Contabilometria. Aula 8 Regressão Linear Simples

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Contabilometria. Aula 8 Regressão Linear Simples"

Transcrição

1 Contalometra Aula 8 Regressão Lnear Smples

2 Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos tvessem flhos axos, a altura méda dos flhos de um grupo de pas altos era menor que a de seus pas e a altura méda de um grupo de flhos de pas axos era maor que a de seus pas; em consequênca, os flhos de pas altos e axos regredam gualmente à altura méda de todos os homens. Nas palavras de Galton sso era uma regressão à medocrdade.

3 Interpretação Moderna da Regressão A análse de regressão se ocupa do estudo da dependênca de uma varável, a varável dependente, em relação a uma ou mas varáves, as varáves explanatóras, com vstas a estmar e/ou prever o valor médo (da população) da prmera em termos dos valores conhecdos ou fxados (em amostragens repetdas) das segundas. Statstcs for Managers Usng Mcrosoft Excel, 5e 28 Prentce-Hall, Inc. Chap 13-3

4 Relações Estatístcas x Determnístcas Na análse de regressão, estamos preocupados com a dependênca estatístca, e não funconal ou determnístca, entre as varáves, como é o caso da físca clássca. Nas relações estatístcas ldamos com varáves aleatóras ou estocástcas, sto é, varáves que têm dstruções proalístcas Na dependênca funconal ou determnístca, tamém ldamos com varáves mas estas não são aleatóras ou estocástcas.

5 Relações Estatístcas Exemplo de relação estatístca: dependênca do rendmento das lavouras em relação a temperatura, pluvosdade, luz solar ou fertlzante. É de natureza estatístca no sentdo de que as varáves explanatóras, emora com certezas mportantes, não permtrão prever com exatdão o rendmento em função de erros de medção das varáves, em como a ntervenção de outros fatores que coletvamente afetam o rendmento mas cuja dentfcação ndvdual pode ser dfícl.

6 Relações Determnístcas Exemplo de relação determnístca: Le da gravtação de Newton 2 F k m 1 m2 / r Cada partícula atra todas as outras partículas com uma força dretamente proporconal ao produto de suas massas e nversamente proporconal ao quadrado da dstânca que as separa. Ovamente, se houver erros de medção, dgamos, no k, a relação determnístca se torna uma relação estatístca. A força só pode ser prevsta aproxmadamente a partr do valor de k (e m 1, m 2 e r), que contém erros. A varável F nesse caso se torna uma varável aleatóra.

7 Regressão x Causação Emora a análse de regressão lde com a dependênca de uma varável em relação a outras, sso não mplca necessaramente causação. Uma relação estatístca, por mas forte e sugestva que seja, nunca pode estaelecer uma conexão causal: nossas déas de causação devem se orgnar fora da estatístca, em últma análse, de alguma teora. Kendall, M. G.; Stuart, A. The Advanced Theory of Statstcs, Nova ork: Charles Grffn Pulshers, vol. 2, Cap. 26, 1961, p. 279

8 Regressão x Correlação Análse de correlação: o prncpal ojetvo é medr a força ou o grau de assocação lnear entre duas varáves. Análse de Regressão: tentamos estmar ou prever o valor médo de uma varável com ase nos valores fxos de outras varáves.

9 Regressão x Correlação Análse de Regressão: a varável dependente é estatístca, aleatóra, ou estocástca, sto é, tem dstrução proalístca. Já as varáves explanatóras têm valores fxos (em amostras repetdas). Análse de correlação: tratamos quasquer duas varáves smetrcamente; não há dstnção entre as varáves dependente e explanatóra. Além dsso pressupõe-se que as duas varáves sejam aleatóras.

10 Análse de Regressão A análse da regressão é usada para: Prever o valor da varável dependente aseado no valor de pelo menos uma varável ndependente Explcar o mpacto das mudanças na varável ndependente na varável dependente Varável dependente: A varável que você quer explcar Varável ndependente: A varável usada para explcar a varável dependente

11 Modelo de Regressão Lnear Smples Somente uma varável ndependente, A relação entre e é descrta por uma função lnear Mudanças em estão relaconadas a mudanças em

12 Tpos de Relações Relações Lneares Relações Curvlíneas

13 Tpos de Relações Relações Fortes Relações Fracas

14 Tpos de Relações Nenhuma relação

15 Modelo de Regressão Lnear Smples Varável Dependente Intercepto de para a população Inclnação da População Varável Independente Erro aleatóro em para a oservação β β 1 ε Componente Lnear Componente do Erro Aleatóro Modelo de regressão para a população:

16 Modelo de Regressão Lnear β β 1 ε Valor Oservado de para Valor Prevsto de para ε Erro Aleatóro para esta oservação Inclnação = β 1 Intercepto = β

17 Equação da Regressão Lnear: a Lnha de Prevsão A equação da Regressão Lnear Smples fornece uma estmatva da regressão lnear da população Estmado (ou prevsto) valor de para a oservação Estmatva do ntercepto da regressão Estmatva da nclnação da regressão Ŷ 1 Valor de para a oservação

18 O Método dos Mínmos Quadrados e 1 são otdos encontrando os valores de e 1 que mnmzam a soma dos quadrados das dferenças entre e : Ŷ mn ( Ŷ ) 2 mn ( ( )) 2 1

19 Encontrando a Equação de Mínmos Quadrados Os coefcentes e 1, e outros resultados da regressão neste capítulo, serão encontrados usando o Excel

20 Mínmos Quadrados Condções de Prmera Ordem: ) ( mn ˆ mn ˆ mn 1 u : 2 : ) ( mn ˆ mn ˆ mn 1 u Resolver para o e 1 Estmadores de Mínmos Quadrados (OLS)

21 Interpretação do Intercepto e da Inclnação é o valor estmado da méda de quando o valor de é zero 1 é a mudança estmada na méda dos valores de para uma undade de mudança em

22 Regressão Lnear - Exemplo Um corretor quer estudar a relação entre o preço de venda de uma casa e o seu tamanho (meddo em pés quadrados) Uma amostra aleatóra de 1 casas é seleconada Varável Dependente () = Preço da casa em $1s Varável Independente () = pés quadrados

23 Regressão Lnear - Exemplo Dados Preço da casa em $1s () Pés quadrados ()

24 Regressão Lnear - Exemplo Dagrama de Dspersão Preço das casas ($1s) Modelo do preço das casas: dagrama de dspersão Pés Quadrados

25 Ferramentas Análse de Dados Regressão Regressão Lnear - Exemplo Usando o Excel

26 Lnear Regresson Example Excel Output RESUMO DOS RESULTADOS Estatístca de regressão R múltplo,7621 R-Quadrado,588 R-quadrado ajustado,5284 Erro padrão 41,333 Oservações 1 A equação de regressão é: Preço = 98,248 +,11*Área em pés quadrados ANOVA gl SQ MQ F F de sgnfcação Regressão , ,935 11,85,1 Resíduo , ,196 Total 9 326,5 Coefcentes Erro padrão Stat t valor-p 95% nferores 95% superores Inferor 95,% Superor 95,% Interseção 98,248 58,33 1,693,129-35, ,74-35, ,74 Pés quadrados (),11,33 3,329,1,34,186,34,186

27 Preço das casas ($1s) Regressão Lnear Exemplo Representação Gráfca Modelo do preço das casas: Dagrama de dspersão e lnha da regressão Intercepto = Pés Quadrados Inclnação =.11 Preço = 98,248 +,11*Área em pés quadrados

28 Regressão Lnear Exemplo Interpretação de Preço = 98,248 +,11*Área em pés quadrados é o valor estmado da méda de quando o valor de é zero (se = está no ntervalo dos valores oservados de ) Como a área de uma casa não pode ser, o ntercepto calculado não tem nenhuma aplcação prátca.

29 Regressão Lnear Exemplo Interpretação de 1 Preço = 98,248 +,11*Área em pés quadrados 1 mede a mudança no valor médo de resultante da varação em uma undade no valor de. Aqu, 1 =.11 mostra que o valor médo de uma casa aumenta em.11($1) = $11, em méda, para cada undade de área (pés quadrados) adconal no tamanho

30 Regressão Lnear Exemplo Fazendo Prevsões Prever o preço de uma casa com 2. pés quadrados: Preço (pés quadrados) (2) O preço prevsto para uma casa com 2 pés quadrados é 317,85($1.s) = $317.85

31 Preço das Casas ($1s) Regressão Lnear Exemplo Fazendo Prevsões Ao usar um modelo de regressão para fazer prevsões, faça-o somente dentro do ntervalo relevante Intervalo relevante para prevsões Pés Quadrados Não tente extrapolar para além do ntevalo oservado de.

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11 EERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Lnear 4. EERCÍCIOS PARA RESOLVER NAS AULAS 4.1. O gestor de marketng duma grande cadea de supermercados quer determnar

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

1. Caracterização de séries com

1. Caracterização de séries com 1. Caracterzação de séres com sazonaldade Como dscutdo na Aula 1, sazonaldade é um padrão que se repete anualmente. A sazonaldade é determnístca quando o padrão de repetção anual é exato, ou estocástca,

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO Ana Carolna Campana Nascmento 1, José Ivo Rbero Júnor 1, Mosés Nascmento 1 1. Professor da Unversdade Federal de Vçosa, Avenda Peter Henr

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

PREVISÃO DE RESULTADOS EM PARTIDAS DE FUTEBOL

PREVISÃO DE RESULTADOS EM PARTIDAS DE FUTEBOL PREVISÃO DE RESULTADOS EM PARTIDAS DE FUTEOL Marcelo Leme de Arruda www.chancedegol.com.br Unversdade Federal do Ro Grande do Norte Semana de Estatístca 03 Modelos de Prevsão Ingredentes: Representação

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Lei das Malhas (KVL) Lei dos Nós (KCL)

Lei das Malhas (KVL) Lei dos Nós (KCL) Le das Malhas (KL) Le dos Nós (KCL) Electrónca Arnaldo Batsta 5/6 Electrónca_omed_ef KCL (Krchhoff Current Law) Nó é o ponto de lgação de dos ou mas elementos de crcuto amo é uma porção do crcuto contendo

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5.

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5. Correlação Frases Uma probabldade razoável é a únca certeza Samuel Howe A experênca não permte nunca atngr a certeza absoluta. Não devemos procurar obter mas que uma probabldade. Bertrand Russel Rotero

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica.

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica. Análse do Retorno da Edcação na Regão Norte em 2007: Um Estdo à Lz da Regressão Qantílca. 1 Introdcão Almr Rogéro A. de Soza 1 Jâno Macel da Slva 2 Marnalva Cardoso Macel 3 O debate sobre o relaconamento

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Tânia Lucia Hojo (UFMG) Sueli Aparecida Mingoti (UFMG)

Tânia Lucia Hojo (UFMG) Sueli Aparecida Mingoti (UFMG) Modelos de equações estruturas: uma avalação dos métodos de máxma verossmlhança, mínmos quadrados ordnáros e mínmos quadrados parcas usados na estmação de parâmetros do modelo. Tâna Luca Hojo (UFMG) hojo@est.mest.ufmg.br

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

são os coeficientes desconhecidos e o termo ε (erro)

são os coeficientes desconhecidos e o termo ε (erro) Regressão Lnear Neste capítulo apresentamos um conjunto de técncas estatístcas, denomnadas análse de regressão lnear, onde se procura estabelecer a relação entre uma varável resposta e um conjunto de varáves

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ECONOMIA RURAL. ERU ECONOMETRIA I Segundo Semestre/2010

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ECONOMIA RURAL. ERU ECONOMETRIA I Segundo Semestre/2010 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ECONOMIA RURAL ERU 66 - ECONOMETRIA I Segundo Semestre/010 AULA PRÁTICA N o 3- Dados em Panel Ana Carolna Campana Nascmento Fernanda

Leia mais

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER Renaldo Bomfm da Slvera 1 Julana Mara Duarte Mol 1 RESUMO Este trabalho propõe um método para avalar a qualdade das prevsões

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais