ANÁLISE DE REGRESSÃO E CORRELAÇÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ANÁLISE DE REGRESSÃO E CORRELAÇÃO"

Transcrição

1 ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem a aálse de dados amostras para saer se e como um certo cojuto de varáves está relacoado com outra varável. Aálse de regressão: estuda o relacoameto etre uma varável chamada a varável depedete e outras varáves chamadas varáves depedetes. Este relacoameto é represetado por um modelo matemátco, sto é, por uma equação que assoca a varável depedete com as varáves depedetes. Este modelo é desgado por modelo de regressão lear smples se defe uma relação lear etre a varável depedete e uma varável depedete. Se em vez de uma, forem corporadas váras varáves depedetes, o modelo passa a deomar-se modelo de regressão lear múltpla.

2 Aálse de correlação: dedca-se a ferêcas estatístcas das meddas de assocação lear que se seguem: coefcete de correlação smples: mede a força ou grau de relacoameto lear etre varáves. coefcete de correlação múltplo: mede a força ou grau de relacoameto lear etre uma varável e um cojuto de outras varáves. As téccas de aálse de correlação e regressão estão tmamete lgadas.

3 ANÁLISE DE REGRESSÃO E CORRELAÇÃO SIMPLES Notação: Y varável depedete X varável depedete Eemplos:. Relação etre o peso e a altura de um homem adulto (X altura; Y peso). Relação etre o preço do vho e o motate da colheta em cada ao (X motate da colheta; Y preço do vho) Pode suceder que dos homes adultos teham a mesma altura e pesos dferetes e vceversa. No etato, em méda, quato maor for a altura maor será o peso. Relatvamete ao segudo eemplo, pode tamém suceder que a colhetas guas correspodam preços dferetes e vce-versa. No etato, em méda, quato maor for a colheta meor será o preço do vho. É essa varação em méda que va ser estudada. 3

4 A Regressão Lear Smples costtu uma tetatva de estaelecer uma equação matemátca lear (recta) que descreva o relacoameto etre duas varáves. O MODELO de Regressão Lear Smples: Y β + β X + ε Y varável depedete X varável depedete β + β β ordeada a orgem β declve da recta ε varável erro β compr altura β altura/comp A partr dos dados dspoíves estmamos β e β e susttuímos estes parâmetros teórcos pelas suas estmatvas e para oter a equação de regressão estmada. 4

5 DIAGRAMAS DE DISPERSÃO Os dados para a aálse de regressão e correlação smples são da forma: (, ), (, ),, (, ),, (, ) Com os dados costró-se o dagrama de dspersão, este deve er uma tedêca lear para que se possa usar a regressão lear. Portato este dagrama permte decdr emprcamete se um relacoameto lear etre X e Y deve ser assumdo. Por aálse do Dagrama de Dspersão pode-se tamém coclur (emprcamete) se o grau de relacoameto lear etre as varáves é forte ou fraco, coforme o modo como se stuam os potos em redor de uma recta magára que passa através do eame de potos. A correlação é tato maor quato mas os potos se cocetram, com pequeos desvos, em relação a essa recta. Mas, se o declve da recta é postvo, cocluímos que a correlação etre X e Y é postva,.e., os feómeos varam o mesmo setdo. Ao cotráro, se o declve é egatvo, etão a correlação etre X e Y é egatva,.e., os feómeos varam em setdo verso. 5

6 Sugerem uma regressão ão lear (.e., a relação etre as duas varáves poderá ser descrta por uma equação ão lear) Y Y X X Sugerem uma regressão lear (.e., a relação etre as duas varáves poderá ser descrta por uma equação lear) Y - Peso Y - Preço X - Altura Estêca de correlação postva (em méda, quato maor for a altura maor será o peso) X - Colheta Estêca de correlação egatva (em méda, quato maor for a colheta meor será o preço) 6

7 EXEMPLO: Queremos estudar a relação etre a qulometragem de um carro usado e o seu preço de veda Carros Total Preço de veda Y Qulometragem X ( Km) (dezea de Euros) Preço Dagrama de dspersão Qulometragem Os dados sugerem uma relação lear etre a qulometragem e o preço de veda. Este uma correlação egatva: em méda, quato maor for a qulometragem meor será o preço de veda. 7

8 ESTIMAÇÃO DOS COEFICIENTES DE REGRESSÃO MÉTODO DOS MÍNIMOS QUADRADOS Pretede-se determar a recta de regressão que melhor se ajusta ao cojuto de dados Y Qual a recta que melhor se ajusta? Y (,) d d (, ) d (, ) + ˆ + é o valor dado pela recta d -( + ) resíduos 8

9 Ojectvo: determar e de modo a que os resíduos sejam tão pequeos quato possível. ) ( ˆ d + -ésmo resíduo, sto é, a dstâca vertcal do poto (, ) à recta de regressão O método dos mímos quadrados cosste em escolher e de modo a mmzar a soma dos quadrados dos resíduos d. Desta forma estamos essecalmete a escolher a recta que se aproma o mas possível de todos os potos dos dados smultaeamete. Soma dos quadrados dos resíduos d SSE ) ( Para determar e de modo a mmzar SSE: SSE SSE ) ( ) ( L méda dos valores oservados de X méda dos valores oservados de Y 9

10 Ateção: Um cojuto de potos dá evdêca de leardade apeas para os valores de X coertos pelo cojuto de dados. Para valores de X que saem fora dos que foram coertos ão há qualquer evdêca de leardade. Por sso é arrscado usar uma recta de regressão estmada para predzer valores de Y correspodetes a valores de X que saem fora do âmto dos dados. Y âmto dos dados X O pergo de etrapolar para fora do âmto dos dados amostras é que a mesma relação possa ão mas se verfcar.

11 EXEMPLO: Estmação dos coefcetes de regressão Carros Total Qulometragem X ( Km) Preço de veda Y (dezea de Euros) XY X Y

12 Recta de regressão estmada: O preço esperado para um carro é de 934 dezeas de Euros meos dezeas de Euros por cada ml Km que o carro teha adado. Por eemplo, para um carro que teha adado Km, a equação sugere o preço: Ateção: ˆ dezeas de Euros O coefcete de regressão estmado (estmatva de β ), estma o efeto sore o valor médo da varável depedete Y de uma alteração utára da varável depedete X. Assm, em méda, por cada km que o carro teha adado, o preço de veda aa dezeas de Euros 934 ão pode ser terpretado como sedo o preço prevsto para um carro ovo, Km, pos este valor de qulometragem ecotra-se fora do âmto dos dados. Trata-se de uma relação méda, assm um carro com determada qulometragem ão oterá ecessaramete o preço de veda eacto dcado pelo equação

13 QUALIDADE DO AJUSTAMENTO COEFICIENTE DE CORRELAÇÃO E DE DETERMINAÇÃO Seja a méda dos valores oservados para a varável depedete. Uma medda útl assocada à recta de regressão é o grau em que as predções aseadas a equação de regressão, ŷ, superam as predções aseadas em. Isto é, se as predções aseadas a recta ão são melhores que as aseadas o valor médo, etão ão adata dspormos de uma equação de regressão. Se a dspersão (erro) assocada à recta é muto meor que a dspersão (erro) assocada a, as predções aseadas a recta serão melhores que as aseadas em. Dspersão em toro de - Varação Total: SST( ) (Soma dos quadrados totas) Dspersão em toro da recta de regressão Varação ão eplcada: SSE ( ˆ ) d (Soma dos quadrados dos resíduos) O ajustameto será tato melhor quato mas pequeo for SSE relatvamete a SST. 3

14 Pode-se mostrar que: ( ) ( ˆ ) + ( ˆ ) SST SSE + SSR SST Soma dos quadrados totas Varação Total SSE Soma dos quadrados dos resíduos Varação ão eplcada SSR Soma dos quadrados da regressão Varação eplcada Isto é: Varação total de Y à volta da sua méda Varação que o ajustameto ão cosegue eplcar + Varação eplcada pelo ajustameto 4

15 Coefcete de determação r SSR SST SSE SST SST r é a proporção de varação da varável depedete Y que é eplcada pelo modelo, sto é, pela equação de regressão ajustada, ou equvaletemete, é a proporção da varação de Y eplcada em termos leares pela varável depedete. Note que: r ; SSE SST r (prómo de ) sgfca que grade parte da varação de Y é eplcada learmete pela varável depedete. r (prómo de ) sgfca que grade parte da varação de Y ão é eplcada learmete pela varável depedete. Neste setdo este coefcete pode ser utlzado como uma medda da qualdade do ajustameto, ou como medda da cofaça depostada a equação de regressão como strumeto de prevsão: r modelo lear muto pouco adequado r modelo lear astate adequado 5

16 r pode ser calculado a partr da segute fórmula: r + À raz quadrada de r dá-se o ome de coefcete de correlação smples r ± r (com o sal do declve ) É uma medda do grau de assocação lear etre as varáves X e Y. - r ; r> (postvo) dca que as duas varáves tedem a varar o mesmo setdo, sto é, em méda um aumeto a varável X provocará um aumeto a varável Y; r< (egatvo) dca que as duas varáves tedem a varar em setdo verso, sto é, em méda um aumeto a varável X provocará uma dmução a varável Y; r e r- dcam a estêca de uma relação lear perfeta etre X e Y, postva e egatva respectvamete; r dca a estêca de qualquer relação ou tedêca lear etre X e Y podedo o etato estr uma relação ão lear etre elas. Isto é, é possível que as duas varáves estejam fortemete assocadas (movmetos uma varável estão assocados a movmetos a outra) sem que o relacoameto seja lear. 6

17 r Y X r- Y X 7

18 EXEMPLO: Determação dos coefcetes de correlação e determação Carros Total Qulometragem X ( Km) Preço de veda Y (dezea de Euros) XY X Y r

19 r.89 apromadamete 8% da varação o preço de veda dos carros está relacoada learmete com a varação a qulometragem rodada,.e., 8% dessa varação é eplcada por varações a qulometragem. 9% ão é eplcada por varações a qulometragem e é resultate de outros factores ão cosderados (que podem flur o preço de veda), como por eemplo: as codções geras do carro; a localzação/reputação do vededor; a ecessdade que o comprador tem do carro; o º de regstos de propredade do carro etc. r dca que o grau de relacoameto lear etre as varáves é forte. A correlação é egatva, pos um acréscmo a qulometragem é, tedecalmete, acompahado por um decréscmo do preço de veda. 9

Análise de Regressão e Correlação

Análise de Regressão e Correlação Aálse e Regressão e Correlação Fo já estuao a forma e escrever um cojuto e oservações e uma só varável. Quao se coseram oservações e uas ou mas varáves surge um ovo poto. O estuo as relações porvetura

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Regressão Linear - Introdução

Regressão Linear - Introdução Regressão Lear - Itrodução Na aálse de regressão lear pretede-se estudar e modelar a relação (lear) etre duas ou mas varáves. Na regressão lear smples relacoam-se duas varáves, x e Y, através do modelo

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://www.uemat.br/eugeo Estudar sem racocar é trabalho 009/ TAXA INTERNA DE RETORNO A taa tera de retoro é a taa que equalza o valor presete de um ou mas pagametos (saídas de caa) com o valor presete

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

Coordenação directa de pontos novos, a partir de um ponto conhecido, medindo-se um ângulo e uma distância.

Coordenação directa de pontos novos, a partir de um ponto conhecido, medindo-se um ângulo e uma distância. Irradada Smples Coordeação drecta de potos ovos, a partr de um poto cohecdo, meddo-se um âgulo e uma dstâca. P N M M M V E P P P V E P E R EN α c M V M M ser C P cos R C EV EV R EV R EN α c dstâca cartográfca

Leia mais

Apêndice 1-Tratamento de dados

Apêndice 1-Tratamento de dados Apêdce 1-Tratameto de dados A faldade deste apêdce é formar algus procedmetos que serão adotados ao logo do curso o que dz respeto ao tratameto de dados epermetas. erão abordados suctamete a propagação

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemátca Fcha de Trabalho Meddas de tedêca cetral - 0º ao MEDIDAS DE LOCALIZAÇÃO Num estudo estatístco, depos de recolhdos e orgazados os dados, há a ase de trar coclusões através de meddas que possam,

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

3. TESTES DE QUALIDADE DE AJUSTAMENTO

3. TESTES DE QUALIDADE DE AJUSTAMENTO Testes da qualdade de ajustameto 3 TESTES DE QULIDDE DE JUSTMENTO 3 Itrodução formação sobre o modelo da população dode se extra uma amostra costtu, frequetemete, um problema estatístco forma da dstrbução

Leia mais

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA)

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA) I Metodologa da Ecoometra O MODELO CLÁSSICO DE REGRESSÃO LINEAR. Formulação da teora ou da hpótese.. Especfcação do modelo matemátco da teora. 3. Especfcação do modelo ecoométrco da teora. 4. Obteção de

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

Medidas de Localização

Medidas de Localização 07/08/013 Udade : Estatístca Descrtva Meddas de Localzação João Garbald Almeda Vaa Cojuto de dados utlzação de alguma medda de represetação resumo dos dados. E: Um cojuto com 400 observações como aalsar

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

3. METODOLOGIAS ESTATÍSTICAS E GEOESTATÍSTICAS

3. METODOLOGIAS ESTATÍSTICAS E GEOESTATÍSTICAS 33 3 METODOLOGIAS ESTATÍSTICAS E GEOESTATÍSTICAS 3 Aálse Estatístca A eecução de aálses estatístcas báscas é tarefa pratcamete obrgatóra o tratameto de amostrages e o processameto de quatdades sgfcatvas

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

CALCULADORA FINANCEIRA HP-12C COMO FERRAMENTA NA PRÁTICA PEDAGÓGICA DO ENSINO DE ESTATÍSTICA

CALCULADORA FINANCEIRA HP-12C COMO FERRAMENTA NA PRÁTICA PEDAGÓGICA DO ENSINO DE ESTATÍSTICA CALCULADORA FINANCEIRA HP-1C COMO FERRAMENTA NA PRÁTICA PEDAGÓGICA DO ENSINO DE ESTATÍSTICA Rozelae de Fatma Fraz Cotr Ela Retzlaff 47 Resumo Ao se aalsar o papel do professor o cotexto pedagógco, como

Leia mais

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional.

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional. Curso Aperfeçoameto em Avalação de Programas Socas ª Turma Dscpla: Téccas quattatvas de levatameto de dados: prcpas téccas de amostragem Docete: Claudete Ruas Brasíla, ovembro/005 Pesqusa por amostragem

Leia mais

Licenciatura em Ciências USP/ Univesp funções polinomiais 4

Licenciatura em Ciências USP/ Univesp funções polinomiais 4 Lcecatura em Cêcas USP/Uvesp FUNÇÕES POLINOMIAIS 4 51 TÓPICO Gl da Costa Marques 4.1 Potecação 4. Fuções Polomas de grau 4.3 Fução Polomal do Segudo Grau ou Fução Quadrátca 4.4 Aálse da Forma Geral dos

Leia mais

3 Modelos Lineares Generalizados

3 Modelos Lineares Generalizados 3 Modelos Leares Geeralzados No capítulo foram cosderados apeas modelos leares com dstrbução ormal e fução de lgação detdade. Neste capítulo apresetamos os modelos leares geeralzados (MLG, que foram propostos

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi ISSN 1984-7203 Projeção Populacoal 2013-2020 para a Cdade do Ro de Jaero: uma aplcação do método AB Nº 20130102 Jaero - 2013 Iva Braga Ls 1, Marcelo Pessoa da Slva, Atoo Carlos Carero da Slva, Sérgo Gumarães

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

REGRESSÕES DINÂMICAS: UMA APLICAÇÃO PARA PREVER A DEMANDA DE USUÁRIOS DO HOSPITAL UNIVERSITÁRIO DE SANTA MARIA

REGRESSÕES DINÂMICAS: UMA APLICAÇÃO PARA PREVER A DEMANDA DE USUÁRIOS DO HOSPITAL UNIVERSITÁRIO DE SANTA MARIA UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS DEPARTAMENTO DE ESTATÍSTICA REGRESSÕES DINÂMICAS: UMA APLICAÇÃO PARA PREVER A DEMANDA DE USUÁRIOS DO HOSPITAL UNIVERSITÁRIO DE SANTA

Leia mais

3 - ANÁLISE BIDIMENSIONAL

3 - ANÁLISE BIDIMENSIONAL INE 7001 - Aálse Bdmesoal 1 3 - ANÁLISE BIDIMENSIONAL É comum haver teresse em saber se duas varáves quasquer estão relacoadas, e o quato estão relacoadas, seja a vda prátca, seja em trabalhos de pesqusa,

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Cocetos Báscos População ou Uverso Estatístco: coj. de elemetos sobre o qual cde o estudo estatístco; Característca Estatístca ou Atrbuto: a característca que se observa os elemetos

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período.

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período. ESTATÍSTICA - 01 1. (UERJ 01) Téccos do órgão de trâsto recomedaram velocdade máxma de 80 km h o trecho de uma rodova ode ocorrem mutos acdetes. Para saber se os motorstas estavam cumprdo as recomedações,

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq Qwertyuopasdghjklzcvbmqwerty uopasdghjklzcvbmqwertyuopasd ghjklzcvbmqwertyuopasdghjklz cvbmqwertyuopasdghjklzcvbmq wertyuopasdghjklzcv bmqwertyuopasdghjklzcvbmqw ertyuopasdghjklzcvbmqwertyuo pasdghjklzcvbmqwertyuopasdgh

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal Exercícos Itrodutóros Exercíco Para

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Capítulo "O estatístco, está casado em méda com 1,75 esposas, que procuram fazê-lo sar de casa,5 otes com 0,5 de sucesso apeas. Possu frote com 0,0 de clação (deotado poder metal),

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas Uversdade Federal de Alfeas - Ufal-MG Departameto de Cêcas Exatas Apostla Laboratóro de Físca I Prof. Dr. Célo Wsewsk Alfeas 05. oções geras sobre meddas de gradezas e avalação de certezas.. Medção (measuremet).....

Leia mais

4 Capitalização e Amortização Compostas

4 Capitalização e Amortização Compostas 4.1 Itrodução Quado queremos fazer um vestmeto, podemos depostar todos os meses uma certa quata em uma cadereta de poupaça; quado queremos comprar um bem qualquer, podemos fazê-lo em prestações, a serem

Leia mais

Cap.20 Avaliação Econ. Financ. de Projetos de Inv. Sumário. Jim Lane. $20 mi. Gordon Letwin $20 mi Paul Allen $25 bi

Cap.20 Avaliação Econ. Financ. de Projetos de Inv. Sumário. Jim Lane. $20 mi. Gordon Letwin $20 mi Paul Allen $25 bi Pol-UFRJ/25.1 Cap.2 Avalação Eco. Fac. de Projetos de Iv. Ecooma Carlos Nemer 3ª Ed. Capítulo 2 Avalação Ecoômco Facera de Projetos de Ivestmeto Steve Wood $15 m Bob O' Rear $1 mllo Bob Wallace $5 m Bob

Leia mais

2-Geometria da Programação Linear

2-Geometria da Programação Linear I 88 Otmzação Lear -Geometra da Programação Lear ProfFeradoGomde DC-FEEC-Ucamp Coteúdo. Poledros e cojutos coveos. Potos etremos vértces soluções báscas factíves 3. Poledros a forma padrão 4. Degeeração

Leia mais

Universidade Federal da Bahia Departamento de Hidráulica e Saneamento Capítulo 3

Universidade Federal da Bahia Departamento de Hidráulica e Saneamento Capítulo 3 3.6 PRECIPITAÇÃO MÉDIA SOBRE UMA BACIA 3.6. MÉTODO ARITMÉTICO A precptação méda, calculada por este método, ada mas é do que a méda artmétca dos valores de precptação meddos a área da baca, o que mplca

Leia mais

INTRODUÇÃO À EVOLUÇÃO MOLECULAR: O MODELO DE JUKES-CANTOR

INTRODUÇÃO À EVOLUÇÃO MOLECULAR: O MODELO DE JUKES-CANTOR Departameto de Matemátca ITRODUÇÃO À EVOLUÇÃO MOLECULAR: O MODELO DE JUKES-CATOR Aluo: Adraa Cruz Marts Oretador: Sérgo Berardo Volcha Itrodução A bologa molecular tem tdo eorme mpacto em dversos ramos

Leia mais

2-0,0041295**.C 2 + 0,0017052**.T.C

2-0,0041295**.C 2 + 0,0017052**.T.C 14. Itrodução ao estudo de regressão lear smples 14.1. Itrodução Itrodução ao estudo de regressão lear smples IS 78,9137 -,341836**.T +,78753**.C -,7154**.T -,4195**.C +,175**.T.C R 77,17% IS, % Fgura

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

Questão 01) Na equação matricial, , calcule x e y. Questão 02) , determine o valor do módulo do elemento. Dadas as matrizes A = (3-4 6) e

Questão 01) Na equação matricial, , calcule x e y. Questão 02) , determine o valor do módulo do elemento. Dadas as matrizes A = (3-4 6) e Questão ) Na equação matricial, y, calcule e y. Questão ) Dadas as matrizes A = ( - 6) e B, determie o valor do módulo do elemeto a da matriz produto A por B. Questão ) Cosidere uma matriz A, de ordem,

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

RRR- 1 A RELAÇÃO RISCO-RETORNO

RRR- 1 A RELAÇÃO RISCO-RETORNO - 1 A ELAÇÃO ISCO-ETONO V -INTODUÇÃO À TEOIA DOS MECADOS DE CAPITAIS -! Algus cocetos de base à teora dos mercados de captas: " edbldade de um vestmeto em acções: edbldade em valor Dvdedos + mas/meos valas

Leia mais

tica Professor Renato Tião

tica Professor Renato Tião Números complexos Algumas equações do segudo grau como x + 1 = 0 ão possuem solução o uverso real e o estudo destas soluções ão pareca ecessáro até o século XVI quado o matemátco aphael Bombell publcou

Leia mais

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 }

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 } 5. Fções teste Até agora estvemos tratado tesvamete com a tegração. Uma cosa qe temos vsto é qe, cosderado espaços das, podemos pesar as fções como fcoas. Vamos rever brevemete esta déa. osdere a bola

Leia mais