TRAGÉDIA DOS COMUNS E O EXEMPLO DA PESCA DA LAGOSTA: ABORDAGENS TEÓRICAS

Tamanho: px
Começar a partir da página:

Download "TRAGÉDIA DOS COMUNS E O EXEMPLO DA PESCA DA LAGOSTA: ABORDAGENS TEÓRICAS"

Transcrição

1 TRAGÉDIA DOS COMUNS E O EXEMPLO DA PESCA DA LAGOSTA: ABORDAGENS TEÓRICAS Marcelo Betes Dz Departameto de Ecooma da Uversdade Federal do Pará e doutorado o CAEN Av. da Uversdade, adar Fortaleza Ceará Roaldo de Aluquerque e Arraes Curso de Pós-Graduação em Ecooma - CAEN da Uversdade Federal do Ceará Av. da Uversdade, adar Fortaleza Ceará Ths artcle emodes the cocept of tragedy of commos meag the suoptmal result producto or explotato of a ecoomc actvty where the tragc effect occurs wheever the cosumpto of a commo commodty y a aget who maxmzes hs utlty rgs aout a egatve utlty to other agets who cosume the same commodty. As a overall result, all agets that may use such a commodty ed up wth leadg to a egatve socal result, whch mght e splt two raches: frst, overexplotato geerates exhausto of resources; secod, margal utlty ad margal productvty would ted to zero. The loster fshg actvty s a typcal case of tragedy of commos. So, two theoretcal approaches are dscussed o how to deal wth the prolem, amely, game theory ad optmal cotrol dyamc optmzato. Key words: tragedy of commos, game theory, optmal cotrol. 1. Itrodução Na últma década, prcpalmete, oservou-se uma retração cosderável do volume de produção do pescado de orgem marha, tato o Nordeste como o Estado do Ceará (Carvalho et al, 1998), um feômeo explcado etre outras causas pela sorepesca, sto é, um ível de atvdade pesquera acma da capacdade de reovação atural das populações marhas, o redmeto máxmo sustetável. Na terpretação ecoômca de tal feômeo está o que se chama de tragéda dos comus. Uma desgação que reporta a ocorrêca de um resultado suótmo a exploração de recurso ecoômco comum, o qual por ser de lvre acesso acaa por gerar um soreuso, sto é, um resultado acma daquele que sera socalmete ótmo. O que será dscutdo este artgo, é como o feômeo do decrescmeto da produção da lagosta o Estado do Ceará pode ser terpretado como um caso típco de tragéda dos comus, tomado como ase duas aordages teórcas: Teora do Cotrole Ótmo e Teora dos Jogos.. Tragéda dos Comus A tragéda dos comus fo um termo usado pela prmera vez por Garret Hard em 1968, o qual apotava como coseqüêca evtável do crescmeto populacoal, a cração de uma verdadero efeto trágco o usos dos recursos aturas cosderados de uso comum, sto é, aqueles so os quas ão havera a propredade prvada defda sore os mesmos e que, portato, havera lvre acesso ao seu uso, seja por cosumdores seja por produtores. Para uma defção mas rgorosa, etretato, ão asta o lvre acesso para caracterzar um em comum, pos, se assm o fosse, ão havera dfereça etre em comum e em púlco. A dstção feta é que, equato um em púlco caracterza-se por apresetar um cosumo ão-rval e ão-excludete, o em comum é caracterzado por

2 apresetar um cosumo-excludete, emora rval. Isto quer dzer, que o cosumo de um em comum por um agete ão mpede que outro veha a fazê-lo. Porém, ao cosumr um em comum, um agete dmu a quatdade dspoível, ou o eefíco decorrete da quatdade cosumda do em para o outro. O efeto trágco aluddo sera, etão, que o cosumo do em por um agete que vsa maxmzar seu resultado dvdual, gera uma utldade egatva àqueles que tamém fazem uso comum do em. Como resultado, o cojuto, todos os agetes que utlzam o recurso acaam por levar a um resultado socal egatvo, que pode ser dvddo em duas partes. O prmera sera o soreuso do recurso, do qual derva a sua exaustão ou degradação, ou ada, a polução excessva. O segudo sera que a utldade margal de seu cosumo ou sua produtvdade margal tedera para zero. Seram exemplos de es comus, os recursos dos oceaos (recursos pesqueros), das florestas (recursos florestas), etre outros. 3.Recursos Pesqueros: Dâmca Populacoal e Tragéda dos Comus Quado qualquer tpo de vda aquátca passa a ser ojeto de explotação ecoômca, etão, esta passa a codção de recursos pesquero. Os recursos pesqueros são recursos aturas reováves que possuem uma dâmca populacoal própra que matém o estoque estável da população e, por sso assumem uma característca sustetável. São característcas da dâmca população pesquera a preseça de dos estágos (Foteles Flho, 1989): 1) colozação e expasão; ) cosecução da estaldade, ode se verfca apesar da ococrrêca de flutuações o tamaho da população, um equlíro de logo prazo etre ataldade e mortaldade. Quado ocorre a preseça do homem, em fução prcpalmete da atvdade pesquera, estes estágos passam a ser em úmero de cco, cludo os estágos: 3) regressão, o qual a mortaldade excede a ataldade, com grades perdas o estoque jovem; 4) cessão de espaço para outras espéces; 5) desaparecmeto ou susttução por outras espéces. A exploração comercal, troduz, assm, um fator de predação que passa a competr com os predadores aturas reduzdo tato estes como, tamém, as suas presas. A predação do homem se mafesta através da pesca e sua tesdade, medda pela taxa de exploração, depede do chamado esforço de pesca e dade de captura. A dâmca populacoal com uma atvdade exploratóra pesquera tesa pode ser resumda da segute maera (Foteles Flho, 1989).Quado ocorre uma alta taxa de exploração os dvíduos de uma população começam a ser capturados quado, ada, se ecotram os grupos-de-dade joves, o que reduz a sorevvêca da coorte para os grupos remaescetes, quado esta stuação persste por város aos atgdo váras classes etáras, o úmero de dvíduos que va chegar a classe adulta va progressvamete dmudo, de modo que reduz-se o úmero de reprodutores e sua descedêca um processo que se autoalmeta até atgr a destrução. Qualquer atvdade exploratóra deve respetar, assm, o que se chama de máxmo redmeto sustetável, que é a quatdade máxma de pescado, em peso de omassa, que pode ser explorada em aos sucessvos sem comprometer o estoque da população e, portato, sem produzr qualquer varação a tesdade da pesca (Carvalho et al, 1998, apud Paayotou, 1983). A possldade da tragéda dos comus surge o mometo que a atvdade pesquera rompe o equlíro ecológco etre a taxa de exploração e a taxa de reovação que garate a estaldade dos estoques, cujo resultado ecoômco aparece pelo surgmeto de retoros decrescetes por udade de esforço de pesca aplcado. Segudo dados forecdos Pelo cetro de Cêcas do Mar da Uversdade Federal do Ceará, pode-se verfcar que com relação a esses argumetos, através da estmação de uma equação de regressão cordo o período de 1966 a 1997, o qual resultou em :

3 3 L (Cosumo/Bomassa) = 0, ,31819L (Bomassa), R = 0, 785 O que demostra, através da elastcdade méda para o período, uma forte tedêca a exaustão do recurso (lagosta) ates que se atja o cosumo ótmo. 4. Recursos Pesqueros e Atvdade Pesquera o Estado do Ceará. 4.1 Recursos Pesqueros do Estado do Ceará: No Ceará, exstem 13 espéces de pexes marhos cohecdos, das quas, cerca de vte e ses cotruem com cerca de 70 % da captura total efetuada (Fotes Flho, 1996), com destaque para as segutes espéces: a cavala, a serra, a sardha-adera, a guaúa, o camarupm, o oto, o quara e o pargo. Todava, é a lagosta o recurso pesquero marítmo de maor mportâca, com o estado assumdo o status de maor produtor acoal. Das espéces exstetes o estado, as prcpas são do gêero Paalrus (P. argus, P. laevcauda e P. echatus), com relevâca tamém para a espéce do gêero Scyllardes (S. rasless). 4. A Atvdade Pesquera o Estado do Ceará: O Estado do Ceará apreseta forte tradção pesquera marítma tato a pesca artesaal como tamém a pesca dustral. Esta últma desevolvda prcpalmete em toro da pesca da lagosta, que apreseta elevado valor comercal, especalmete o mercado teracoal. Taela 1: Evolução da Frota Pesquera o Estado do Ceará Aos Frota * * dado estmado. Fote: CEPENE, Boletm Estatístco da Pesca Marítma e Estuara do Estado do Ceará ,1995,1996,1997,1998. O setor pesquero artesaal é o que tem maor expressão em volume pescado, cerca de 70% da produção, perfazedo 7 colôa de pescadores (Mattar, 1999). Todava, é a pesca da lagosta o susetor de maor mportâca pelo valor comercal da produção e volume exportado. A Taela 1 acma, apreseta a evolução do úmero total de emarcações o Estado, o período de 1991 a O comportameto da frota ao logo tempo é astate varável, e é suposto varar em fução do preço do pescado, especalmete da lagosta. 4.3 A Produção Pesquera do Estado do Ceará: Lagosta e Pargo A Taela a segur demostra a evolução da produção de lagosta e pargo o Estado do Ceará o período de Pela Taela oserva-se que o decrescmeto a produção de lagosta e o pargo fo, respectvamete, 71% e 50%,sto em apeas 8 aos. Com relação a lagosta houve, tamém, um declío acetuado, em termos relatvos. A queda da partcpação relatva da lagosta a produção de pescado o Ceará, o período, fo mas de 50%. 3

4 4 Taela : Produção Total de Pargo e Lagosta o Estado do Ceará (t) Aos Pargo Lagosta Itera Cauda (t) % (t) % (t) , , , , , , , , , , , , , , , , Fote: CEPENE, Boletm Estatístco da Pesca Marítma e Estuara do Estado do Ceará ,1995,1996,1997, Causas do Declío da Produção de Lagosta o Estado e Tragéda dos Comus : A queda da atvdade pesquera marítma e, partcularmete da lagosta, é atruída a mutas causas. Pode-se dvdr estas causas, etretato, etre àquelas de atureza geral, que agravam à toda atvdade e àquelas de atureza específca que agravam a pesca da lagosta. Causas de atureza geral: ) sorepesca,sto é, pesca acma do lmte de máxmo redmeto sustetável; ), aumeto do esforço de pesca (úmero de emarcações), por trás dsso esta o fato de exstr demada satsfeta o setor, dado o elevado poder aqustvo do mercado cosumdor (mercado extero), havedo uma pressão ecoômca para o aumeto da oferta, mesmo em codções de elevada taxa de exploração (Soral, 1999 apud Clevelad, 1985 e Couto, 1987); ) pesca predatóra, sto é, fora das regras estaelecdas para à atvdade, lgada, portato, ao própro sstema de exploração. Em cosoâca com as causa geras apotadas acma, exstem causas específcas que cotruem para a axa da produção da lagosta o estado: ) ão respeto a época do defeso; ) desoedêca ao tamaho mímo de captura; ) adoção de téccas predatóras como: a pesca de mergulho e o uso dscrmado da caçoera. Estma-se hoje que 80% da pesca da lagosta é feta por meo de caçoeras. Além do mas, para se mater a produção, tem-se progressvamete amplado a área de pesca. Isto, jutamete com o aumeto do esforço de pesca, tem aumetado progressvamete os custos operacoas de produção. 5. Tragéda dos Comus a Forma de um Jogo ão Cooperatvo: A tragéda dos comus a atvdade pesquera pode ser pesada, utlzado-se do strumetal forecdo pela Teora dos Jogos. Assm, pode-se ver que o resultado da tragéda dos comus é um resultado do poto de vsta ecoômco suótmo. Suposções: Exste uma área pesquera, o caso a costa do Estado do Ceará, explorada por emarcações. Exste um úco fator de produção (esforço de pesca), o arco, ode é a quatdade de arcos de uma empresa, e = correspode a frota pesquera o Estado. Supõem-se que a produção pesquera o Estado é fução da quatdade de arcos em operação q = q (), em como a quatdade capturada por cada arco q = q (). 4

5 5 Supodo que a área pesquera o Estado do Ceará seja fxa (costa do Estado do Ceará), etão, o fator de produção (arco), terá redmetos decrescetes. Supõem-se, tamém, que o custo de aqusção e operação do arco seja costate e gual a c. Seja V(q ()) a valorzação atruída a cada toelada adcoal de pexes capturados dado arcos em operação. Como cada arco adcoal dmu o estoque de pexes exstetes, etão, exstrá um úmero máxmo de arcos, que correspode ao máxmo de produção pesquera a área max. Desse modo, tem-se que: V(q ()) > 0, se < max V(q ()) = 0, se max v q com V (q ()) = < 0 e V (q ()) < 0 q Uma estratéga para a empresa é escolher [0, ] O pay off de para a empresa, dado arcos em operação é dado por: q( ) = V(q ()) c = V (( ) ) c (1) E para que 1,..., seja um Equlíro de Nash, para cada empresa, etão, deve maxmzar V(q ()) c, dado que os outro jogadores escolhem (,..., , + 1 ) = A codção de Prmera Ordem será: q( ) q'( ). q( ) = V(q ( + )) + V (q ( + ))[ + ] c = 0 q( ) 1 q( ) V(q (*)) + V (q(*)){ + [ q'( ) ] } = c () V(q (*)) + q( ) V (q (*)){ q ) + [ q'( ) ] } = c (3) ( O que esse resultado dz é que cada empresa vsado maxmzar seu lucro por meo da utlzação de um arco extra, o faz para a quatdade *, que guala a receta margal ao custo margal. Todava, como a empresa ao aumetar o seu úmero de arcos está cotrudo para aumetar o úmero de arcos da frota pesquera da regão, sto faz dmur o produto médo de cada arco já em operação. A redução aproxmada do produto médo é dada por: ( q ( ) / ) 1 q( ) d = ( q'( ) ) (4) d Como supõem-se redmetos decrescetes, a expressão acma será egatva, uma vez que o produto médo q(*)/* é maor que o produto margal q (*). A magtude do efeto do aumeto de sore a receta margal da empresa depederá do termo /* que é a partcpação relatva da quatdade ótma de arcos da empresa sore o úmero de arcos em operação da frota pesquera. Vale ressaltar, que o segudo termo do lado esquerdo da expressão (3) pode ser terpretado como uma medda da exteraldade egatva gerado para cada produtor do aumeto da frota de arcos em uma udade pela empresa. 5

6 6 Somado-se todos os resultados dvduas para as codções de prmera ordem e dvddo por, otém-se : V(q(*)) + q( ) V (q(*)){ q ( ) + [ q'( ) ] } = c (5) 1 V(q(*)) + V (q(*)){ q( ) q ( ) + [ q'( ) ] } = c (6) O resultado acma sera otdo, com cada produtor, smultaeamete, maxmzado seu resultado dvdualmete sem levar em cota a exteraldade gerada sore os outros agetes do aumeto da frota em uma udade em udades cada frma aumetado sua frota em uma udade adcoal. O ível de arcos socalmete ótmo deotado **, sera aquele que resolve: Max S = V(q()) - c A codção de Prmera Ordem será : S = V(q(**)) + ** V (q( )) c = 0 (7) Comparado as equações os dos resultados otdos mostrados pelas equações (6) e (7), e supodo calmete que ** *, chega-se ao segute resultado: V(q(*)) V(q(**)), pos V < 0, e smlarmete V (q(*)) V (q(**)), pos V < 0 Com < ** a expressão (6) será maor do que a expressão (7), o que é mpossível, já que amas são guas a c. Dessa forma coclu-se que > ** e ão o cotráro e daí, * > **. O que quer dzer que o úmero de arcos forecdo pelo resultado do Equlíro de Nash é maor que o resultado socalmete ótmo. Haverá, assm, sorepesca, pelo excesso de úmero de arcos e, portato, evdeca a tragéda dos comus. 6. Tragéda dos Comus e Otmzação Dâmca Tomado como hpótese aceta a lteratura de que o crescmeto da população de lagosta segue uma fução cúca o tempo [N(t)], etão, a taxa deste crescmeto será dada por, N'(t) = an(t) - N (t), caso ão haja atvdade de pesca. Se os pescados são capturados e cosumdos a uma taxa C(t), produzdo utldade U[C(t)], etão, a taxa de crescmeto reduz-se para, N' (t) = an(t) - N (t) - C(t). Supoha que as utldades futuras sejam descotadas a uma taxa r costate. Caracterze um plao de cosumo que maxmze o valor presete do fluxo de utldades descotadas, ode N(0) = a/ e U' [C(t)] > 0; U''[C(t)] < 0. A otmzação da utldade se dará etão por: max 0 e -rt U[C(t)]dt (1) sujeto a: N'(t) = an(t) - N (t) - C(t) ; N(0) = a/ () A fução Hamltoaa de valor correte é dada por: 6

7 7 Ĥ = U[C(t)] + m[an(t) - N(t) - C(t)] (3) ode as codções de prmera ordem são: Ĥ C(t) = 0 U'[C(t)] - m = 0 m = U'[C(t)] (4) m' = rm - Ĥ N(t) = rm - m[a - N(t)] = [r - a + N(t)]m (5) Dferecado (4) otém-se: m' (t) = U''[C(t)]C' (t) (6) Susttudo (6) e (4) em (5) resulta em: U' '[C(t)]C'(t) = [r - a + N(t)].U'[C(t)] (7) Comado (7) e () tem-se o sstema de equações dferecas: C' (t) = { U'[C(t)] U''[C(t)].C(t) }.[r - a + N(t)] N'(t) = an(t) - N (t) - C(t) Fazedo-se a aálse do dagrama de fase: C' (t) = 0 r - a + N(t) = 0 N(t) = (a - r)/ (8) ode oserva-se de (8) que os parâmetros são postvos e N é depedete de C. N'(t) = 0 an(t)- N (t)-c(t) = 0 C(t) = N an (9) Como N > 0 N1 = 0, N = a/. (10) Além do mas, N que maxmza o cosumo é dado por: N = a/ (11) Fgura 1 - Dagrama de Fase C C'= 0 Braço Istável Braço Estável N'= 0 0 a - r a a N 7

8 8 A fgura 1 deota a dâmca de crescmeto de N e C ao logo do horzote de plaejameto. O movmeto de N segue a trajetóra da esquerda para dreta, começado a um poto N = a/, ode o ível de cosumo é zero. Verfca-se que o cosumo máxmo ocorre a um ível de população (omassa) de lagosta aaxo do Estado Estacoáro. Por outro lado, o ível de população correspodete ao Estado Estacoáro, depede da taxa de preferêca tertemporal r, o setdo de quado esta aumeta, dmu a população correspodete ao Estado Estacoáro e, por cosequêca desloca para esquerda o equlíro de Estado Estacoáro, alargado a dfereça etre o ível de população correspodete ao Estado Estacoáro e àquela relatva ao cosumo máxmo. A possldade de tragéda dos comus decorre desse deslocameto cotíuo, e maxmzação da utldade com ase apeas o tamaho de população que ateda o cosumo máxmo. Vale ressaltar, que o aumeto da preferêca tertemporal dos agetes, mplca o aumeto do cosumo presete em relação ao cosumo futuro, decorrete, por sua vez, do aumeto da preferêca presete por lagosta (aumeto da sua demada atual). 7. Coclusões As duas aordages teórcas aqu sugerdas pode dar suporte para uma aplcação empírca do prolema, Pelo que fo demostrado a sorepesca da lagosta o Estado do Ceará, pode ser terpretado como um caso típco de tragéda dos comus. Uma ressalta que se chega, como devera ser a um resultado suótmo em termos de em-estar. O outro mostra de maera dâmca como sso se processa. Blografa CARVALHO, Rosemary M.;SILVA, Lúca Mara R.; KHAN, Ahmad S. Recurso Natural de Propredade Comum e Acesso Lvre: o caso da produção de pescado do Nordeste do Brasl. Revsta Ecoômca do Nordeste, Fortaleza, V. 9.3, p.75-93, julhosetemro de CEPENE. Cetro de Pesqusa e Extesão Pesquera do Nordeste. Boletm Estatístco da Pesca Marítma e Estuara do Estado do Ceará , 1995, 1996, 1997, 1998, Fortaleza/Ce. FILHO, Atôo Adauto Foteles Recursos Pesqueros: Bologa e Dâmca Populacoal. Fortaleza : Impresa Ofcal do Ceará, GARDNER, Roy, Games for Buses ad Ecoomcs, Joh Wley e Sos, Ic, Nova York, GIBBONS, Roert. Game Theory for Appled Ecoomcs. Prceto, Ney Jersey, Prceto Uversty Press, 199. HARDIN, GARRET, Tragedy of Commos. Scece,.16, p , KARMIEN, N.I.; SCHWARTZ, N.L. Dyamc Optmzato. The Calculus of Varatos ad Optmal Cotrol Ecoomcs ad Maagemet. Elsever, d ed., New York, MAS-COLELL, Adreu; WHINSTON, Mchael D., Gree, Jerry R. Mcroecoomc Theory, New York, Oxford Uversty Press, PAIVA, Mlquades Pto (coordeador). Recursos Pesqueros Estuaros e Marhos do Brasl, Fortaleza : Edções UFC,

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA O objetvo deste capítulo é apresetar formas da equação da coservação da massa em fução de propredades tesvas faclmete mesuráves, como a temperatura, a pressão,

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Lealdade à Marca e Sensibilidade ao Preço: Um Estudo da Escolha da Marca pelo Consumidor. Autoria: Delane Botelho, André Torrres Urdan.

Lealdade à Marca e Sensibilidade ao Preço: Um Estudo da Escolha da Marca pelo Consumidor. Autoria: Delane Botelho, André Torrres Urdan. Lealdade à Marca e Sesbldade ao Preço: Um Estudo da Escolha da Marca pelo Cosumdor Autora: Delae Botelho, Adré Torrres Urda Resumo Este artgo usa dados em pael do tpo escaeados, desagregados ao ível de

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES Aa Mara Lma de Faras Luz da Costa Laurecel Com a colaboração dos motores Maracajaro

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

ÍNDICE DE TERMOS: MOTOR DEDICADO, PADRONIZAÇÃO;

ÍNDICE DE TERMOS: MOTOR DEDICADO, PADRONIZAÇÃO; Aplcação de Motores de Méda esão dedcados acoados por versor de frequêca e utlzação de um úco projeto em dferetes solctações de carga. Gleuber Helder Perera Rodrgues Esp. Eg. WEG Brasl gleuber@weg.et Alex

Leia mais

AMOSTRAGEM EM DOIS ESTÁGIOS COM UNIDADES PRIMÁRIAS DE TAMANHOS DIFERENTES SUBSAMPLING TO TWO PROBATION WITH PRIMARY UNITS OF UNEQUAL SIZES

AMOSTRAGEM EM DOIS ESTÁGIOS COM UNIDADES PRIMÁRIAS DE TAMANHOS DIFERENTES SUBSAMPLING TO TWO PROBATION WITH PRIMARY UNITS OF UNEQUAL SIZES Cêca Florestal, v.6,., p.47-55 47 ISS 003-9954 AMOSTRAGEM EM DOIS ESTÁGIOS COM UIDADES PRIMÁRIAS DE TAMAHOS DIFERETES SUBSAMPLIG TO TWO PROBATIO WITH PRIMARY UITS OF UEQUAL SIZES Sylvo Péllco etto RESUMO

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA

AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA versão mpressa ISSN 00-7438 / versão ole ISSN 678-542 AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA Luís Alberto Duca Ragel UFF-COPPE/PEP/UFRJ

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Risco Moral na Utilização de Serviços de Saúde no Brasil

Risco Moral na Utilização de Serviços de Saúde no Brasil Rsco Moral a Utlzação de Servços de Saúde o Brasl Resumo Autora: Lus Gabrel Marques Regato, Luís duardo Afoso Neste trabalho fo vestgada a preseça de rsco moral o sstema de plaos de saúde do Brasl, por

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil Educação e Pesqusa ISS: 1517-972 revedu@usp.br Uversdade de São Paulo Brasl Helee, Otavao Evolução da escolardade esperada o Brasl ao logo do século XX Educação e Pesqusa, vol. 38, úm. 1, marzo, 212, pp.

Leia mais

Ana Clara P. Campos 1 Denise Nunes Viola 1 Moacyr Cunha Filho 2 Guilherme Vilar 2 Vanessa Van Der Linden 3

Ana Clara P. Campos 1 Denise Nunes Viola 1 Moacyr Cunha Filho 2 Guilherme Vilar 2 Vanessa Van Der Linden 3 Idetfcação da exstêca de padrão espacal aleatóro a dstrbução dos pacetes portadores de doeça geétca rara com defcêca físca da Assocação de Assstêca à Craça Defcete (AACD) de Perambuco Aa Clara P. Campos

Leia mais

Analise do Programa Bolsa Familia e o problema de assimetria de informação (Moral Hazard)

Analise do Programa Bolsa Familia e o problema de assimetria de informação (Moral Hazard) Aalse do Programa Bolsa Famla e o problema de assmetra de formação (Moral Hazard) Adão Rodrgues 1 Júla Araújo 2 Resumo: O objetvo deste trabalho é aalsar os problemas exstetes o programa de trasferêca

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

TEXTO SUJEITO A REVISÃO

TEXTO SUJEITO A REVISÃO Aálse Comparatva de duas Metodologas Factíves para o Cálculo de IPCs com a Utlzação de Mcrodados do IPC-FIPE Hero Carlos Esvael do Carmo TEXTO SUJEITO A REVISÃO Resumo O prcpal objetvo deste texto é aalsar,

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000 Aas III Smpóso Regoal de Geoprocessameto e Sesorameto Remoto Aracaju/SE, 25 a 27 de outubro de 2006 UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 99-2000 OLIVEIRA,

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avalação de Empresas MODELO DE DIVIDENDOS Dvdedos em um estáo DDM Dscouted Dvded Model Muto utlzados a precfcação de uma ação em que o poto de vsta do vestdor é extero à empresa e eralmete esse vestdor

Leia mais

Ensaios Econômicos. Amortização de Dívidas e Prestações Constantes: Uma Análise Crítica. Outubro de 2013. Escola de. Pós-Graduação.

Ensaios Econômicos. Amortização de Dívidas e Prestações Constantes: Uma Análise Crítica. Outubro de 2013. Escola de. Pós-Graduação. Esaos Ecoômcos Escola de ós-graduação em Ecooma da Fudação Getulo Vargas N 746 ISSN 004-890 Amortzação de Dívdas e restações Costates: Uma Aálse Crítca Clovs de Faro Outubro de 203 URL: http://hdl.hadle.et/0438/232

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

CAPÍTULO 1 PROBABILIDADE

CAPÍTULO 1 PROBABILIDADE CAPÍTULO PROBABILIDADE. Coceto O coceto de probabldade está sempre presete em osso da a da: qual é a probabldade de que o meu tme seja campeão? Qual é a probabldade de que eu passe aquela dscpla? Qual

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4).

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4). Cetro de Polítcas Socas - Marcelo Ner ÍNDICE DE HEIL Referêca Obrgatóra: Hoffma cap 4 pags 99 a 6 e cap 3 pgs 42-44 (seção 3.4).. Coteúdo Iformatvo de uma mesagem Baseado a teora da formação, que aalsa

Leia mais

FERRAMENTAS DE ANÁLISE DE RISCOS EM ESTRATÉGIAS EMPRESARIAIS

FERRAMENTAS DE ANÁLISE DE RISCOS EM ESTRATÉGIAS EMPRESARIAIS FERRAMENTAS DE ANÁLISE DE RISCOS EM ESTRATÉGIAS EMRESARIAIS or: Herbert Kmura RAE-eletrôca, Volume, Número 2, jul-dez/2002. http://www.rae.com.br/eletroca/dex.cfm?fuseacto=artgo&id=825&secao=wc&volume=&numero=2&ao=

Leia mais

2 Estrutura a Termo de Taxa de Juros

2 Estrutura a Termo de Taxa de Juros Estrutura a Termo de Taxa de Juros 20 2 Estrutura a Termo de Taxa de Juros A Estrutura a termo de taxa de juros (também cohecda como Yeld Curve ou Curva de Retabldade) é a relação, em dado mometo, etre

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

Perguntas freqüentes Credenciadores

Perguntas freqüentes Credenciadores Pergutas freqüetes Credecadores Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte pelo facameto da compra pelo emssor?

Leia mais

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo INGEPRO Iovação, Gestão e Produção Jaero de 010, vol. 0, o. 01 www.gepro.com.br Cálculo de méda a posteror através de métodos de tegração umérca e smulação mote carlo: estudo comparatvo Helto Adre Lopes

Leia mais

Palavras-Chave: Teoria das Restrições, Decisões a Longo Prazo, Simulação de Monte Carlo.

Palavras-Chave: Teoria das Restrições, Decisões a Longo Prazo, Simulação de Monte Carlo. Teora das Restrções e Decsões de Logo Prazo: Camho para a Covergêca Autores PABLO ROGERS Uversdade Federal de Uberlâda ERNANDO ANTONIO REIS Uversdade Federal de Uberlâda Resumo Advogam os crítcos da Teora

Leia mais

ANÁLISE DA MOBILIDADE URBANA SUSTENTÁVEL UTILIZANDO ESTATÍSTICA ESPACIAL

ANÁLISE DA MOBILIDADE URBANA SUSTENTÁVEL UTILIZANDO ESTATÍSTICA ESPACIAL ANÁLISE DA MOBILIDADE URBANA SUSTENTÁVEL UTILIZANDO ESTATÍSTICA ESPACIAL Dese de Mrada e Slva Correa Vâa Barcellos Gouvêa Campos Isttuto Mltar de Egehara Resumo Neste trabalho apreseta-se uma aálse espacal

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89 Nota Técca o 037/2013-SRG/ANEEL Em 17 de mao de 2013. Processo: 48500.002907/2010-89 Assuto: Cosoldação de todas as regulametações referetes à apuração de dspobldades de empreedmetos de geração de eerga

Leia mais

de Energia Geração Térmica

de Energia Geração Térmica Sstema Itegrado de Plaeameto e Comercalzação de Eerga Geração Térmca Rafael de Souza Favoreto, CEHPAR LACTEC; Marcelo Rodrgues Bessa, CEHPAR LACTEC; Wlso Tadeu Pzzatto, COPEL; Luz Roberto Morgester Ferrera,

Leia mais

Variância estatística associada a métodos semi-empíricos para estimativa da capacidade de carga de estacas

Variância estatística associada a métodos semi-empíricos para estimativa da capacidade de carga de estacas Teora e Prátca a Egehara vl,.0, p.6-67, ovemro, 0 arâca estatístca assocada a métodos sem-empírcos para estmatva da capacdade de carga de estacas Statstcal varace assocated wth sem-emprcal methods for

Leia mais

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado.

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado. 1 Belo Horzote, 14 de abrl de 2007. À UNAFISCO SAÚDE AT.: Glso Bezerra REF: AVALIAÇÃO ATUARIAL Prezado Sehor, Em atedmeto à solctação de V.Sa., apresetamos, a seqüêca, os resultados do estudo referecado.

Leia mais

RAI - Revista de Administração e Inovação ISSN: 1809-2039 campanario@uninove.br Universidade de São Paulo Brasil

RAI - Revista de Administração e Inovação ISSN: 1809-2039 campanario@uninove.br Universidade de São Paulo Brasil RAI - Revsta de Admstração e Iovação ISSN: 809-2039 campaaro@uove.br Uversdade de São Paulo Brasl Cotador, José Luz; Cotador, José Celso; Herques de Carvalho, Marcus Fabus; Olvera Costa Neto, Pedro Luz

Leia mais

Teoria da Amostragem

Teoria da Amostragem Teora da Amostragem I- oções fudametas sobre amostragem. Amostragem é todo o processo de recolha de uma parte, geralmete pequea, dos elemetos que costtuem um dado couto. Da aálse dessa parte pretede obter-se

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Avaliação da Localização de Base de Atendimento para Equipamentos de Movimentação de uma Empresa Siderúrgica

Avaliação da Localização de Base de Atendimento para Equipamentos de Movimentação de uma Empresa Siderúrgica Avalação da Localzação de Base de Atedmeto para Equpametos de Movmetação de uma Empresa Sderúrgca Leadro Ferades da Slva Leadro.Ferades@cs.com.br UFF Ilto Curty Leal Juor ltocurty@gmal.com UFRJ Paul Adrao

Leia mais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais 48 Procedmetos para Ajuste e Tratameto Estatístco de Dados Expermetas. Itrodução Modelos matemátcos desevolvdos para descrever eômeos íscos a partr de observações expermetas devem ser baseados em dados

Leia mais

Professor Mauricio Lutz ESTATÍSTICA BÁSICA

Professor Mauricio Lutz ESTATÍSTICA BÁSICA Proessor Maurco Lutz ESTATÍSTICA BÁSICA. Coceto Exstem mutas deções propostas por autores, objetvado estabelecer com clareza o que é estatístca, como por exemplo: Þ A Estatístca é um cojuto de métodos

Leia mais

3 Precificação de resseguro

3 Precificação de resseguro Precfcação de Resseguro 35 3 Precfcação de resseguro Este capítulo traz prmeramete uma oção ampla das aplcações das metodologas de precfcação de resseguro para melhor compreesão do mesmo Da seção 3 até

Leia mais

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi ISSN 1984-7203 Projeção Populacoal 2013-2020 para a Cdade do Ro de Jaero: uma aplcação do método AB Nº 20130102 Jaero - 2013 Iva Braga Ls 1, Marcelo Pessoa da Slva, Atoo Carlos Carero da Slva, Sérgo Gumarães

Leia mais

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento:

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento: Lsta de Exercícos #9 Ass uto: Aáls e de Re gres s ão Mé todo de Mímos Quadrados. ANPEC 99 - Questão 8 A capacdade de produção stalada (Y), em toeladas, de uma frma, pode ser fução da potêca stalada (X),

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Sistema Kanban para fábrica de tintas

Sistema Kanban para fábrica de tintas Sstema Kaba para ábrca de ttas José Luz Cotador Proessor do Programa de Pós-Graduação em Admstração Uove; Doutor em Egehara Aeroáutca e Mecâca - Isttuto Tecológco de Aeroáutca ITA. [Brasl] luz@eg.uesp.br

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

A Base Termodinâmica da Pressão Osmótica

A Base Termodinâmica da Pressão Osmótica 59087 Bofísca II FFCLRP P Pof. Atôo Roque Aula 7 A Base emodâmca da Pessão Osmótca Elemetos de emodâmca As les báscas da temodâmca dzem espeto à covesão de eega de uma foma em outa e à tasfeêca de eega

Leia mais

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA KÁTIA MARIANA SILIVELI EPALANGA - Egehera Químca Dssertação

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA UIVERSIDADE ESTADUAL DO CEARÁ RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA DE MATRIZ DE TRASFERÊCIA FORTALEZA CEARÁ 4 RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA

Leia mais