Variância estatística associada a métodos semi-empíricos para estimativa da capacidade de carga de estacas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Variância estatística associada a métodos semi-empíricos para estimativa da capacidade de carga de estacas"

Transcrição

1 Teora e Prátca a Egehara vl,.0, p.6-67, ovemro, 0 arâca estatístca assocada a métodos sem-empírcos para estmatva da capacdade de carga de estacas Statstcal varace assocated wth sem-emprcal methods for estmatg the earg capacty of ples Atôo Marcos de ma Alves Programa de Pós-Graduação em Egehara Oceâca versdade Federal do Ro Grade FRG, Ro Grade, RS e-mal: Thago Amador Programa de Pós-Graduação em Egehara Oceâca versdade Federal do Ro Grade FRG, Ro Grade, RS e-mal: RESMO: O presete traalho tem por oetvo a dedução de expressões para o cálculo da varâca estatístca assocada a dos dos prcpas métodos sem-empírcos utlzados o Brasl, para a estmatva da capacdade de carga de estacas. Estas expressões são útes a estmatva da dstrução de capacdade de carga a pror para um dado proeto de fudações. omo resultado secudáro, demostra-se matematcamete a possldade de cálculo da capacdade de carga por atrto lateral, através do método de Décourt e uaresma, de forma cumulatva, aos moldes do procedmeto adotado o método de Aok e elloso. ABSTRAT: Ths work deals wth the deducto of expressos for calculatg the statstcal varace assocated wth two sem-emprcal methods used Brazl to estmate the earg capacty of ples. These expressos are useful estmatg the "a pror" dstruto of earg capacty for a gve o. As a yproduct, t s demostrated mathematcally the posslty of calculatg the shaft earg capacty cumulatvely, usg the Décourt ad uaresma method, the same procedure adopted y the Aok ad elloso method.. ITRODÇÃO ofaldade, segudo Harr [8, é a avalação proalístca da possldade do desempeho adequado de um sstema, por um período específco de tempo, em codções operacoas pré-defdas. A cofaldade de um sstema pode ser medda pela relação etre a sua capacdade e a sua demada. Porém, em Egehara, todo proeto geralmete tem de ldar com certos graus de certeza, assocados tato à capacdade (reações) quato à demada (ações). Se a capacdade e a demada de um sstema forem tratadas como varáves aleatóras, corporado assm suas certezas assocadas, pode-se estmar, além dos tradcoas fatores de seguraça, o chamado ídce de cofaldade, relacoado a uma proaldade de falha (Ag e Tag [, Harr [8). A área de Geoteca e, mas especfcamete, de Egehara de Fudações, vem gradatvamete corporado o coceto de cofaldade a seus estudos. A proposta de Aok [ e os traalhos de Olvera [0, Slva [, Slva [, Satos [, aral [5 e Magalhães [9 são exemplos dos esforços atualmete empreeddos o setdo de tratar as certezas eretes ao proeto de fudações de uma maera mas racoal. A orma BR 6 [4 apota para a mportâca do cotrole executvo e da realzação de esaos as estacas, vsado a redução das certezas assocadas à capacdade de carga.

2 6 Teora e Prátca a Egehara vl,.0, p.6-67, ovemro, 0 Detro deste cotexto, os traalhos específcos de Satos [, aral [5 e Magalhães [9 exploram metodologas para atualzação da dstrução de proaldade da capacdade de carga estmada a fase de proeto (capacdade a pror ), com ase em resultados de cotrole de execução, esaos de carregameto dâmco e provas de carga estátca realzados durate a fase executva da ora. A dstrução atualzada de capacdade de carga (capacdade a posteror ) é otda através da aplcação do teorema de Bayes (para uma revsão acerca deste teorema, ver, por exemplo, Harr [8). O presete traalho usca cotrur para o corpo de cohecmeto relacoado à cofaldade de fudações. O artgo tem por oetvo a dedução de expressões para o cálculo da varâca assocada a dos dos prcpas métodos sem-empírcos utlzados o Brasl, aseados o esao SPT ( Stadard Peetrato Test ), para a estmatva da capacdade de carga de estacas. Estas expressões são útes a estmatva da dstrução de capacdade de carga a pror para um dado proeto de fudações. omo resultado secudáro, demostra-se matematcamete a possldade de cálculo da capacdade de carga por atrto lateral, através do método de Décourt e uaresma [7, de forma cumulatva, aos moldes do procedmeto adotado o método de Aok e elloso [.. MÉTODO DO SEGDO MOMETO DE PRIMEIRA ORDEM oforme resumdo em Harr [8, exstem dversos métodos para a medda da dstrução de proaldade de fuções de varáves aleatóras, como, por exemplo, o método de Mote arlo, o método das estmatvas potuas, e o método do segudo mometo de prmera ordem (em glês, frst-order, secod-momet method ou FOSM method ). Este últmo método será aordado o presete traalho. Sea f(x,x,x,,x ) uma fução de varáves aleatóras ão correlacoadas. Se os dos prmeros mometos proalístcos das varáves (méda e varâca) são cohecdos, os dos prmeros mometos proalístcos de f podem ser estmados a partr da expasão da fução f em sére de Taylor, ao redor dos potos correspodetes às médas das varáves. Trucado a sére de Taylor após os termos de prmero grau (uma aproxmação de prmera ordem, portato), o valor esperado e a varâca de f podem ser estmados a partr do valor esperado e da varâca das varáves aleatóras, de acordo com as segutes expressões: ode E[ x [ f f ( x, x, x,, x ) E () f [ f x () x x é o valor esperado ou méda e x é a varâca da varável aleatóra x. Todas as dervadas são avaladas para os valores médos de todas as varáves aleatóras cotdas em suas expressões.. ESTIMATIA DA APAIDADE DE ARGA DE ESTAAS A capacdade (geotécca) de carga vertcal de uma estaca solada pode ser represetada pela soma de dos termos: () u ode u é a capacdade de carga vertcal, é parcela de resstêca oferecda pela pota da estaca, e s é a parcela de resstêca oferecda por atrto ao logo da superfíce lateral da estaca. ma forma smplfcada de aálse da capacdade de carga cosste em sudvdr a estaca em segmetos, tão pequeos quato se quera, e ão ecessaramete dêtcos (Fgura )., Fgura Dscretzação das forças resstvas atuates em uma estaca s, s, s, s, s

3 Teora e Prátca a Egehara vl,.0, p.6-67, ovemro, 0 6 A parcela de resstêca oferecda pela pota da estaca será aquela gerada a ase do segmeto (, ). A parcela de resstêca oferecda por atrto lateral será gual ao somatóro das cotruções dvduas de cada segmeto ( s, ), desde o segmeto até o segmeto. Portato, a capacdade de carga da estaca, sudvdda em segmetos, será: (4) u,, s,, Admtdo-se por hpótese que, e s, são varáves aleatóras estatstcamete depedetes etre s, pode-se escrever: [ u, u,, E (5) s, [ u, [, [ s, (6) As parcelas de capacdade de carga e s podem ser estmadas por meo de métodos teórcos, sem-empírcos e umércos (elloso e opes [4). Serão aordados este traalho dos métodos sem-empírcos, aseados em resultados de esaos de prospecção geotécca do tpo SPT ( Stadard Peetrato Test ): o método de Aok e elloso [ e o método de Décourt e uaresma [7. Resumdamete, o esao SPT cosste a cravação de um amostrador padrão, utlzado-se um martelo cado de uma altura de queda especfcada. A cada metro de profuddade, mede-se um ídce de resstêca defdo pelo úmero de golpes ecessáros para a cravação do amostrador ao logo de 0 cm. Este ídce, chamado de SPT, pode estar assocado a varaldades de dversos tpos, prcpalmete relacoadas à mauteção e padrozação dos equpametos e ao correto atedmeto aos procedmetos ormatzados de esao. Tamém a heterogeedade espacal do solo tem fluêca a dspersão oservada em certas campahas de esaos SPT. s, 4. MÉTODO DE AOKI E EOSO Aok e elloso [ propõem que a capacdade de carga a pota de uma estaca possa ser estmada pela segute expressão:, A k, (7) F ode A é a área da ase da estaca, k é um fator relacoado ao tpo de solo ode a pota da estaca está mersa, F é um fator relacoado ao tpo de estaca, e, é a méda artmétca etre o valor do SPT meddo a profuddade ateror à posção da pota da estaca, a profuddade da pota e a profuddade posteror à posção da pota da estaca:, (8) Admtdo-se que as varáves aleatóras são os valores de SPT, e aplcado-se o método FOSM (Equações e ), podem-se oter as expressões para a méda e a varâca de, : E A k [,,, (9) F A k [ [,, (0) F Se -, e forem varáves aleatóras estatstcamete depedetes, pode-se escrever tamém: E,, (), [ [ [ [ () Para a estmatva da capacdade de carga por atrto lateral, Aok e elloso [ sugerem um procedmeto cumulatvo, ode a parcela de atrto lateral em cada trecho da estaca pode ser estmada a partr da segute expressão:

4 64 Teora e Prátca a Egehara vl,.0, p.6-67, ovemro, 0 α k s, () F ode é o perímetro da estaca, α e k são fatores relacoados ao tpo de solo ode o trecho da estaca está merso, F é um fator relacoado ao tpo de estaca, e é o valor do SPT meddo a profuddade ode o trecho da estaca está localzado. Admtdo-se mas uma vez que as varáves aleatóras são os valores de SPT, e aplcado-se o método FOSM, podem-se oter as expressões para a méda e a varâca de s, : α k E s, s, (4) F k α [ s, (5) F O lmte superor para os valores de SPT, dcado por Aok e elloso [, é MÉTODO DE DÉORT E ARESMA As expressões expostas a segur, compoetes do método de Décourt e uaresma [7 (e tamém Décourt [6), são váldas quado adotam-se o kloewto como udade de força e o metro como udade de comprmeto. A capacdade de carga a pota de uma estaca é estmada da segute forma:, A (6) ode é um fator relacoado ao tpo de solo ode a pota da estaca está mersa, e é um fator relacoado ao tpo de solo e ao tpo de estaca. Os demas parâmetros (A e, ) á foram descrtos aterormete. Aplcado-se o método FOSM, podem-se oter as expressões para a méda e a varâca de, : E, [ A,, (7), [ ( A ) [, (8), Os resultados expressos em (7) e (8) cocdem com as expressões aterormete deduzdas por aral [5. Décourt e uaresma [7 e Décourt [6 sugerem o cálculo da capacdade de carga total por atrto lateral, coforme a segute expressão: s, s, 0 (9) ode é um fator relacoado ao tpo de solo e ao tpo de estaca (admtdo como costate ao logo da estaca), é o comprmeto total da estaca, é o perímetro da estaca, e s, é o valor médo de SPT ao logo do comprmeto da estaca, excluídos os valores de SPT utlzados o cálculo de,. Assm: s, ( ), para > (0) Devdo ao lmte feror para o valor de, mposto pela Equação (0), todas as equações susequetes são váldas para maor do que. Portato, os dos prmeros trechos da estaca, a parcela de capacdade por atrto lateral ão é calculada. m procedmeto de cálculo muto frequete cosste em sudvdr a estaca em segmetos de gual comprmeto (em geral gual a,0 metro, que é a dstâca etre as meddas de SPT ). Assm: Portato: () ( ) s, 0 () ( ) Ou: ( ) ( ) 0 s, ()

5 Teora e Prátca a Egehara vl,.0, p.6-67, ovemro, 0 65 tlzado-se as regras dos somatóros, pode-se escrever: () (4) Susttudo-se (4) em (), otém-se: (), s 0 (5) Ou ada:, s 0 (6) A Equação (6) represeta a capacdade de carga total por atrto lateral de uma estaca a profuddade. É possível oter a capacdade de carga por atrto lateral caso a estaca tvesse um segmeto a meos, ou sea, se ela tvesse sua pota localzada a profuddade -:, s 0 (7) Assm, o acréscmo de capacdade de carga, por atrto lateral, ocorrdo etre as profuddades - e pode ser calculado: s, s,, s (8) E portato: s, 0 (9) Desevolvedo a expressão, vem: s, 0 (0) s, 0 () s, 0 () A Equação () pode ser geeralzada para qualquer segmeto da estaca (Fgura ), da segute forma: s, 0 () Os resultados expressos pelas Equações () e () demostram que o cálculo de capacdade por atrto lateral, através do método de Décourt e uaresma [7 e Décourt [6, pode ser realzado de forma cumulatva, aos moldes do procedmeto adotado por Aok e elloso [.

6 66 Teora e Prátca a Egehara vl,.0, p.6-67, ovemro, 0 Admtdo-se que as varáves aleatóras são os valores de SPT, e aplcado-se o método FOSM, podem-se oter as expressões para a méda e a varâca de s, : E [ [ s, s, ( ) s, ( ) ( ) 0 0 ( ) 0 ( ) ( ) ( ) (4) (5) O segudo termo da Equação (5), formado por um somatóro, tede a zero à medda que o valor de aumeta, ou sea, à medda que se tomam trechos mas profudos da estaca para o cálculo de s,. Se este termo for desprezado: [ s, 0 ( ) (6) Ressalte-se que os resultados expressos em (4), (5) e (6) são dferetes de expressões aálogas deduzdas aterormete por aral [5. Décourt e uaresma [7 e Décourt [6 dcam 50 como lmte superor para os valores de SPT, e como lmte feror. 6. OSÕES Foram deduzdas as expressões para o cálculo da varâca estatístca assocada aos métodos de Aok e elloso [ e Décourt e uaresma [7. Estes dos métodos sem-empírcos, aseados o esao SPT ( Stadard Peetrato Test ), são muto utlzados o Brasl para a estmatva da capacdade de carga de estacas. O cálculo da varâca é útl para a estmatva da dstrução de capacdade de carga a pror para um dado proeto de fudações, levado em cota a varaldade assocada aos resultados do esao SPT. omo resultado secudáro, fo demostrada matematcamete a possldade de cálculo da capacdade de carga por atrto lateral, através do método de Décourt e uaresma [7, de forma cumulatva, aos moldes do procedmeto adotado o método de Aok e elloso [. REFERÊIAS. Ag, A.H-S.; Tag, W.H. - Proalty cocepts egeerg plag ad desg: decso, rsk ad relalty. ew York, Joh Wley, ol., Aok,. Proaldade de falha e carga admssível de fudação por estacas. Revsta Mltar de êca e Tecologa, ol. XIX, p.48-64, 00.. Aok,.; elloso, D.A. A approxmate method to estmate the earg capacty of ples. Proceedgs, 5 th Pa-Amerca oferece o Sol Mechacs ad Foudato Egeerg, Bueos Ares, ol., p.67-76, Assocação Braslera de ormas Téccas. Proeto e Execução de Fudações. BR-6. Outuro, aral, E.. otrução à cofaldade de estacas cravadas através de um estudo de caso com aplcação da teora Bayesaa. Dssertação de mestrado, Programa de Pós-Graduação em Egehara vl, ERJ, Ro de Jaero, Décourt,. Predcto of the earg capacty of ples ased exclusvely o values of the SPT. Proceedgs, d Europea Symposum of Peetrato Testg, Amsterdam, Décourt,.; uaresma Flho, A.R. apacdade de carga de estacas a partr de valores de SPT. Aas, 6 o ogresso Braslero de Mecâca dos Solos e Egehara de Fudações, Ro de Jaero, ol., p.45-5, Harr, M.E. Relalty-ased desg cvl egeerg. ew York, McGraw-Hll, Magalhães, F.. Aálse das fudações da ora de moderzação do cas do Porto ovo de Ro Grade (RS) aplcado metodologa Bayesaa. Dssertação de mestrado, Programa

7 Teora e Prátca a Egehara vl,.0, p.6-67, ovemro, 0 67 de Pós-Graduação em Egehara Oceâca, FRG, Ro Grade, 0. 0.Olvera, S.K.F. otrução ao estudo da verfcação da seguraça das fudações profudas. Dssertação de mestrado, Programa de Pós-Graduação em Geoteca, EE-SP, São arlos, 998..Satos, M.S. Iferêca Bayesaa a avalação da seguraça de fudações em estacas de deslocameto. Dssertação de mestrado, Escola Poltécca, SP, São Paulo, 007..Slva, F.. Aálse de seguraça e cofaldade de fudações profudas em estacas. Dssertação de mestrado, Programa de Pós-Graduação em Geoteca, EE-SP, São arlos, 00..Slva, J.. Metodologa de proeto de fudações por estacas cludo proaldade de ruía. Dssertação de mestrado, Programa de Pós-Graduação em Geoteca, EE-SP, São arlos, elloso, D.A.; opes, F.R. Fudações. São Paulo, Ofca de Textos, ol., 00.

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo INGEPRO Iovação, Gestão e Produção Jaero de 010, vol. 0, o. 01 www.gepro.com.br Cálculo de méda a posteror através de métodos de tegração umérca e smulação mote carlo: estudo comparatvo Helto Adre Lopes

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN Tayd Dayvso Custódo Pexoto ; Sérgo Luz Agular Leve ; Adre Herma Frere Bezerra 3 ; José

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

3 Precificação de resseguro

3 Precificação de resseguro Precfcação de Resseguro 35 3 Precfcação de resseguro Este capítulo traz prmeramete uma oção ampla das aplcações das metodologas de precfcação de resseguro para melhor compreesão do mesmo Da seção 3 até

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

Neste capítulo pretende-se introduzir o conceito de centróide, em especial quando aplicado para o caso de superfícies planas.

Neste capítulo pretende-se introduzir o conceito de centróide, em especial quando aplicado para o caso de superfícies planas. Físca plcada à Egehara vl II aulo Medes ENTRÓIDES Neste capítulo pretede-se troduzr o coceto de cetróde, em especal quado aplcado para o caso de superfíces plaas. Este documeto, costtu apeas um strumeto

Leia mais

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS Prof José Leoardo Noroha M Eg Departameto de Egehara de Prodção Escola Federal de Egehara de Itabá EFEI RESUMO: Neste trabalho

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

A Medição e o Erro de Medição

A Medição e o Erro de Medição A Medção e o Erro de Medção Sumáro 1.1 Itrodução 1.2 Defções 1.3 Caracterzação da qualdade de medção 1.4 O erro da medção 1.4.1 Os erros aleatóros 1.4.2 Os erros sstemátcos 1.5 O verdadero valor, o erro

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

Curso de An lise de Fluxo de Caixa

Curso de An lise de Fluxo de Caixa Curso de A lse de Fluxo de Caxa SUMÁRIO PROGRESSÕES... 0. FÓRMULAS BÁSICAS... 0.. Progressões artmétcas... 0..2 Progressões geométrcas... 02.2 EXERCÍCIOS SUGERIDOS... 02 2 CONCEITOS DE MATEMÁTICA FINANCEIRA...

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

2 Estrutura a Termo de Taxa de Juros

2 Estrutura a Termo de Taxa de Juros Estrutura a Termo de Taxa de Juros 20 2 Estrutura a Termo de Taxa de Juros A Estrutura a termo de taxa de juros (também cohecda como Yeld Curve ou Curva de Retabldade) é a relação, em dado mometo, etre

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A.

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A. MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS M. Z. Nascmeto, A. F. Frère e L. A. Neves INTRODUÇÃO O cotraste as radografas vara ao logo do campo de

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Lealdade à Marca e Sensibilidade ao Preço: Um Estudo da Escolha da Marca pelo Consumidor. Autoria: Delane Botelho, André Torrres Urdan.

Lealdade à Marca e Sensibilidade ao Preço: Um Estudo da Escolha da Marca pelo Consumidor. Autoria: Delane Botelho, André Torrres Urdan. Lealdade à Marca e Sesbldade ao Preço: Um Estudo da Escolha da Marca pelo Cosumdor Autora: Delae Botelho, Adré Torrres Urda Resumo Este artgo usa dados em pael do tpo escaeados, desagregados ao ível de

Leia mais

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA O objetvo deste capítulo é apresetar formas da equação da coservação da massa em fução de propredades tesvas faclmete mesuráves, como a temperatura, a pressão,

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

ANAIS O JOGO DA LOGÍSTICA E SUAS VARIANTES NO PROBLEMA DE LOCALIZAÇÃO DE INSTALAÇÕES

ANAIS O JOGO DA LOGÍSTICA E SUAS VARIANTES NO PROBLEMA DE LOCALIZAÇÃO DE INSTALAÇÕES O JOGO DA LOGÍSTICA E SUAS VARIANTES NO PROBLEMA DE LOCALIZAÇÃO DE INSTALAÇÕES MARCOS RICARDO ROSA GEORGES ( marcos.georges@puc-campas.edu.br, marcos_georges@yahoo.com.br ) PUC-CAMPINAS Resumo Este artgo

Leia mais

9 Medidas Descritivas

9 Medidas Descritivas 1 9 Meddas Descrtvas Vmos aterormete que um cojuto de dados pode ser resumdo através de uma dstrbução de freqüêcas, e que esta pode ser represetada através de uma tabela ou de um gráfco. Se o cojuto refere-se

Leia mais

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO 1 VARIÁVEIS ALEATÓRIAS O que se etede por varável aleatóra? Até agora ossos estudos estavam pratcamete voltados mas para defrmos osso Espaço Amostral U, sem assocarmos suas respectvas probabldades aos

Leia mais

RAI - Revista de Administração e Inovação ISSN: 1809-2039 campanario@uninove.br Universidade de São Paulo Brasil

RAI - Revista de Administração e Inovação ISSN: 1809-2039 campanario@uninove.br Universidade de São Paulo Brasil RAI - Revsta de Admstração e Iovação ISSN: 809-2039 campaaro@uove.br Uversdade de São Paulo Brasl Cotador, José Luz; Cotador, José Celso; Herques de Carvalho, Marcus Fabus; Olvera Costa Neto, Pedro Luz

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Ivan G. Peyré Tartaruga. 1 Metodologia espacial

Ivan G. Peyré Tartaruga. 1 Metodologia espacial RELATÓRIO DE PESQUISA 5 Procedmetos o software ArcGIS 9. para elaborar os mapas da Regão Metropoltaa de Porto Alegre RMPA com as elpses de dstrbução drecoal etre 99 e 000 Iva G. Peré Tartaruga Metodologa

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado.

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado. 1 Belo Horzote, 14 de abrl de 2007. À UNAFISCO SAÚDE AT.: Glso Bezerra REF: AVALIAÇÃO ATUARIAL Prezado Sehor, Em atedmeto à solctação de V.Sa., apresetamos, a seqüêca, os resultados do estudo referecado.

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Sistema Kanban para fábrica de tintas

Sistema Kanban para fábrica de tintas Sstema Kaba para ábrca de ttas José Luz Cotador Proessor do Programa de Pós-Graduação em Admstração Uove; Doutor em Egehara Aeroáutca e Mecâca - Isttuto Tecológco de Aeroáutca ITA. [Brasl] luz@eg.uesp.br

Leia mais

AMOSTRAGEM EM DOIS ESTÁGIOS COM UNIDADES PRIMÁRIAS DE TAMANHOS DIFERENTES SUBSAMPLING TO TWO PROBATION WITH PRIMARY UNITS OF UNEQUAL SIZES

AMOSTRAGEM EM DOIS ESTÁGIOS COM UNIDADES PRIMÁRIAS DE TAMANHOS DIFERENTES SUBSAMPLING TO TWO PROBATION WITH PRIMARY UNITS OF UNEQUAL SIZES Cêca Florestal, v.6,., p.47-55 47 ISS 003-9954 AMOSTRAGEM EM DOIS ESTÁGIOS COM UIDADES PRIMÁRIAS DE TAMAHOS DIFERETES SUBSAMPLIG TO TWO PROBATIO WITH PRIMARY UITS OF UEQUAL SIZES Sylvo Péllco etto RESUMO

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89 Nota Técca o 037/2013-SRG/ANEEL Em 17 de mao de 2013. Processo: 48500.002907/2010-89 Assuto: Cosoldação de todas as regulametações referetes à apuração de dspobldades de empreedmetos de geração de eerga

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP edso@fmrp.usp.br Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA

AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA versão mpressa ISSN 00-7438 / versão ole ISSN 678-542 AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA Luís Alberto Duca Ragel UFF-COPPE/PEP/UFRJ

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM Fabríca D. Satos, Lucla G. Rbero, Leoardo G. de R. Guedes, Weber Marts Uversdade Católca de Goás, Departameto de Computação Uversdade

Leia mais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais 48 Procedmetos para Ajuste e Tratameto Estatístco de Dados Expermetas. Itrodução Modelos matemátcos desevolvdos para descrever eômeos íscos a partr de observações expermetas devem ser baseados em dados

Leia mais

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil Educação e Pesqusa ISS: 1517-972 revedu@usp.br Uversdade de São Paulo Brasl Helee, Otavao Evolução da escolardade esperada o Brasl ao logo do século XX Educação e Pesqusa, vol. 38, úm. 1, marzo, 212, pp.

Leia mais

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000 Aas III Smpóso Regoal de Geoprocessameto e Sesorameto Remoto Aracaju/SE, 25 a 27 de outubro de 2006 UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 99-2000 OLIVEIRA,

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

Noções Básicas de Medidas e Algarismos Significativos

Noções Básicas de Medidas e Algarismos Significativos Noções Báscas de Meddas e Algarsmos Sgfcatvos Prof. Theo Z. Pava Departameto de Físca - Faculdade de Flosofa, Cêcas e Letras de Rberão Preto-USP Físca Acústca Motvações Quas são os padrões de meddas? Podemos

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi ISSN 1984-7203 Projeção Populacoal 2013-2020 para a Cdade do Ro de Jaero: uma aplcação do método AB Nº 20130102 Jaero - 2013 Iva Braga Ls 1, Marcelo Pessoa da Slva, Atoo Carlos Carero da Slva, Sérgo Gumarães

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios

Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios Objetvos desta apresetação Plaejameto de produção: de Demada Aula parte Mauro Osak TES/ESALQ-USP Pesqusador do Cetro de Estudos Avaçados em Ecooma Aplcada Cepea/ESALQ/USP de demada quattatva Regressão

Leia mais

Gestão de Sistemas de Produção/Operações Profº Túlio de Almeida

Gestão de Sistemas de Produção/Operações Profº Túlio de Almeida Gestão de Sstemas de Produção/Operações Profº Túlo de Almeda 3. AVALIAÇÃO DE DESEMPENHO E INDICADORES 3.1. INDICADORES DE DESEMPENHO Os dcadores são tes essecas para qualquer tpo de projeto, processo,

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Avaliação da Localização de Base de Atendimento para Equipamentos de Movimentação de uma Empresa Siderúrgica

Avaliação da Localização de Base de Atendimento para Equipamentos de Movimentação de uma Empresa Siderúrgica Avalação da Localzação de Base de Atedmeto para Equpametos de Movmetação de uma Empresa Sderúrgca Leadro Ferades da Slva Leadro.Ferades@cs.com.br UFF Ilto Curty Leal Juor ltocurty@gmal.com UFRJ Paul Adrao

Leia mais

( ) Editora Ferreira - Toque de Mestre. Olá Amigos!

( ) Editora Ferreira - Toque de Mestre. Olá Amigos! Olá Amgos! Hoje coloco à dsposção de vocês aqu a seção Toque de Mestre da Edtora Ferrera (www.edtoraferrera.com.br) as questões de Matemátca Facera cobradas o últmo cocurso da axa Ecoômca Federal (EF),

Leia mais

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados Eercícos e Cálculo Numérco Iterpolação Polomal e Métoo os Mímos Quaraos Para a ução aa, seja,, 6 e, 9 Costrua polômos e grau, para apromar, 5, e ecotre o valor o erro veraero a cos b c l Use o Teorema

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais