CORRELAÇÃO E REGRESSÃO
|
|
- Cármen Bergler Garrau
- 7 Há meses
- Visualizações:
Transcrição
1 CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr essa relação. Então, caracterzada a relação, procuramos descrevê-la através de uma função matemátca. A regressão é o nstrumento adequado para a determnação dos parâmetros dessa função. Coleta-se dados ebndo os valores correspondentes das varáves. Faz-se o gráfco dos pontos em sstema de coordenadas retangulares. O conjunto resultante é chamado Dagrama de Dspersão. Eemplo: X e Y representam, respectvamente, a altura e o peso de adultos do seo femnno. Uma amostra de n ndvíduos acusara alturas X 1, X,..., X n, e os correspondentes pesos Y 1, Y,..., Y n,. Os pontos a serem marcados no gráfco seram, então (X 1,Y 1 ), (X,Y ),..., (X n,y n ). Pelo dagrama de dspersão, mutas vezes, se pode vsualzar uma curva apromatva dos dados. Quando os dados parecem bem apromados por uma reta, dzemos que há uma correlação lnear entre as varáves (Fguras 1 e ). Quando este um relaconamento entre as varáves e tal relaconamento não é lnear, dz-se, então, que há uma correlação não-lnear entre as varáves (Fgura 3). Fnalmente, há os casos em que o dagrama não sugere nenhum tpo de correlação entre as varáves; neste caso dz-se que não há correlação lnear (Fgura 4). Eemplos: Fgura 1 Fgura
2 Fgura 3 Fgura 4 Coefcente de correlação O coefcente de correlação lnear é o nstrumento empregado para a medda da correlação lnear, ndcando o grau de ntensdade da correlação entre duas varáves e, anda, o sentdo dessa correlação (postvo Fgura 1 ou negatvo Fgura ). Pode ser utlzado o coefcente de correlação de Pearson: n [ n ( ) ] [ n ( ) ] onde n é o número de observações. Os valores lmtes de r (coefcente de correlação) são 1 e +1, sto é, o valor de r pertence ao ntervalo [-1,1]. Assm: a) se a correlação entre duas varáves é perfeta e postva, então r = 1; b) se a correlação é perfeta e negatva, então r = -1; c) se não há correlação entre as varáves, r = 0. Eemplo: Calcular o coefcente de correlação relatvo à tabela abao que apresenta as notas de Cálculo e Estatístca de dez alunos (n=10). A últma lnha contém as somas de cada coluna.
3 r=0,9114 Regressão Calc() Estat() O problema de se determnar equações de curvas que se ajustem a determnados conjuntos de dados observados é chamado ajustamento de curvas. Na prátca, o própro dagrama de dspersão geralmente sugere o tpo de curva a ser adotada. Assm, para as Fguras 1 e poderíamos usar a reta (Y = ax + b) enquanto que, para a Fgura 3, tentaríamos uma parábola (Y = ax + bx + c). Às vezes é útl construr o dagrama em termos de varáves transformadas. Assm, por eemplo, se log Y versus X conduz a uma reta, epermentaríamos log Y = a + bx como equação apromadora. Um dos prncpas objetvos do ajustamento é estmar uma das varáves (a varável dependente) em função da outra (varável ndependente). Tal processo de estmação é denomnado regressão. Se Y for estmado em função de X por meo de uma equação, tal equação é denomnada equação de regressão de Y sobre X e a curva ajustada é a curva de regressão de Y sobre X. Vamos consderar a regressão lnear smples, utlzada quando uma reta representa de manera satsfatóra a relação entre as varáves, ou seja, Y = ax + b é a equação de regressão de Y sobre X. O método mas smples utlzado para a determnação de a e b é o método dos mínmos quadrados. Após dversas smplfcações é possível chegar a: a e b a
4 sendo _ a méda artmétca dos ; e _ a méda artmétca dos. Outra forma de se calcular o a é através da fórmula: a Eemplo: n n. A tabela abao apresenta as varações do custo de um certo produto em relação à quantdade produzda: Quantdade (X) Custos (Y) Utlzando os dados acma: a) construa o dagrama de dspersão; b) ajuste uma reta aos dados; c) trace a reta no dagrama de dspersão; d) determne o custo para 16 undades do artgo a= 8, b= 15, para =16 = 153, soma Eercícos 1. Obtenha os coefcentes do modelo lnear = a + b. Dados: Certa empresa, estudando a varação da demanda de seu produto em relação à varação do preço de venda, obteve a tabela abao. preço ( ) demanda( )
5 a) Estmar os parâmetros do modelo =a+b, usando o crtéro de MQ. b) Usando o modelo lnear, estmar para =60 e =10. Utlzando as epressões (9) para calcular a e b, obtemos: 3. A tabela abao apresenta os dados referentes à varação da demanda de um produto produzdo ( ) em relação à varação do preço da venda ( ): a. construa o dagrama de dspersão; b. ajuste uma reta aos dados, ou seja, estabeleça a equação de regressão de sobre ; c. trace a reta no dagrama de dspersão; d. determne quando = 80 e quando = A tabela abao que apresenta as notas de Cálculo e Estatístca de catorze alunos (n=14) : Cálculo ( ) Estatístca ( ) a) construa o dagrama de dspersão; b) calcule o coefcente de correlação; c) estabeleça a equação de regressão de sobre ; d) trace a reta no dagrama de dspersão; 5. A tabela abao apresenta os dados referentes à varação do preço de venda do seu produto ( ) em função do preço de custo ( ): a) construa o dagrama de dspersão; b) estabeleça a equação de regressão de sobre ; c) trace a reta no dagrama de dspersão; d) determne quando = 165 e quando = A tabela abao apresenta valores que mostram como o comprmento de uma barra de aço vara conforme a temperatura: Temp.(graus C) Compr. (mm) a) Determne o coefcente de correlação. b) Estabeleça a equação de regressão de sobre.
6 c) Calcule o valor estmado do comprmento da barra para a temperatura de 18 graus C e para a temperatura de 35 graus C. 7. A tabela abao representa os pesos respectvos e de uma amostra de 1 pas e de seus flhos mas velhos. Calcule o coefcente de correlação e estme a lnha de regressão de para Num determnado país, na últma década, o aumento ( ) percentual do nível de preços e a epansão percentual dos meos de pagamentos ( ), de determnado produto de eportação, verfcaram-se conforme a tabela abao: ano a) Estabeleça a equação de regressão de sobre ; b) Determne o coefcente de correlação c) Esboce o dagrama de dspersão.
Professor Mauricio Lutz CORRELAÇÃO
Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,
Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA
Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno
Probabilidade e Estatística. Correlação e Regressão Linear
Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o
Regressão e Correlação Linear
Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,
Covariância e Correlação Linear
TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento
Introdução à Análise de Dados nas medidas de grandezas físicas
Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.
TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823
NOTA II TABELAS E GRÁFICOS
Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.
Probabilidade e Estatística. Correlação e Regressão Linear
Probabldade e Estatístca Correlação e Regressão Lnear Varáves Varável: característcas ou tens de nteresse de cada elemento de uma população ou amostra Também chamada parâmetro, posconamento, condção...
METROLOGIA E ENSAIOS
METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade
3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas
PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas
Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2
Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer
Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna
Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade
LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05
LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada
O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.
Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,
Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)
Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)
Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação
Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados
ESTATÍSTICA. na Contabilidade Revisão - Parte 2. Medidas Estatísticas
01/09/01 ESTATÍSTICA na Contabldade Revsão - Parte Luz A. Bertolo Meddas Estatístcas A dstrbução de frequêncas permte-nos descrever, de modo geral, os grupos de valores (classes) assumdos por uma varável.
PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO
PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO Ana Carolna Campana Nascmento 1, José Ivo Rbero Júnor 1, Mosés Nascmento 1 1. Professor da Unversdade Federal de Vçosa, Avenda Peter Henr
Medidas de tendência central. Média Aritmética. 4ª aula 2012
Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem
Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para
Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre
Estatística stica Descritiva
AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas
Caderno de Exercícios Resolvidos
Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B
ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ
ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco
1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.
A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.
5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)
5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de
INTRODUÇÃO À ANÁLISE DE DADOS NAS MEDIDAS DE GRANDEZAS FÍSICAS
Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO À AÁLISE DE DADOS AS MEDIDAS DE GRADEZAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...4
As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.
1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação
7. Resolução Numérica de Equações Diferenciais Ordinárias
7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem
1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.
Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de
Introdução e Organização de Dados Estatísticos
II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar
Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.
CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por
Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.
Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que
Sistemas de equações lineares
Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes
A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.
Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela
UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli
UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação
Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S
Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada
Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20
1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto
Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.
Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só
Lei dos transformadores e seu princípio de funcionamento. Os transformadores operam segundo a lei de Faraday ou primeira lei do eletromagnetismo.
Le dos transformadores e seu prncípo de funconamento Os transformadores operam segundo a le de Faraday ou prmera le do eletromagnetsmo. Prmera le do eletromagnetsmo Uma corrente elétrca é nduzda em um
b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.
Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo
Comprimento de Arco. Comprimento de Arco
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco
Econometria: 4 - Regressão Múltipla em Notação Matricial
Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo
Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20
1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões
PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.
EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve
CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010
Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon
7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado
64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos
ANÁLISE EXPLORATÓRIA DE DADOS
CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE
CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)
PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra
INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS
Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3
Hoje não tem vitamina, o liquidificador quebrou!
A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!
Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos
Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões
Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.
Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,
Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel
Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,
14. Correntes Alternadas (baseado no Halliday, 4 a edição)
14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):
Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL
Faculdade de Tecnologa de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 7. GRÁFICOS DE INFORMAÇÕES São grácos tpcamente epostvos destnados, prncpalmente, ao públco em geral, objetvando
2. BACIA HIDROGRÁFICA
. BACIA HIDROGRÁFICA.1. GENERALIDADES Embora a quantdade de água exstente no planeta seja constante e o cclo em nível global possa ser consderado fechado, os balanços hídrcos quase sempre se aplcam a undades
ESPELHOS E LENTES ESPELHOS PLANOS
ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem
Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira
MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO
são os coeficientes desconhecidos e o termo ε (erro)
Regressão Lnear Neste capítulo apresentamos um conjunto de técncas estatístcas, denomnadas análse de regressão lnear, onde se procura estabelecer a relação entre uma varável resposta e um conjunto de varáves
2 ANÁLISE ESPACIAL DE EVENTOS
ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados
PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ
GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS
CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS
CAPÍTULO 7 - ESTIMAÇÃO DE PARÂMETROS Nos capítulos anterores analsaram-se város modelos usados na avalação de manancas, tendo-se defndo os respectvos parâmetros. Nas correspondentes fchas de exercícos
PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS
PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,
Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada
XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos
3.1. Conceitos de força e massa
CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo
RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA
RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS PROCEDIMENTO DO SISTEMA DE GESTÃO DA QUALIDADE REVISÃO: 05 ABR/013 SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO REFERÊNCIAS 3 DEFINIÇÕES
Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade
Controle Estatístco de Processos: a questão da autocorrelação, dos erros de mensuração e do montoramento de mas de uma característca de qualdade Docentes: Maysa S. de Magalhães; Lnda Lee Ho; Antono Fernando
IV - Descrição e Apresentação dos Dados. Prof. Herondino
IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser
www.obconcursos.com.br/portal/v1/carreirafiscal
www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,
ISEP - ÍNDICE DE SHARPE ESCOLAR A PARTIR DA PROVA BRASIL: CRIAÇÃO E ESTUDO
ISEP - ÍNDICE DE SHARPE ESCOLAR A PARTIR DA PROVA BRASIL: CRIAÇÃO E ESTUDO Roberta Montello Amaral (UNIFESO) amaralroberta@yahoo.com.br Crado em 1990, o Saeb é um sstema de avalação do MEC que, junto à
F-328 Física Geral III
F-328 Físca Geral III Aula exploratóra- 06 UNICAMP IFGW username@f.uncamp.br F328 2 o Semestre de 2013 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère =
Física. Física Módulo 1 Vetores, escalares e movimento em 2-D
Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,
Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.
Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham
Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001
Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)
Distribuição de Massa Molar
Químca de Polímeros Prof a. Dr a. Carla Dalmoln carla.dalmoln@udesc.br Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras
Planejamento e Controle de Estoques PUC. Prof. Dr. Marcos Georges. Adm. Produção II Prof. Dr. Marcos Georges 1
e Controle de Estoques PUC CAMPINAS Prof. Dr. Marcos Georges Adm. Produção II Prof. Dr. Marcos Georges 1 Fornecmento de produtos e servços Recursos da operação Planejamento e Controle de Estoque Compensação
Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.
Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.
LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA
EXPERIÊNCI 04 LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNU 1. OBJETIVOS a) Determnar a força eletromotrz e a resstênca nterna de uma batera em um crcuto de malha únca. b) Calcular a resstênca nterna
Apostila De Estatística
Apostla De Estatístca Professores: Wanderley Akra Shgut Valéra da S. C. Shgut Brasíla 006 INTRODUÇÃO 1.1. PANORAMA HISTÓRICO Toda Cênca tem suas raízes na hstóra do homem; A Matemátca que é consderada
Notas de Aula de Física
Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...
ELETRICIDADE E MAGNETISMO
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente
Elaboração: Novembro/2005
Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas
Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas
Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta
Modelo Multi-Estado de Markov em Cartões de Crédito. Daniel Evangelista Régis Rinaldo Artes
Modelo Mult-Estado de Markov em Cartões de Crédto Danel Evangelsta Régs Rnaldo Artes Insper Workng Paper WPE: 137/2008 Copyrght Insper. Todos os dretos reservados. É probda a reprodução parcal ou ntegral
CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade
CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra
Associação de resistores em série
Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.
VULNERABILIDADE DE REDES COMPLEXAS
VULNERABILIDADE DE REDES COMPLEXAS Alunos: Antono Rossano e João Pedro Mano Orentador: Cela Anteneodo Introdução Dado um conjunto de elementos dscretos nteragentes (por exemplo, ndvíduos, proteínas, computadores
PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS
PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,
2 Máquinas de Vetor Suporte 2.1. Introdução
Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de
Gráfico de controle de regressão aplicado na monitoração de processos
Jacob, Souza & Perera Gráfco de controle de regressão aplcado na montoração de processos LUCIANE FLORES JACOBI, MSC. Professora do Departamento de Estatístca UFSM. E-mal: lfjacob@ccne.ufsm.br ADRIANO MENDONÇA
Material de apoio para as aulas de Física do terceiro ano
COLÉGIO LUTERANO CONCÓRDIA 67 Anos Educando com o Coração Mantenedora: Comundade Evangélca Luterana Crsto- Nteró Materal de apoo para as aulas de Físca do tercero ano Professor Rafael Frank de Rodrgues
MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE
MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE R. L. S. CANEVESI 1, C. L. DIEL 2, K. A. SANTOS 1, C. E. BORBA 1, F. PALÚ 1, E. A. DA SILVA 1 1 Unversdade Estadual
É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.
É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores
EFICIÊNCIA DAS ESCOLAS SECUNDÁRIAS PORTUGUESAS: UMA ANÁLISE DE FRONTEIRA DE PRODUÇÃO ESTOCÁSTICA*
Artgos Prmavera 2007 EFICIÊNCIA DAS ESCOLAS SECUNDÁRIAS PORTUGUESAS: UMA ANÁLISE DE FRONTEIRA DE PRODUÇÃO ESTOCÁSTICA* Manuel Coutnho Perera** Sara Morera** 1. INTRODUÇÃO As classfcações obtdas pelos estudantes
Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 4.3. Decisão Intertemporal do Consumidor O Mercado de Capital
Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 4.3 Decsão Intertemporal do Consumdor O Mercado de Captal Isabel Mendes 2007-2008 4/17/2008 Isabel Mendes/MICRO II 1 3. EQUILÍBRIO
ELEMENTOS DE CIRCUITOS
MINISTÉRIO D EDUCÇÃO SECRETRI DE EDUCÇÃO PROFISSIONL E TECNOLÓGIC INSTITUTO FEDERL DE EDUCÇÃO, CIÊNCI E TECNOLOGI DE SNT CTRIN CMPUS DE SÃO JOSÉ - ÁRE DE TELECOMUNICÇÕES CURSO TÉCNICO EM TELECOMUNICÇÕES
INFLUÊNCIA DAS VARIÁVEIS OPERACIONAIS NA REMOÇÃO DE ETANOL DE VINHO DELEVEDURADO POR CO 2
INFLUÊNCIA DAS VARIÁVEIS OPERACIONAIS NA REMOÇÃO DE ANOL DE VINHO DELEVEDURADO POR CO 2 C. R. SILVA 1, M. N. ESPERANÇA 1, A. J. G. CRUZ 1 e A. C. BADINO 1 1 Unversdade Federal de São Carlos, Departamento
CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG
1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o