 SEVERINO TOSCANO DO REGO MELO. Polinômios de Tylor A ret tngente o gráfico de um função f derivável em um ponto define função de primeiro gru que melhor proxim função em pontos

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

3. LOGARITMO. SISTEMA DE LOGARITMO

3. LOGARITMO. SISTEMA DE LOGARITMO 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz

Leia mais

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0.

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0. Resolver o seguinte PPNL M (min) f() s. [, ] Pr chr solução ótim deve-se chr todos os máimos (mínimos) locis, isto é, os etremos locis. A solução ótim será o etremo locl com mior (menor) vlor de f(). É

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

x x x 1,8 2,5 2,5 1,89 2,1 1,89 1,956 2,04 2,04 1,9934 2,015 1,956 1,9995 2,007 2,007 1, ,0003 1,9995

x x x 1,8 2,5 2,5 1,89 2,1 1,89 1,956 2,04 2,04 1,9934 2,015 1,956 1,9995 2,007 2,007 1, ,0003 1,9995 Mtemátic II Prof: Luiz Gonzg Dmsceno E-mils: dmsceno@yhoocombr dmsceno@uolcombr dmsceno@hotmilcom Site: http://wwwdmscenoinfo wwwdmscenoinfo dmscenoinfo Limites Considere função y f ) f ) é definid no

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais