Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios"

Transcrição

1 Objetvos desta apresetação Plaejameto de produção: de Demada Aula parte Mauro Osak TES/ESALQ-USP Pesqusador do Cetro de Estudos Avaçados em Ecooma Aplcada Cepea/ESALQ/USP de demada quattatva Regressão lear Regressão múltplas Eemplos Eercícos Foe: - Fa: - E-mal: Referecal teórco Modelo geral da admstração da produção CHASE, R.B; JACOBS, F.R.; AQUALIANO, N.J. Admstração da produção para a vatagem compettva. 0 ed. Porto Alegre: Bookma, 00 CAP.. SLACK, N., CHAMBERS, S., HARLAND, C., JOHNSTON, R., Admstração da produção. ed. São Paulo: Atlas, 00 Iput Recursos a serem trasformados Matéras Iformações Cosumdores Iput Istalações Pessoas Ambete Projeto Estratéga de Produção Admstração da produção Plaejameto e Cotrole Objetvos estratégcos da produção Estratéga da produção Melhora Papel e posção compettva da produção Output Bes e Servços Iput Recursos de trasformação Ambete Fote: Slack et. al (00) Uso de Regressão: Aálse de Regressão Lear Regressão Lear Smples As varáves depedetes guardam uma relação lear com uma varável depedete. Regressão Lear Múltpla A varável depedete guarda uma relação lear com mas de uma varável depedete. Trata-se de relacoameto fucoal etre duas ou mas varáves correlacoadas; Utlzada para prever uma varável dada outra varável; O relacoameto fucoal é geralmete desevolvdo a partr de dados observados; A regressão é útl para realzar prevsão de grade ocorrêcas e plaejameto agregado da produção;

2 Regressão lear (RL) Método dos Mímos Quadrados =a + bx =a + bx Δ O método teta ajustar a lha aos dados que mmzam a soma dos quadrados da dstâca vertcal etre cada poto. Ode: a = varável depedete X = varável depedete a = Itercepto ( valor de quado X = 0) b = Coefcete agular ΔX a b X Lmtação Os dados passados e as projeções futuras supostamete devem ecaa uma lha reta. X * Ode: a = Itercepto ( valor de quado X = 0) b = Coefcete agular Ӯ = Méda de todos os s = Méda de todos os s = Valor de a cada poto de dados = Valor de a cada poto de dados = úmero de potos = Valor da varável depedete calculada com a equação da regressão. Eemplos: Regressão Lear smples As vedas de uma empresa para uma lha de produto durate os trmestres dos últmos três aos são os segutes: () () A empresa quer prever cada trmestre do quarto ao, sto é trmestres,, e. a b =a + bx * a b * *00 = o Passo: Cálculo do e Méda =a + bx 0 o Passo: Cálculo do e da méda de e. cálculo * * =.0 *0 = *00 = Méda 0..., ,, * =.00 * = * =.00 0 * = 0*0 = *00 = ,

3 Cálculo do tercepto, clação e o Passo: Cálculo do a, b e (prevsão). 0, Méda , Iclação * 00 ( *, *,), 0 * (, ) Itercepto a b a,,*,, Cálculo do tercepto, clação e 0 Cálculo para a prevsão de veda para os trmestres,, e. =a + b o Passo: (prevsão) ,+, (),+, (),+, () = = = 0,.0,.0,.0,.,.,.,0.,.,.0,.,., Méda 0, , ,.0,.0,.0,.,.,.,0.,.,.0,.,.,.,.,.,.,.000 Udades veddos real

4 SUMMAR OUTPUT Regresso Statstcs Multple R 0,0 R Square 0, Adjusted R 0,0 Stadard E, Observato ANOVA df SS MS F gfcace F,,E-0 Regresso Resdual 0 0 0, Total Coeffcetsadard Erro t Stat P-value Lower %Upper %ower,0%upper,0% Itercept,,, 0,0 -, 0, -, 0, X Varable, 0,,,E-0,,,, RESIDUAL OUTPUT ObservatoPredcted Resduals 0, -0, 0,,0 0, -0, 0, -0,, 0,, 00,, -,, -,,0, 0 0,,, -,,0, 0 Decomposção de uma sére temporal com tedêca e sazoaldade Sere temporal Trata-se de dados ordeados croologcamete que possam coter um ou mas compoetes de demada. Tedêca Vsualzação gráfca e observação da dreção da sére. A decomposção de uma sére temporal sgfca detfcar e separa os dados Sazoaldade Cíclca Autocorrelação Aleatóro Vsualzação gráfca e comparado o mesmo período a sére. Requer sére de dados logos. Requer uma sofstcação a modelagem e cohecmeto ecoométrco. Qualquer cosa que teha sobrado e ão detfcado o modelo. Fácl Médo Dfícl Varação SAZONAL ou Ídce SAZONAL Quado a sére cotém efetos sazoas e de tedêca ao mesmo tempo, tem-se que eteder como se relacoam etre s. Eama-se dos tpos de varação sazoal: sazoal é a quatdade de correção ecessára uma sére temporal para se ajustar à estação do ao. Varação sazoal Adtva Multplcatva Presume que a quatdade sazoal é uma CONSTANTE, ão mportado qual seja a quatdade da tedêca ou da méda. = Tedêca + Sazoal A tedêca é multplcada pelos fatores sazoas. Ela reflete a eperêca real, etão quato maor for a sére básca projetada, maor será a varação ao redor desta. = Tedêca Sazoal fs Fs : fator de sazoal o período t : quatdade méda de produto o período : quatdade de produto o período para o total de ao : total de ao

5 Demada com elmação do fator SAZONAL Demada com correção ecessára a sére temporal * t t fs * t : quatdade de produto sem sazoaldade o período o tempo t t : quatdade (observada) de produto o período o tempo t fs t : de sazoal do período Eemplos: Regressão Lear smples As vedas de uma empresa para uma lha de produto durate os trmestres dos últmos três aos são os segutes: A empresa quer prever cada trmestre do quarto ao, sto é trmestres,, e. Passos: Méda dos c/ mesmos elmação de sazoalda ) Determar o fator sazoal sazoal sazoalda trmestres sazoaldade de de () ) Elmar a sazoaldade dos dados orgas;.0 t ) Desevolver regressão por para os fs t dados com elmação de sazoaldade; ) Projetar a demada para cada trmestre do ao ; ) Crar prevsão para cada trmestre do ao.00 pelo fator sazoal; Fs t : de sazoal o período t t : quatdade de produto o período t : quatdade de produto o período : total de período Demada com Demada sem Passo. Sazoal Passo. Sazoal Calcula-se a méda para os mesmos trmestres o período de aos =, Méda dos mesmos trmestres sazoal 0,.,,/(0/)= 0,.0.0,.00,0 00,0/(0/)=,0.0,.00,0 00,0/(0/)= 0,.0,.00,0 00,0/(0/)=,.00., 0,.00.,,0..,0 0,.00.,,.00., 0, ,,0 t.000., fst 0,.00.,,.,.,.,.,.0 0,00 Méda,, 0

6 Passo : Elmar a sazoaldade dos dados orgas Passo : Regressão lear mímos quadrados * t t fs t Méda dos mesmos trmestres sazoal Demada com elmação de sazoaldade () 0,., 0,,,.0.0,.00,0,0.,.,.0,.00,0 0,.,0.,0.0,.00,0,.,.,.00., 0,.,.,0.00.,,0.,.,..,0 0,.,.,.00.,,., 0.,.00., 0,.,., ,,0.00,.00,0.000., 0,.,.0,.00.,,.,.,.,.,.,.,.0 0,00 0 0, Méda,,, Para elmar o efeto sazoal sobre os dados, dvdem-se os dados orgas pelo fator sazoal. Cálculo do tercepto, clação e Iclação b Itercepto * 0, (*,*,) b 0 *(, ) a b a,,*,,0, SUMMAR OUTPUT Regresso Statstcs Multple R 0, R Square 0, Adjusted R 0,0 Stadard E, Observato ANOVA df SS MS F gfcace F,,E-0 Regresso Resdual 0, Total Coeffcetsadard Err t Stat P-value Lower %Upper %ower,0%upper,0% Itercept,00,0, 0,0 -,0, -,0, X Varable,,,,E-0,0,,0, RESIDUAL OUTPUT ObservatoPredcted Resduals, -,,,0, -,, -,,,00 0,0, 0, -,0, -,, 0, 0,,0, -0,, -, Passo ) Projetar a demada para cada trmestre do ao Passo ) prevsão para cada trmestre do ao pelo fator sazoal Méda dos mesmos trmestres sazoal Demada com elmação de sazoaldade () Demada sem sazoaldade 0,., 0,,,.0.0,.00,0,0.,.,.0,.00,0 0,.,0.,0.0,.00,0,.,.,.00., 0,.,.,0.00.,,0.,.,..,0 0,.,.,.00.,,., 0.,.00., 0,.,., ,,0.00,.00,0.000., 0,.,.0,.00.,,.,.,.,.00,.,.,.,.,.,.0,.0 0,00 0 0, Méda,,, = +, ()=00, Demada com Méda dos mesmos Demada sem c/ elmação de trmestres sazoal sazoaldade sazoaldade sazoaldade () 0,., 0,,,.0.0,.00,0,0.,.,.0,.00,0 0,.,0.,0.0,.00,0,.,.,.00., 0,.,.,0.00.,,0.,.,..,0 0,.,.,.00.,,., 0.,.00., 0,.,., ,,0.00,.00,0.000., 0,.,.0,.00.,,.,.,.,.00,.00,.,.,.,.,.,..,.0,.,0.0 0,00 0 0, Méda,,, = 00, 0, = 00,

7 Regressão Lear Múltpla: a b X b X b X b X Ode: = quatdade de pzza demada a = tercepto. X = preço médo do pedaço de pzza. X = preço médo da educação. X = preço médo do refrgerate. X = localzação do campus. Eercíco Eercícos Supoha uma empresa teha veddo uma méda de000 toeladas de bacalhau a cada ao durate 0 aos. Na méda, foram veddas 00 toeladas a prmavera, 0 o verão, 00 o outoo e 0 o vero. a) Calcule o fator sazoal b) A empresa espera aumetar a veda em 0% o prómo ao, qual a quatdade de produto para cada estação Quatdade méda de veda de bacalhau para cada estação durate 0 aos Estação Prmavera 00 Verão 0 Outoo 00 Ivero Eercíco Tedêca e Sazoaldade va A empresa possu o segute quadro de veda trmestral para dos aos: Trmestre Quatdade a) Ecotre a equação lear pelo ; b) Calcule o fator sazoal médo para cada trmestre; c) Calcule a prevsão de veda para cada trmestre do ao cludo a tedêca e fator sazoal.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Regressão e Correlação

Regressão e Correlação Regressão e Correlação Júlo Osóro Regressão & Correlação: geeraldades Em mutas stuações de pesqusa cetífca, dspomos de uma amostra aleatóra de pares de dados (x, ), resultates da medda cocomtate de duas

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos FEA -USP Graduação Cêcas Cotábes EAC05 04_0 Profa. Joaíla Ca. Rsco e Retoro. Cocetos Báscos Rotero BE-cap.6 Tema 0 Rsco e Retoro. Cocetos Báscos I. O que é Retoro? II. Qual é o Rsco de um Atvo Idvdual

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Estatístca: uma defção Coleção de úmeros estatístcas O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%.

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

Análise de Regressão e Correlação

Análise de Regressão e Correlação Aálse e Regressão e Correlação Fo já estuao a forma e escrever um cojuto e oservações e uma só varável. Quao se coseram oservações e uas ou mas varáves surge um ovo poto. O estuo as relações porvetura

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida...

Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida... Curso: Pós-graduação / MBA Campus Vrtual Cruzero do Sul - 2009 Professor Resposável: Carlos Herque de Jesus Costa Professores Coteudstas: Carlos Herque e Douglas Madaj UNIVERSIDADE CRUZEIRO DO SUL Cohecedo

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Estatística: uma definição

Estatística: uma definição Coleção de úmeros estatístcas Estatístca: uma defção O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%. As ações da Telebrás subram R$,5, hoje. Resultados do Caraval

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

Hipóteses do Modelo de Regressão Linear Clássico

Hipóteses do Modelo de Regressão Linear Clássico Uversdade Federal da Baha Facldade de Cêcas coômcas Departameto de cooma CO 66 Itrodção à coometra Hpóteses do Modelo de Regressão Lear Clássco Gerváso F. Satos Propredades dos estmadores de MQO As estmatvas

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa MEDIDAS DE DISPERSÃO 9 9. MEDIDAS DE DISPERSÃO

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

MODELOS DE REGRESSÃO NÃO LINEARES

MODELOS DE REGRESSÃO NÃO LINEARES M. Mede de Olvera Excerto da ota peoa obre: MODELOS DE REGRESSÃO NÃO LINEARES Obervação No modelo de regreão dto leare, a varável depedete é exprea como fução lear do coefcete de regreão. É rrelevate,

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção Prof. Lorí Val, Dr. val@pucr.br http://www.pucr.br/~val/ Grade Cojuto de Dado Orgazação; Reumo; Apreetação. Amotra ou População Defeto em uma lha de produção Lacado Deeho Torto Deeho Torto Lacado Torto

Leia mais

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Prof. Dr. Evadro Leoardo Slva Teera Faculdade UB Gama Metrologa: Cêca que abrage os aspectos teórcos e prátcos relatvos a medção; Descreve os procedmetos e métodos para determar as certezas de medções;

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro Aálse Estatístca com Excel Prof. Dr. Evadro Marcos adel Rbero E-mal: esadel@usp.br Home page: www.fearp.usp.br/~sadel Módulo Itrodução. Apresetação geral dos tópcos do curso. Estatístca e Excel a empresa

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

Caracterização de Partículas. Prof. Gerônimo

Caracterização de Partículas. Prof. Gerônimo Caracterzação de Partículas Prof. Gerômo Aálse Graulométrca de partículas Tabela: Sére Padrão Tyler Mesh Abertura Lvre (cm) âmetro do fo () 2 ½ 0,7925 0,088 0,6680 0,070 ½ 0,56 0,065 4 0,4699 0,065

Leia mais

Apêndice. Uso de Tabelas Financeiras

Apêndice. Uso de Tabelas Financeiras Apêdce C Uso de Tabelas Faceras 1. INTRODUÇÃO...2 2. SIMBOLOGIA ADOTADA E DIAGRAMA PADRÃO...2 3. RELAÇÃO ENTRE PV E FV...2 3.1. DADO PV ACHAR FV: FATOR (FV/PV)...3 3.1.1. EXEMPLOS NUMÉRICOS...5 3.2. DADO

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais 48 Procedmetos para Ajuste e Tratameto Estatístco de Dados Expermetas. Itrodução Modelos matemátcos desevolvdos para descrever eômeos íscos a partr de observações expermetas devem ser baseados em dados

Leia mais

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4).

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4). Cetro de Polítcas Socas - Marcelo Ner ÍNDICE DE HEIL Referêca Obrgatóra: Hoffma cap 4 pags 99 a 6 e cap 3 pgs 42-44 (seção 3.4).. Coteúdo Iformatvo de uma mesagem Baseado a teora da formação, que aalsa

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento:

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento: Lsta de Exercícos #9 Ass uto: Aáls e de Re gres s ão Mé todo de Mímos Quadrados. ANPEC 99 - Questão 8 A capacdade de produção stalada (Y), em toeladas, de uma frma, pode ser fução da potêca stalada (X),

Leia mais

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A.

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A. MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS M. Z. Nascmeto, A. F. Frère e L. A. Neves INTRODUÇÃO O cotraste as radografas vara ao logo do campo de

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES Cemátca da Posção de Robôs Mapuladores Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES A cemátca de um robô mapulador é o estudo da posção e da velocdade do seu efetuador e dos seus lgametos. Quado

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE SCOLA SUPIO D CNOLOGIA UNIVSIDAD DO ALGAV CUSO BIÁPICO M NGNHAIA CIVIL º cclo egme Duro/Nocturo Dscpla de COMPLMNOS D MAMÁICA Ao lectvo de 7/8 - º Semestre Ídce. egressão lear múltpla.... Itrodução....

Leia mais

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade Do que trata a Estatístca A essêca da cêca é a observação. Estatístca: A cêca que se preocupa com a orgazação, descrção, aálse e terpretação dos dados epermetas. Ramo da Matemátca Aplcada. A palavra estatístca

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

1. Caracterização de séries com

1. Caracterização de séries com 1. Caracterzação de séres com sazonaldade Como dscutdo na Aula 1, sazonaldade é um padrão que se repete anualmente. A sazonaldade é determnístca quando o padrão de repetção anual é exato, ou estocástca,

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Metodologia para Estimação e Previsão dos Perfis das Curvas de Carga por Subestação e Classes de Consumo

Metodologia para Estimação e Previsão dos Perfis das Curvas de Carga por Subestação e Classes de Consumo Metodologa para Estmação e Prevsão dos Perfs das Curvas de Carga por Subestação e Classes de Cosumo R. C. Souza, L. Mederos, E. Chrsto, M. Lessa, F. Lessa, PUC-Ro, A. V. Salesse, ELEKTRO RESUMO O presete

Leia mais

Introdução. Incerteza: o básico. Perfil do tomador de risco: Teoria da Probabilidade. Prof: Sabino da Silva Porto Júnior

Introdução. Incerteza: o básico. Perfil do tomador de risco: Teoria da Probabilidade. Prof: Sabino da Silva Porto Júnior Icerteza: o básco Prof: Sabo da Slva Porto Júor Sabo@ppge.ufrgs.br Itrodução Até agora: coseqüêcas das escolhas dos cosumdores são cohecdas com certeza. Nova suposção: cosumdores e produtores tem apeas

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Correlações genotípicas entre características agronômicas de sorgo granífero (Sorghum bicolor (L.) Moench).

Correlações genotípicas entre características agronômicas de sorgo granífero (Sorghum bicolor (L.) Moench). Correlações geotípcas etre característcas agroômcas de sorgo graífero (Sorghum bcolor (L.) Moech). Crslee Vera dos Satos (1) ; Ccero Beserra de Meezes (2) ; Celso Herque Tuma e Slva (1) Ruae Alce da Slva

Leia mais

Ordenação por Partição (Quick Sort)

Ordenação por Partição (Quick Sort) Vectores: Algortmos de Ordeação (2) Algortmos e Estruturas de Dados 2009/2010 Ordeação por Partção (Quck Sort) Algortmo (ordeação por partção): 1. Caso básco: Se o úmero () de elemetos do vector (a) a

Leia mais

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Volume 1 Edção 007 Curso: Pscologa Amostragem, Séres Estatístcas, Dstrbução de Freqüêca, Méda, Medaa, Quartl, Percetl e Desvo Padrão Prof. Dr. Celso Eduardo Tua 1 Capítulo 1 - Itrodução

Leia mais

REGRESSÕES DINÂMICAS: UMA APLICAÇÃO PARA PREVER A DEMANDA DE USUÁRIOS DO HOSPITAL UNIVERSITÁRIO DE SANTA MARIA

REGRESSÕES DINÂMICAS: UMA APLICAÇÃO PARA PREVER A DEMANDA DE USUÁRIOS DO HOSPITAL UNIVERSITÁRIO DE SANTA MARIA UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS DEPARTAMENTO DE ESTATÍSTICA REGRESSÕES DINÂMICAS: UMA APLICAÇÃO PARA PREVER A DEMANDA DE USUÁRIOS DO HOSPITAL UNIVERSITÁRIO DE SANTA

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

Apêndice 1-Tratamento de dados

Apêndice 1-Tratamento de dados Apêdce 1-Tratameto de dados A faldade deste apêdce é formar algus procedmetos que serão adotados ao logo do curso o que dz respeto ao tratameto de dados epermetas. erão abordados suctamete a propagação

Leia mais

CALCULADORA FINANCEIRA HP-12C COMO FERRAMENTA NA PRÁTICA PEDAGÓGICA DO ENSINO DE ESTATÍSTICA

CALCULADORA FINANCEIRA HP-12C COMO FERRAMENTA NA PRÁTICA PEDAGÓGICA DO ENSINO DE ESTATÍSTICA CALCULADORA FINANCEIRA HP-1C COMO FERRAMENTA NA PRÁTICA PEDAGÓGICA DO ENSINO DE ESTATÍSTICA Rozelae de Fatma Fraz Cotr Ela Retzlaff 47 Resumo Ao se aalsar o papel do professor o cotexto pedagógco, como

Leia mais

Gestão de Sistemas de Produção/Operações Profº Túlio de Almeida

Gestão de Sistemas de Produção/Operações Profº Túlio de Almeida Gestão de Sstemas de Produção/Operações Profº Túlo de Almeda 3. AVALIAÇÃO DE DESEMPENHO E INDICADORES 3.1. INDICADORES DE DESEMPENHO Os dcadores são tes essecas para qualquer tpo de projeto, processo,

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais