Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP"

Transcrição

1 Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP

2 Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação de parâmetros, TH Parte II Escola bayesaa Flosofa, metodologa Cocetos Aplcação a dados reas

3 Rotero O que é útl saber sobre ferêca estatístca em aplcações em dados médcos? Habldades Escolha do modelo estatístco Vsões frequetsta e bayesaa O lado flosófco das dferetes escolas Softwares

4 Iferêca estatístca Obter coclusões sobre algumas característcas de um cojuto de teresse, deomado população, com base a formação oruda de um cojuto de dados dspoíves, deomado amostra. População tamaho N amostra tamaho coclusões

5 Escolas Thomas Bayes Laplace Harold Jeffreys Karl Pearso Roald Fsher Jerzy Neyma

6

7 POPULAÇÃO: cojuto total de dvíduos sobre o qual se faz uma ferêca A população é o cojuto costtuído por todos os dvíduos que apresetam pelo meos uma característca comum.

8 POPULAÇÃO: cojuto total de dvíduos sobre o qual se faz uma ferêca Seja X uma varável de teresse. A méda populacoal da varável X, µ, é um parâmetro. A varâca populacoal da varável X, σ, é um parâmetro. Um parâmetro é uma característca umérca de uma população.

9 AMOSTRA: um subcojuto da população A amostra é um subcojuto, uma parte selecoada da totaldade de observações abragdas pela população, através da qual se faz uma ferêca sobre um ou mas parâmetros da população.

10 µ, a méda populacoal de X, é um parâmetro., a méda amostral de X, é uma estmatva de µ. População tamaho N amostra tamaho coclusões Estmatvas: quatdades calculadas da amostra com a faldade de represetar um parâmetro de teresse da população.

11 Palavras Iferêca estatístca População Amostra Parâmetro Estmatva

12 Iferêca estatístca Obter coclusões sobre algumas característcas de um cojuto de teresse, deomado população, com base a formação oruda de um cojuto de dados dspoíves, deomado amostra. População tamaho N amostra tamaho coclusões

13 Iferêca Estatístca Tas coclusões são bascamete obtdas por duas formas: -) Itervalos de cofaça quado o objetvo é estmar um parâmetro, ou seja, uma característca umérca da população. -) Testes de hpóteses quado há hpóteses sobre característcas umércas da população.

14 Iferêca Estatístca Base: procedmetos paramétrcos. Os parâmetros de teresse são parâmetros pertecetes a dstrbuções de probabldade com forma cohecda.

15 Dstrbuções de probabldade Cotíuas: mesurações Normal t de Studet Qu-quadrado Dscretas: dados de cotagem Beroull Bomal Posso

16 Dstrbuções dscretas Fução de probabldade (f.p.) f.p. f X () P(X ), A A f ( ) X

17 Dstrbuções dscretas Dstrbução de Beroull X ~ Beroull(p) P(X p) p ( p), 0,

18 Dstrbuções dscretas Dstrbução de Beroull P(X p) p ( p), 0, 0: o dvíduo é saudável : o dvíduo é doete p 30% 0,3 P(X 0) 0,3 0 0,7 0,7 P(X ) 0,3 0,7 0 0,3

19 Dstrbuções dscretas Dstrbução Bomal X ~ Bomal(,p) ( ) P X, p p ( p), 0,,,..., 5 pacetes p 30% 0,3 P 5 5 ( X ) 0,3 0,7 0, 3087

20 Dstrbuções dscretas Dstrbução Bomal X ~ Bomal(,p) 5 pacetes p 30% 0,3 P P P P P P ( X 0) 0,3 0,7 0, ( X ) 0,3 0,7 0, ( X ) 0,3 0,7 0, ( X 3) 0,3 0,7 0, ( X 4) 0,3 0,7 0, ( X 5) 0,3 0,7 0, 004 5

21 Dstrbuções dscretas Dstrbução de Posso X ~ Posso(λ) Seja X ~ Bomal(, p). Se e p 0 X ~ Posso(λ), tal que λ p

22 Dstrbuções dscretas Dstrbução Hpergeométrca ( ) K K N K M N M K M N X P 0,,,...,,,,

23 Dstrbuções dscretas Dstrbução Hpergeométrca P M N M K N K ( X N, M, K ), 0,,,..., K Por eemplo, uma caa tem N bolas M são vermelhas N M são verdes Se retro ao acaso K bolas (sem ver), qual a probabldade de bolas retradas serem vermelhas?

24 Dstrbuções dscretas Dstrbução Hpergeométrca Por eemplo, uma caa tem N 30 bolas M 6 são vermelhas N M 4 são verdes Se retro ao acaso K 8 bolas (sem ver), qual a probabldade de 3 bolas retradas serem vermelhas? P ( X 3 ) 0, 45

25 Dstrbuções dscretas Dstrbução Hpergeométrca Na MEGASENA, há N 60 dezeas M 6 são boas N M 54 são verdes Se aposto K 6 dezeas, qual a probabldade de acertar 6? P ( X 6 ) 0,

26 Dstrbuções dscretas Dstrbução Hpergeométrca Na MEGASENA, há N 60 dezeas M 6 são boas N M 54 são verdes O que é mas provável? P(X 0) P(X ) P(X )?

27 Dstrbuções dscretas Dstrbução Hpergeométrca Na MEGASENA, há N 60 dezeas M 6 são boas N M 54 são verdes P(X 0) 0, P(X ) 0, P(X ) 0, P(X 3) 0, P(X 4) 0, P(X 5) 0, P(X 6) 0,

28

29 Dstrbuções dscretas Gahar com aposta: probabldade 0, Gahar com apostas: probabldade 0, Gahar com 0 apostas: probabldade 0,

30 Dstrbuções cotíuas Fução dstrbução de probabldade (f.d.p.) P b ( a < X < b) f ( ) d, a < a X b f X ( ) d a b

31

32 Métodos de estmação Potual Método dos mometos Método da máma verossmlhaça Algortmo EM Itervalar Método da quatdade pvotal Métodos eatos Bootstrap

33 AA:,,..., Dstrbução dos dados: Método da máma verossmlhaça P(X θ ) f X () se dscreta se cotíua Fução de verossmlhaça L L ( θ ) P( X θ ) ( θ ) f X ( ) se dscreta se cotíua

34 Método da máma verossmlhaça AA:,,..., Dstrbução de Posso: P ( X λ) e λ λ!, 0,,... λ > 0

35 Método da máma verossmlhaça barplot(dpos(0:0,),ames.arg0:0,las) λ λ λ λ λ

36 Método da máma verossmlhaça AA:,,..., ( ),... 0,,! e X P λ λ λ ( ) e e L!! λ λ λ λ λ ( ) + + L! l l l λ λ λ ( ) λ λ λ + L d d l

37 Método da máma verossmlhaça ( ) λ λ λ + L d d l X X + ˆ 0 λ λ λ (gualado a zero...) (Estmador de MV)

38 AA:,,..., Dstrbução ormal: Método da máma verossmlhaça f ( ) ( µ ) σ ep µ,, < πσ σ < < µ <, σ > 0

39 Método da máma verossmlhaça ( ) ( ) ( ) ( ) ( ) < < L f ep ep,, ep, σ µ πσ σ µ πσ σ µ σ µ πσ σ µ

40 Método da máma verossmlhaça ( ) ( ) ( ) ( ) ( ) L L l, l ep, σ µ πσ σ µ σ µ πσ σ µ

41 Método da máma verossmlhaça ( ) ( ) ( ) ( ) ( ) L L, l l, l µ σ σ µ µ σ µ πσ σ µ

42 Método da máma verossmlhaça ( ) ( ) ( ) ( ) ( ) ( ) ( ) X X L L ˆ 0 0 0, l l, l µ µ µ µ σ µ σ σ µ µ σ µ πσ σ µ mplca que (Estmador de MV)

43 Método da máma verossmlhaça ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) X L L ˆ ˆ 0, l l, l µ σ µ σ σ µ σ µ σ σ σ µ σ σ µ πσ σ µ (Estmador de MV)

44 Iferêca Estatístca Tas coclusões são bascamete obtdas por duas formas: -) Itervalos de cofaça quado o objetvo é estmar um parâmetro, ou seja, uma característca umérca da população. -) Testes de hpóteses quado há hpóteses sobre característcas umércas da população.

45 Testes de hpóteses Amostra Retro desta população uma amostra de elemetos. méda µ População Uma hpótese é uma suposção sobre um parâmetro. varâca σ

46 Qual é a temperatura ormal? Em 860, após aalzar a temperatura da regão alar de apromadamete 5 ml pessoas, Carl Wuderlch detfcou a temperatura méda de adultos saudáves como 37,0º C ou 98,6º F. Determou-se que 37,0º C ou 98,6º F sera uma temperatura ormal para um dvíduo. Wuderlch também estabeleceu que uma temperatura superor a 38,0º C ou 00,4º F sera um lmte superor de ormaldade para a temperatura corporal, sedo que um dvíduo com temperatura maor que este lmte sera classfcado como portador de febre.

47 Qual é a temperatura ormal? Determou-se que 37,0º C ou 98,6º F sera uma temperatura ormal a regão alar para um dvíduo.

48 População geral dos adultos saudáves méda µ 37,0ºC Fo estabelecdo que a população de adultos saudáves, a temperatura méda a regão alar é 37,0ºC.

49 Em 99, Mackowak, Wasserma e Leve pergutaram... Será que a temperatura méda de adultos saudáves é mesmo 37,0ºC? População geral dos adultos saudáves méda µ 37,0ºC JAMA, 68():578-80,99.

50 Será que a temperatura méda de adultos saudáves é mesmo 37,0ºC? Perguta: µ 37,0ºC??? População geral dos adultos saudáves méda µ 37,0ºC

51 Será que a temperatura méda de adultos saudáves é mesmo 37,0ºC? Hpótese do pesqusador: µ 37,0ºC População geral dos adultos saudáves

52 Será que a temperatura méda de adultos saudáves é mesmo 37,0ºC? Hpótese do pesqusador: µ 37,0ºC Um teste estatístco de hpóteses é uma regra utlzada para decdr quado rejetar uma hpótese. Esta regra é sempre baseada em uma amostra.

53 Amostra População geral dos adultos saudáves Com base os resultados de uma amostra aleatóra tamaho, tomamos a decsão de rejetar ou ão rejetar uma hpótese formulada sobre um parâmetro de teresse.

54 Hpóteses ula e alteratva Na prátca, cosderamos duas hpóteses: Hpótese alteratva (H A ) A temperatura méda de adultos saudáves é dferete de 37,0ºC. É a hpótese do pesqusador, aqulo que ele deseja verfcar. Hpótese ula (H 0 ) É o complemeto da hpótese alteratva.

55 Hpóteses ula e alteratva Na prátca, cosderamos duas hpóteses: Hpótese alteratva (H A ) A temperatura méda de adultos saudáves é dferete de 37,0ºC. H A : µ 37,0ºC Hpótese ula (H 0 ) H 0 : µ 37,0ºC

56 Amostra População geral dos adultos saudáves H 0 : µ 37,0ºC H A : µ 37,0ºC Uma defção mas completa... Com base os resultados de uma amostra aleatóra tamaho, tomamos a decsão de rejetar ou ão rejetar a hpótese ula.

57 Estaremos assm sujetos a dos tpos de erros...

58 A-) ERRO TIPO I : rejeto H 0, mas H 0 é verdadera B-) ERRO TIPO II : ão rejeto H 0, mas H 0 é falsa

59 Decsão H 0 é verdadera H 0 é falsa Rejeto H 0 erro tpo I sem erro Não rejeto H 0 sem erro erro tpo II

60 A probabldade de se cometer um erro tpo I é geralmete chamada ível de sgfcâca do teste e é deotada por α. A probabldade de se cometer um erro tpo II é deotada por β. Na Medca, a quatdade - β é geralmete chamada poder (ou potêca) do teste.

61 O ível de sgfcâca do teste (α) é fado ates da coleta dos dados. Na Medca, é muto comum far α 5%. A probabldade de se cometer um erro tpo II (β ) é geralmete usada para o cálculo do tamaho amostral. Escolhas comus: β 5%, 0% ou 0%.

62

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Estimação pontual, estimação intervalar e tamanho de amostras

Estimação pontual, estimação intervalar e tamanho de amostras Estmação potual, estmação tervalar e tamaho de amostras Iferêca: por meo das amostras, cohecer formações geras da população. Problemas de ferêca, em geral, se dvdem em estmação de parâmetros e testes de

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

Revisão/Resumo de Análise Estatística I e Introdução à Tecnologia da Amostragem I

Revisão/Resumo de Análise Estatística I e Introdução à Tecnologia da Amostragem I Dscpla: Tecologa da Amostragem I Professor: Marcelo Rubes Revsão/Resumo de Aálse Estatístca I e Itrodução à Tecologa da Amostragem I 1 - Modelos Estatístcos/Probablístcos São modelos que se aplcam quado

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL As hpóteses a serem testadas serão: H 0 : p p 0 H : p p 0 p > p 0 p < p 0 Estatístca do Teste: pˆ p0 z c p ( p ) 0 0 EXEMPLOS. Uma máqua está regulada

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional.

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional. Curso Aperfeçoameto em Avalação de Programas Socas ª Turma Dscpla: Téccas quattatvas de levatameto de dados: prcpas téccas de amostragem Docete: Claudete Ruas Brasíla, ovembro/005 Pesqusa por amostragem

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

3. TESTES DE QUALIDADE DE AJUSTAMENTO

3. TESTES DE QUALIDADE DE AJUSTAMENTO Testes da qualdade de ajustameto 3 TESTES DE QULIDDE DE JUSTMENTO 3 Itrodução formação sobre o modelo da população dode se extra uma amostra costtu, frequetemete, um problema estatístco forma da dstrbução

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO 1 VARIÁVEIS ALEATÓRIAS O que se etede por varável aleatóra? Até agora ossos estudos estavam pratcamete voltados mas para defrmos osso Espaço Amostral U, sem assocarmos suas respectvas probabldades aos

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

3 Modelos Lineares Generalizados

3 Modelos Lineares Generalizados 3 Modelos Leares Geeralzados No capítulo foram cosderados apeas modelos leares com dstrbução ormal e fução de lgação detdade. Neste capítulo apresetamos os modelos leares geeralzados (MLG, que foram propostos

Leia mais

Introdução à Estatística

Introdução à Estatística Itrodução à Estatístca Júlo Cesar de C. Balero Estatístca É a cêca que se preocupa com: () Orgazação; () Descrção; () Aálses; (v) Iterpretações. Estatístca Descrtva Estatístca Idutva ou Estatístca Ierecal

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Introdução à Estatística. Júlio Cesar de C. Balieiro 1

Introdução à Estatística. Júlio Cesar de C. Balieiro 1 Itrodução à Estatístca Júlo Cesar de C. Balero Estatístca É a cêca que se preocupa com: () Orgazação; () Descrção; () Aálses; (v) Iterpretações. Estatístca Descrtva Estatístca Idutva ou Estatístca Ierecal

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Prof. Dr. Evadro Leoardo Slva Teera Faculdade UB Gama Metrologa: Cêca que abrage os aspectos teórcos e prátcos relatvos a medção; Descreve os procedmetos e métodos para determar as certezas de medções;

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Objectivo da Estatística: fornecer informação. (conhecimento), utilizando quantidades numéricas.

Objectivo da Estatística: fornecer informação. (conhecimento), utilizando quantidades numéricas. Objectvo da Estatístca: forecer formação (cohecmeto), utlzado quatdades umércas.. Obteção dos dados Amostragem. Descrção, classfcação e apresetação dos dados Estatístca descrtva 3. Coclusão a trar dos

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Regressão e Correlação

Regressão e Correlação Regressão e Correlação Júlo Osóro Regressão & Correlação: geeraldades Em mutas stuações de pesqusa cetífca, dspomos de uma amostra aleatóra de pares de dados (x, ), resultates da medda cocomtate de duas

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento:

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento: Lsta de Exercícos #9 Ass uto: Aáls e de Re gres s ão Mé todo de Mímos Quadrados. ANPEC 99 - Questão 8 A capacdade de produção stalada (Y), em toeladas, de uma frma, pode ser fução da potêca stalada (X),

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Hipóteses do Modelo de Regressão Linear Clássico

Hipóteses do Modelo de Regressão Linear Clássico Uversdade Federal da Baha Facldade de Cêcas coômcas Departameto de cooma CO 66 Itrodção à coometra Hpóteses do Modelo de Regressão Lear Clássco Gerváso F. Satos Propredades dos estmadores de MQO As estmatvas

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I

APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I CURSO DE ESTATÍSTICA Prof. Paulo Rcardo Bttecourt Gumarães O SEMETRE

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Estatístca: uma defção Coleção de úmeros estatístcas O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%.

Leia mais

Estatística: uma definição

Estatística: uma definição Coleção de úmeros estatístcas Estatístca: uma defção O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%. As ações da Telebrás subram R$,5, hoje. Resultados do Caraval

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Teoria das Comunicações

Teoria das Comunicações Teora das Comucações.6ª Revsão de robabldade rof. dré Noll arreto rcíos de Comucação robabldade Cocetos áscos Eermeto aleatóro com dversos resultados ossíves Eemlo: rolar um dado Evetos são cojutos de

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE SCOLA SUPIO D CNOLOGIA UNIVSIDAD DO ALGAV CUSO BIÁPICO M NGNHAIA CIVIL º cclo egme Duro/Nocturo Dscpla de COMPLMNOS D MAMÁICA Ao lectvo de 7/8 - º Semestre Ídce. egressão lear múltpla.... Itrodução....

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA

CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS ICE DEPARTAMENTO DE ESTATÍSTICA CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA Autores (em ordem alfabétca)

Leia mais

NOÇÕES DE AMOSTRAGEM

NOÇÕES DE AMOSTRAGEM OÇÕES DE AMOSTRAGEM APRESETAÇÃO. Motvação 2. Algus cocetos 3. Plaejameto de pesqusa 4. Prcpas casos da amostragem ão-probablístca 5. Prcpas casos da amostragem probablístca 6. Ilustrações. MOTIVAÇÃO Mutas

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR116 Boestatístca Proessor: Celso Luz Borges de Olvera Assuto: Estatístca Descrtva Tema: Meddas de Posção e Meddas de

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo INGEPRO Iovação, Gestão e Produção Jaero de 010, vol. 0, o. 01 www.gepro.com.br Cálculo de méda a posteror através de métodos de tegração umérca e smulação mote carlo: estudo comparatvo Helto Adre Lopes

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

ÌNDICE APÊNDICE A - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

ÌNDICE APÊNDICE A - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA ÌNDICE APÊNDICE A - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA ------------------------------------------------------------------------------- 03 A.- Itrodução ----------------------------------------------------------------------------------------------------------------------------

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro Aálse Estatístca com Excel Prof. Dr. Evadro Marcos adel Rbero E-mal: esadel@usp.br Home page: www.fearp.usp.br/~sadel Módulo Itrodução. Apresetação geral dos tópcos do curso. Estatístca e Excel a empresa

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

Teoria da Amostragem

Teoria da Amostragem Teora da Amostragem I- oções fudametas sobre amostragem. Amostragem é todo o processo de recolha de uma parte, geralmete pequea, dos elemetos que costtuem um dado couto. Da aálse dessa parte pretede obter-se

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

ESTATÍSTICA 2º. SEMESTRE DE 2016

ESTATÍSTICA 2º. SEMESTRE DE 2016 ESTATÍSTICA O presete materal fo elaborado com o objetvo de facltar as atvdades em sala de aula, segudo a bblografa apresetada o fal do texto. Esclarece-se que o materal, ão substtu a bblografa apresetada,

Leia mais

Organização de dados -Dados não agrupados n. Mediana:

Organização de dados -Dados não agrupados n. Mediana: Orgazação de dado -Dado ão agruado Medaa: Poto de ocoameto: Méda: Moda: valor que ocorre com maor freqüêca Méda de Itervalo: + m max + Quartl: (ara j, ou 3) j( +) Poto de ocoameto: 4 Méda da Juta: Q +

Leia mais

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA SONIA ISOLDI MARTY GAMA

Leia mais

Ivan G. Peyré Tartaruga. 1 Metodologia espacial

Ivan G. Peyré Tartaruga. 1 Metodologia espacial RELATÓRIO DE PESQUISA 5 Procedmetos o software ArcGIS 9. para elaborar os mapas da Regão Metropoltaa de Porto Alegre RMPA com as elpses de dstrbução drecoal etre 99 e 000 Iva G. Peré Tartaruga Metodologa

Leia mais

Estatística 15 - Comparação entre Duas Populações

Estatística 15 - Comparação entre Duas Populações Etatítca 5 - Comaração etre Da Polaçõe 5- Comaração de Méda de Da Polaçõe µ Méda da olação µ Méda da olação Tete µ - µ µ - µ > µ - µ µ - µ < µ - µ µ - µ. Dado Emarelhado EemloVte cobaa bmetda drate ma

Leia mais

Arquitetura da ART Controle 1 Controle 2

Arquitetura da ART Controle 1 Controle 2 Teora de Ressoâca Adaptatva - ART Arqutetura da ART Cotrole Cotrole 2 Desevolvda por Carpeter e Grossberg como uma alteratva para resolver o dlema establdade-plastcdade (rede ão aprede ovos padrões). Realme

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

Nas próximas secções iremos abordar a análise estatística de uma amostra em que os dados numéricos estão agrupados em classes, ou seja, em intervalos.

Nas próximas secções iremos abordar a análise estatística de uma amostra em que os dados numéricos estão agrupados em classes, ou seja, em intervalos. Estatístca Descrtva ESTATÍSTICA DESCRITIVA Amostras com dados agrupados em classes as prómas secções remos abordar a aálse estatístca de uma amostra em que os dados umércos estão agrupados em classes,

Leia mais

ESTATÍSTICA II FORMULÁRIO

ESTATÍSTICA II FORMULÁRIO Uverdade do Mho Ecola de Egehara ESTATÍSTICA II Ídce Metrado Itegrado em Egehara e Getão Idutral FORMULÁRIO Ao Lectvo 007-008 Itervalo de Cofaça (uma amotra / dua amotra depedete)... Tete de Hpótee (uma

Leia mais

AMOSTRAGEM EM DOIS ESTÁGIOS COM UNIDADES PRIMÁRIAS DE TAMANHOS DIFERENTES SUBSAMPLING TO TWO PROBATION WITH PRIMARY UNITS OF UNEQUAL SIZES

AMOSTRAGEM EM DOIS ESTÁGIOS COM UNIDADES PRIMÁRIAS DE TAMANHOS DIFERENTES SUBSAMPLING TO TWO PROBATION WITH PRIMARY UNITS OF UNEQUAL SIZES Cêca Florestal, v.6,., p.47-55 47 ISS 003-9954 AMOSTRAGEM EM DOIS ESTÁGIOS COM UIDADES PRIMÁRIAS DE TAMAHOS DIFERETES SUBSAMPLIG TO TWO PROBATIO WITH PRIMARY UITS OF UEQUAL SIZES Sylvo Péllco etto RESUMO

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares novembro 0 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares quadrmestre 0 Além destes eercícos,

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais 48 Procedmetos para Ajuste e Tratameto Estatístco de Dados Expermetas. Itrodução Modelos matemátcos desevolvdos para descrever eômeos íscos a partr de observações expermetas devem ser baseados em dados

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

Notas de aula da disciplina Probabilidade e Estatística

Notas de aula da disciplina Probabilidade e Estatística otas de aula da dscpla Probabldade e Estatístca Proessor M Sc Adré Luz DAMAT - UTFPR Esta apostla apreseta os tópcos prcpas abordados em sala de aula, cotedo deções, teoremas, eemplos Sua letura ão é obrgatóra,

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

Estatística Área 4 BACEN Aula 01 Estatística Descritiva Prof. Alexandre Lima. Aula 01. Sumário

Estatística Área 4 BACEN Aula 01 Estatística Descritiva Prof. Alexandre Lima. Aula 01. Sumário Estatístca Área 4 BACEN Aula 0 Estatístca Descrtva Prof. Aleadre Lma Aula 0 Sumáro Itrodução à Estatístca... 3 Tpos de Varáves... 4 3 Rol... 5 4 Séres Estatístcas... 6 5 Téccas de Descrção Gráfca... 8

Leia mais