ANÁLISE DE REGRESSÃO E CORRELAÇÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ANÁLISE DE REGRESSÃO E CORRELAÇÃO"

Transcrição

1 ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem a aálse de dados amostras para saer se e como um certo cojuto de varáves está relacoado com outra varável Aálse de regressão: estuda o relacoameto etre uma varável chamada a varável depedete e outras varáves chamadas varáves depedetes Este relacoameto é represetado por um modelo matemátco, sto é, por uma equação que assoca a varável depedete com as varáves depedetes Este modelo é desgado por modelo de regressão lear smples se defe uma relação lear etre a varável depedete e uma varável depedete Se em vez de uma, forem corporadas váras varáves depedetes, o modelo passa a deomar-se modelo de regressão lear múltpla

2 Aálse de correlação: dedca-se a ferêcas estatístcas das meddas de assocação lear que se seguem: coefcete de correlação smples: mede a força ou grau de relacoameto lear etre varáves coefcete de correlação múltplo: mede a força ou grau de relacoameto lear etre uma varável e um cojuto de outras varáves lgadas As téccas de aálse de correlação e regressão estão tmamete

3 REGRESSÃO LINEAR SIMPLES Vamos cosderar a stuação em que duas varáves estão lgadas por um relacoameto lear A relação etre elas pode ser descrta matematcamete através do segute modelo: sedo, Y β + β X+ E X a varável eplcatva ou depedete medda sem erro (ão aleatóra); E a varável aleatóra resdual a qual se procuram clur todas as fluêcas o comportameto da varável Y que ão podem ser eplcadas learmete pelo comportameto da varável X; β e β parâmetros descohecdos do modelo (a estmar) Y a varável eplcada ou depedete (aleatóra); Eemplo: Supohamos que estamos teressados em desevolver um modelo para descrever a temperatura da água do mar A temperatura (Y) depede em parte da profuddade da água (X) Não estamos teressados em fazer ferêcas acerca da profuddade da água, mas sm, em descrever o comportameto da temperatura da água saedo à partda o valor eacto da sua profuddade 3

4 Se farmos a profuddade da água em, a temperatura va varar devdo a outras fluêcas aleatóras Assm, para cada fo estamos a ldar com uma varável aleatóra Y de méda µ Y (µ Y depede de, pos a temperatura méda da água à profuddade, deve de ser dferete da temperatura méda à profuddade j ) Num estudo de regressão temos oservações da varável X:,,, (assume-se que estas oservações são meddas sem erro) Temos etão varáves aleatóras Y, Y,, Y tas que: Y β + β + E,, Admte-se que E, E,, E são varáves aleatóras depedetes de méda zero e varâca σ Etão, para qualquer valor de X, Y é uma varável aleatóra de méda µ β + β e varâca σ Y Y Isto sgfca que para um dado podemos calcular a méda de Y, µ β + β, que depede de, e o desvo padrão σ que ão depede do valor fado σ é uma medda da dspersão dos valores de Y à volta da sua méda forma: µ Y Os dados para a aálse de regressão e correlação smples são da 4

5 (, ), (, ),, (, ) ode é o valor da varável X e a correspodete oservação da varável aleatóra Y (,,) Cada oservação oedece à segute relação: β + β µ Y + ε,, Realzação da va E De facto, o valor oservado de uma varável aleatóra ( ), usualmete dfere da sua méda ( µ ) por uma quatdade aleatóra ε Y Com os dados costro-se o DIAGRAMA DE DISPERSÃO, este deve er uma tedêca lear para que se possa usar a regressão lear Portato este dagrama permte decdr emprcamete se um relacoameto lear etre X e Y deve ser assumdo Por aálse do Dagrama de Dspersão pode-se tamém coclur (emprcamete) se o grau de relacoameto lear etre as varáves é forte ou fraco, coforme o modo como se stuam os potos em redor de uma recta magára que passa através do eame de potos A correlação é tato maor quato mas os potos se cocetram, com pequeos desvos, em relação a essa recta A partr dos dados dspoíves estmamos β e β e susttuímos estes parâmetros teórcos pelas suas estmatvas e para oter a equação de regressão estmada: 5

6 ŷ µ ˆ Y / + Esta equação estma o valor médo de Y para um dado valor de X, mas é usada para estmar o própro valor de Y De facto, o seso comum dz-os que uma escolha razoável para predzer o valor de Y para um dado de X, é o valor médo estmado ˆµ Por eemplo, se Y / quséssemos predzer a temperatura da água do mar a uma profuddade de metros uma escolha lógca é a temperatura méda a esta profuddade: ŷ µ ˆ / + Y Estmação pelo método dos mímos quadrados Cada par (, ) satsfaz a ode + + d d ŷ ( + ) é o -ésmo resíduo, sto é, a dstâca vertcal do poto (, ) à recta de regressão estmada Este método cosste em escolher e de modo a mmzar a soma dos quadrados dos resíduos d Desta forma estamos 6

7 7 essecalmete a escolher a recta que se aproma o mas possível de todos os potos dos dados smultaeamete Soma dos quadrados dos resíduos ) ( d SSE Para determar e de modo a mmzar SSE: ) ( ) ( SSE SSE méda dos valores oservados de X méda dos valores oservados de Y

8 REGRESSÃO LINEAR MÚLTIPLA O modelo de regressão lear múltpla postula a estêca de uma relação lear etre uma varável depedete ou eplcada Y e varáves depedetes ou eplcatvas X,,X a qual pode ser traduzda pela segute epressão: Y β + βx + + βx + E sedo, X,,X as varáves eplcatvas ou depedetes meddas sem erro (ão aleatóras); E a varável aleatóra resdual a qual se procuram clur todas as fluêcas o comportameto da varável Y que ão podem ser eplcadas learmete pelo comportameto das varáves X,,X e os possíves erros de medção; β,β,, β os parâmetros descohecdos do modelo (a estmar) Y a varável eplcada ou depedete (aleatóra); Eemplo: 8

9 Cosderemos as segutes varáves: Y Volume de vedas efectuadas durate um dado período de tempo por um vededor; X Aos de eperêca como vededor; X Score o teste de telgêca Se farmos o valor para os aos de eperêca X (por eemplo 4 aos) e outro valor para o score o teste de telgêca X (por eemplo 3), o volume de vedas va varar devdo a outras fluêcas aleatóras Isto é, vededores com 4 aos de eperêca e score 3 o teste de telgêca, podem apresetar volumes de vedas dferetes Assm, para e fos Y é uma varável aleatóra de méda µ Y Temos valores de cada varável depedete: X X X 9

10 Temos etão varáves aleatóras, Em otação matrcal, Y + β + β + + β E Y + β + β + + β E Y β + β + + β + E Y Y Y Y β E β E + β E E X β Y vector das respostas aleatóras X Matrz sgfcatva do modelo β Vector dos parâmetros do modelo E Vector dos erros aleatóros Outra forma de escrever o modelo é etão, YXβ+E

11 Admte-se que E, E,, E são varáves aleatóras depedetes de méda zero e varâca σ Etão, para quasquer valores,,, fos, Y é uma varável aleatóra de méda σ µ β + β + + β e varâca Y Isto sgfca que para um cojuto de valores fos,,, de X,,X, podemos calcular a méda de Y, µ β + β + + β, que depede de,,, O desvo Y padrão σ é uma medda da dspersão dos valores de Y à volta da sua méda µ Y e é sempre o mesmo quasquer que sejam os valores das varáves depedetes que femos forma: Os dados para a aálse de regressão e correlação múltpla são da (,,,, ), (,,,, ),, (,,,, ) Cada oservação oedece à segute relação: β + β + β µ Y + + β + ε,, Realzação da va E

12 Temos etão o segute sstema de equações, β β β + β + β + β + + β + + β + + β + ε + ε + ε Em otação matrcal o sstema pode ser represetado por, β ε β ε + β ε ε X β vector das oservações da varável depedete X Matrz sgfcatva do modelo β Vector dos parâmetros do modelo ε Vector das realzações da varável aleatóra resdual Isto é, Xβ+ε

13 A partr dos dados dspoíves (oservados) estmamos β,β,, β e susttuímos estes parâmetros teórcos pelas suas estmatvas,,, para oter a equação de regressão estmada: ŷ µ ˆ Y /,,, Esta equação estma o valor médo de Y para um cojuto de valores,,, fo, mas é usada para estmar o própro valor de Y Por eemplo, se quséssemos predzer o volume de vedas de um vededor com 4 aos de eperêca e score 3 o teste de telgêca, uma escolha lógca sera o volume médo de vedas dos vededores com estas característcas: µ ˆ ŷ Y / 4, Estmação pelo método dos mímos quadrados Assocado a cada oservação (,,,, ) está um resíduo, d ŷ ( ) Este método cosste em escolher,,, de modo a mmzar a soma dos quadrados dos resíduos d Soma dos quadrados dos resíduos ( ) SSE d 3

14 4 Para determar,,, de modo a mmzar SSE resolve-se o sstema de equações: SSE SSE SSE Otém-se o vector ( ) X X X t t estmatva para β β β β O estmador é ovamete, ( ) Y X X X ˆ ˆ ˆ ˆ t t β β β β Para (o caso da regressão smples) teríamos, ( ) X X X t t ode X tem apeas coluas (pos ), mas como vmos e podem tamém ser determados por, e Cada coefcete de regressão estmado,,, (estmatva de β ), estma o efeto sore o valor médo da varável depedete Y de uma alteração utára da varável depedete X, matedo-se costates todas as restates varáves depedetes

15 COEFICIENTE DE CORRELAÇÃO E DE DETERMINAÇÃO Seja a méda dos valores oservados para a varável depedete Para uma qualquer oservação tem-se: ( ) ( ŷ ) + (ŷ ) Pode-se mostrar que elevado ao quadrado amos os memros e somado para todas as oservações resulta que: ( ) ( ŷ ) + (ŷ ) SST SSE + SSR SST Soma dos quadrados totas SSE Soma dos quadrados dos resíduos SSR Soma dos quadrados da regressão Isto é: Varação total Varação que o Varação de Y à volta da sua méda ajustameto ão cosegue eplcar + eplcada pelo ajustameto Coefcete de determação r : 5

16 r SSR SST SST SSE SST SSE SST r é a proporção de varação da varável depedete Y que é eplcada pelo modelo, sto é pela equação de regressão ajustada, ou equvaletemete, é a proporção da varação de Y eplcada em termos leares pelas varáves depedetes Note que: r ; r (prómo de ) sgfca que grade parte da varação de Y é eplcada learmete pelas varáves depedetes r (prómo de ) sgfca que grade parte da varação de Y ão é eplcada learmete pelas varáves depedetes Neste setdo este coefcete pode ser utlzado como uma medda da qualdade do ajustameto, ou como medda da cofaça depostada a equação de regressão como strumeto de prevsão: r modelo lear muto pouco adequado r modelo lear astate adequado À raz quadrada de r dá-se o ome de: 6

17 coefcete de correlação smples (se está evolvda apeas uma varável depedete) coefcete de correlação múltplo (se estão evolvdas pelo meos varáves depedetes) Coefcete de Correlação Smples r ± r Y È uma medda do grau de assocação lear etre as varáves X e - r ; r> (postvo) dca que as duas varáves tedem a varar o mesmo setdo, sto é, em méda um aumeto a varável X provocará um aumeto a varável Y; r< (egatvo) dca que as duas varáves tedem a varar em setdo verso, sto é, em méda um aumeto a varável X provocará uma dmução a varável Y; r e r- dcam a estêca de uma relação lear perfeta etre X e Y, postva e egatva respectvamete; 7

18 r dca a estêca de qualquer relação ou tedêca lear etre X e Y podedo o etato estr uma relação ão lear etre elas Isto é, é possível que as duas varáves estejam fortemete assocadas (movmetos uma varável estão assocados a movmetos a outra) sem que o relacoameto seja lear r pode ser calculado a partr da segute fórmula: r ± r ± + com o sal do declve Coefcete de Correlação Múltplo È uma medda do grau de assocação lear etre Y e o cojuto de varáves X, X,,X r ; r dca a estêca de uma assocação lear perfeta, sto é, Y pode ser epresso eactamete como comação lear de X, X,,X ; r dca a estêca de uma relação lear etre a varável depedete Y e o cojuto de varáves depedetes X, X,,X 8

19 PROPRIEDADES DOS ESTIMADORES DOS MÍNIMOS QUADRADOS E TESTES DE HIPÓTESES O método dos mímos quadrados forece estmatvas potuas,,, para β, β,, β Os estmadores que forecem estas estmatvas são: β ˆ βˆ ˆ β β ˆ t t ( X X) X Y Se os erros E além de serem depedetes com valor esperado ulo e varâca costate - σ, segurem uma dstrução ormal, etão pode-se mostrar que os estmadoresβ ˆ, βˆ,, βˆ são tas que: β ˆ,,; E( ) β ˆ c Var( β ) σ ode c é o elemeto dagoal da lha + da matrz ( X t X) Na regressão smples estas varâcas podem ser dadas por: Var ( βˆ ) σ e Var( βˆ ) Cada ˆβ tem dstrução ormal: ˆβ ~ N(β, σ σ c) ; 9

20 Como, em geral, σ é descohecdo estmamos ( ˆ ) Var β por ˆ S β que se otém susttudo as formulas aterores σ pelo seu estmador, Etão, S SSE Sβˆ S c SSE c

21 Testes sore os coefcetes de regressão Ocasoalmete, poderá ser de suspetar que uma varável eplcatva partcular ão é muto útl, sto é, que a sua fluêca sore a varável depedete ão é sgfcatva Para saer se é este o caso testamos a hpótese ula de que o coefcete para esta varável é ulo: H H : β : β Saemos que ˆβ ~ N(β, σ c ), etão βˆ σ β c ~ N(,) Como σ é descohecdo, susttuímos σ pelo seu estmador vdo, βˆ β S βˆ SSE S βˆ S β c ~ t A estatístca do teste, se H é verdadera, é: βˆ S βˆ βˆ S c ~ t

22 Se H for rejetada etão temos evdêca de que β, sto é a varável eplcatva X é útl a predção do valor da varável depedete Se H ão for rejetada etão a varável eplcatva X é geralmete retrada da equação de regressão pos ão fluêca sgfcatvamete a varável resposta Y Mas geralmete, podemos testar a hpótese ula de que o coefcete seja gual a um determado valor β : H H : β : β β β A estatístca do teste, se H é verdadera, é: βˆ β S βˆ βˆ S β c ~ t Poderam tamém ser coduzdos testes ulateras em vez de testes lateras: H H : β : β β > β H H : β : β β < β

23 Teste F para testar a sgfcâca da regressão Este teste serve para saer se a regressão é ou ão sgfcatva A hpótese ula é: H : a equação de regressão ão eplca a varação a varável resposta ou equvaletemete, H : ão este relação lear etre a varável depedete e o cojuto de varáves depedetes utlzadas Matematcamete: H H : β β β : pelo meos um β Pode-se mostrar que se H for verdadera, a estatístca do teste SSR SSR F ~ F SSE ( ) S Note que, SSR SSR SSR F SSE ( ) SSE SSE SST SST R R 3

24 Rejetamos H para valores grades da estatístca do teste F À parte da costate a estatístca F é a razão etre a varação eplcada e a ão eplcada em Y É atural que dgamos que a regressão é sgfcatva só quado a proporção da varação eplcada é grade Isto ocorre só quado a razão F é grade Por esta razão devemos sempre rejetar H para valores de F muto grades Se H ão for rejetada etão é o mesmo que dzer que o cojuto de varáves eplcatvas cotruem pouco para a eplcação da varação da varável depedete Na regressão smples para testar a sgfcâca da regressão cosderamos as hpóteses, H H : β : β e portato a estatístca teste a usar pode ser, βˆ ~ t Sˆ So H β 4

25 Os resultados descrtos podem ser coveetemete resumdos a taela da ANOVA segute: Fote de Soma dos Graus de Quadrados Razão F varação Quadrados Lerdade Médos Devdo à Regressão SSR ( ) SSR Devdo aos resíduos SSE ( ) -- SSE S F SSR S Total SST ( ) - 5

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Análise de Regressão e Correlação

Análise de Regressão e Correlação Aálse e Regressão e Correlação Fo já estuao a forma e escrever um cojuto e oservações e uma só varável. Quao se coseram oservações e uas ou mas varáves surge um ovo poto. O estuo as relações porvetura

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Regressão e Correlação

Regressão e Correlação Regressão e Correlação Júlo Osóro Regressão & Correlação: geeraldades Em mutas stuações de pesqusa cetífca, dspomos de uma amostra aleatóra de pares de dados (x, ), resultates da medda cocomtate de duas

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE SCOLA SUPIO D CNOLOGIA UNIVSIDAD DO ALGAV CUSO BIÁPICO M NGNHAIA CIVIL º cclo egme Duro/Nocturo Dscpla de COMPLMNOS D MAMÁICA Ao lectvo de 7/8 - º Semestre Ídce. egressão lear múltpla.... Itrodução....

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios

Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios Objetvos desta apresetação Plaejameto de produção: de Demada Aula parte Mauro Osak TES/ESALQ-USP Pesqusador do Cetro de Estudos Avaçados em Ecooma Aplcada Cepea/ESALQ/USP de demada quattatva Regressão

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP edso@fmrp.usp.br Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

3 - ANÁLISE BIDIMENSIONAL

3 - ANÁLISE BIDIMENSIONAL INE 7001 - Aálse Bdmesoal 1 3 - ANÁLISE BIDIMENSIONAL É comum haver teresse em saber se duas varáves quasquer estão relacoadas, e o quato estão relacoadas, seja a vda prátca, seja em trabalhos de pesqusa,

Leia mais

Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar

Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar Dscpla: 04 Relações etre varáves: Regressão Prof. a Dr. a Smoe Daela Sartoro de Mederos DTASeR-Ar Itrodução Cosdere uma varável aleatóra Y de teresse. Já vmos que podemos escrever essa varável como sedo:

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Prof. Dr. Evadro Leoardo Slva Teera Faculdade UB Gama Metrologa: Cêca que abrage os aspectos teórcos e prátcos relatvos a medção; Descreve os procedmetos e métodos para determar as certezas de medções;

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

Regressão Linear - Introdução

Regressão Linear - Introdução Regressão Lear - Itrodução Na aálse de regressão lear pretede-se estudar e modelar a relação (lear) etre duas ou mas varáves. Na regressão lear smples relacoam-se duas varáves, x e Y, através do modelo

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Hipóteses do Modelo de Regressão Linear Clássico

Hipóteses do Modelo de Regressão Linear Clássico Uversdade Federal da Baha Facldade de Cêcas coômcas Departameto de cooma CO 66 Itrodção à coometra Hpóteses do Modelo de Regressão Lear Clássco Gerváso F. Satos Propredades dos estmadores de MQO As estmatvas

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento:

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento: Lsta de Exercícos #9 Ass uto: Aáls e de Re gres s ão Mé todo de Mímos Quadrados. ANPEC 99 - Questão 8 A capacdade de produção stalada (Y), em toeladas, de uma frma, pode ser fução da potêca stalada (X),

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

Estimação pontual, estimação intervalar e tamanho de amostras

Estimação pontual, estimação intervalar e tamanho de amostras Estmação potual, estmação tervalar e tamaho de amostras Iferêca: por meo das amostras, cohecer formações geras da população. Problemas de ferêca, em geral, se dvdem em estmação de parâmetros e testes de

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

AVALIAÇÃO DE GANHOS E PERDAS EM FUNDOS DE INVESTIMENTOS UTILIZANDO REGRESSÃO LINEAR. José Antonio Stark Ferreira

AVALIAÇÃO DE GANHOS E PERDAS EM FUNDOS DE INVESTIMENTOS UTILIZANDO REGRESSÃO LINEAR. José Antonio Stark Ferreira 1 AVALIAÇÃO DE GANHOS E PERDAS EM FUNDOS DE INVESTIMENTOS UTILIZANDO REGRESSÃO LINEAR José Atoo Stark Ferrera I - INTRODUÇÃO O presete estudo fo desevolvdo objetvado mesurar os gahos e perdas patrmoas

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

ÌNDICE APÊNDICE A - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

ÌNDICE APÊNDICE A - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA ÌNDICE APÊNDICE A - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA ------------------------------------------------------------------------------- 03 A.- Itrodução ----------------------------------------------------------------------------------------------------------------------------

Leia mais

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL As hpóteses a serem testadas serão: H 0 : p p 0 H : p p 0 p > p 0 p < p 0 Estatístca do Teste: pˆ p0 z c p ( p ) 0 0 EXEMPLOS. Uma máqua está regulada

Leia mais

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA)

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA) I Metodologa da Ecoometra O MODELO CLÁSSICO DE REGRESSÃO LINEAR. Formulação da teora ou da hpótese.. Especfcação do modelo matemátco da teora. 3. Especfcação do modelo ecoométrco da teora. 4. Obteção de

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

3 Modelos Lineares Generalizados

3 Modelos Lineares Generalizados 3 Modelos Leares Geeralzados No capítulo foram cosderados apeas modelos leares com dstrbução ormal e fução de lgação detdade. Neste capítulo apresetamos os modelos leares geeralzados (MLG, que foram propostos

Leia mais

Medidas Numéricas Descritivas:

Medidas Numéricas Descritivas: Meddas Numércas Descrtvas: Meddas de dspersão Meddas de Varação Varação Ampltude Ampltude Iterquartl Varâca Desvo absoluto Coefcete de Varação Desvo Padrão Ampltude Medda de varação mas smples Dfereça

Leia mais

Análise de regressão linear simples. Diagrama de dispersão

Análise de regressão linear simples. Diagrama de dispersão Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

3. TESTES DE QUALIDADE DE AJUSTAMENTO

3. TESTES DE QUALIDADE DE AJUSTAMENTO Testes da qualdade de ajustameto 3 TESTES DE QULIDDE DE JUSTMENTO 3 Itrodução formação sobre o modelo da população dode se extra uma amostra costtu, frequetemete, um problema estatístco forma da dstrbução

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Apêndice 1-Tratamento de dados

Apêndice 1-Tratamento de dados Apêdce 1-Tratameto de dados A faldade deste apêdce é formar algus procedmetos que serão adotados ao logo do curso o que dz respeto ao tratameto de dados epermetas. erão abordados suctamete a propagação

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Análise de Regressão Linear Múltipla IV

Análise de Regressão Linear Múltipla IV Análse de Regressão Lnear Múltpla IV Aula 7 Guarat e Porter, 11 Capítulos 7 e 8 He et al., 4 Capítulo 3 Exemplo Tomando por base o modelo salaro 1educ anosemp exp prev log 3 a senhorta Jole, gerente do

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resolvedo os problemas

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

de uma variável em função da outra, por exemplo: Quantas vendas da Marca Philips na região Norte? Quantos homens são fumantes?

de uma variável em função da outra, por exemplo: Quantas vendas da Marca Philips na região Norte? Quantos homens são fumantes? Estatístca descrtva bdmesoal (Tabelas, Gráfcos e Estatístcas) Aálse bvarada (ou bdmesoal): avala o comportameto de uma varável em fução da outra, por exemplo: Quatas vedas da Marca Phlps a regão Norte?

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR116 Boestatístca Proessor: Celso Luz Borges de Olvera Assuto: Estatístca Descrtva Tema: Meddas de Posção e Meddas de

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

Reconhecimento de Padrões. Reconhecimento de Padrões

Reconhecimento de Padrões. Reconhecimento de Padrões Recohecmeto de Padrões 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Escola Superor de Tecologa Egehara Iformátca Recohecmeto de Padrões Prof. João Asceso e Prof. Aa Fred Sumáro:

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

Revisão/Resumo de Análise Estatística I e Introdução à Tecnologia da Amostragem I

Revisão/Resumo de Análise Estatística I e Introdução à Tecnologia da Amostragem I Dscpla: Tecologa da Amostragem I Professor: Marcelo Rubes Revsão/Resumo de Aálse Estatístca I e Itrodução à Tecologa da Amostragem I 1 - Modelos Estatístcos/Probablístcos São modelos que se aplcam quado

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais 48 Procedmetos para Ajuste e Tratameto Estatístco de Dados Expermetas. Itrodução Modelos matemátcos desevolvdos para descrever eômeos íscos a partr de observações expermetas devem ser baseados em dados

Leia mais

3 Fundamentação Teórica

3 Fundamentação Teórica 3 Fudametação Teórca A segur são apresetados os fudametos teórcos os quas é embasado o desevolvmeto do trabalho. 3.. Espectros de Resposta De acordo com Sampao [3], é descrta a resposta máxma de um osclador

Leia mais