Regressão e Correlação

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Regressão e Correlação"

Transcrição

1 Regressão e Correlação Júlo Osóro Regressão & Correlação: geeraldades Em mutas stuações de pesqusa cetífca, dspomos de uma amostra aleatóra de pares de dados (x, ), resultates da medda cocomtate de duas varáves ( e ) supostamete com dstrbução ormal. Dos objectvos podem etão teressar: Averguar a exstêca (ou ão) de uma assocação etre e, e em caso afrmatvo, medr a força dessa assocação Aálse de Correlação. Estabelecer um modelo matemátco (equação) que permta descrever, predzer ou cotrolar (varável depedete ou de resposta) com base em (varável depedete ou predtora) Aálse de Regressão.

2 Regressão: Geeraldades Utlza-se a chamada Aálse de Regressão para aprecar a atureza da relação exstete etre duas ou mas varáves. Medate a sua aplcação, uma varável depedete ou de resposta () é relacoada com uma ou mas varáves depedetes ou predtoras ( s). O grade objectvo é estabelecer um modelo de regressão relacoado a varável depedete com uma ou mas de uma varáves depedetes. O modelo pode depos ser usado para descrever, fazer predções e cotrolar uma varável de teresse com base as varáves depedetes. A Aálse de Regressão exama a atureza e a tesdade da assocação etre varáves, mas ão pressupõe ou mplca a exstêca de qualquer relação de causaldade etre elas. Regressão: Tpos de Modelos Varável Predtora Modelos de Regressão ou Mas Varáves Predtoras Smples Múltpla Lear Não- Lear Lear Não- Lear Estudaremos apeas Modelos de Regressão Lear (Smples e Múltpla)

3 Regressão Lear Smples: Qual é o desafo? Como é que se pode traçar uma lha através desta uvem de potos? Como é que se pode achar a lha que melhor se ajusta aos dados? s O desafo a regressão é determar qual a lha que melhor se ajusta aos dados, sto é, uma lha de tal modo stuada a uvem de potos que mmze a dstâca de todos os potos à lha. Regressão Lear Smples: Recordado a Geometra... Qualquer lha recta pode ser descrta medate uma equação. A qualquer poto desta lha correspode um par de valores (x, ). e x estão relacoados pela equação a + b.x, sedo: b o declve da recta; a a tersecção a orgem (valor de quado 0). Declve varação em por varação utára em. Itersecção o exo dos s local ode lha cruza o exo das ordeadas (quado 0). 3

4 Regressão Lear Smples: Equações Leares a m + b + b b -tercept m Slope b Declve Varação Chage em a Itersecção o exo s Varação Chage em Regressão Lear Smples: Equações Leares Relação Lear Postva: cresce quado cresce. Lha de Regressão Itersecção a O declve b é postvo 4

5 Regressão Lear Smples: Equações Leares Relação Lear Negatva: decresce quado cresce. Itersecção a Lha de Regressão O declve b é egatvo Regressão Lear Smples: Equações Leares Relação Lear Iexstete: ão vara quado cresce. Itersecção a Lha de Regressão O declve é gual a 0 5

6 Regressão Lear Smples: O Modelo Itersecção os s Populacoal Varável Depedete (resposta) Declve Populacoal α + β. + ε Varável Idepedete (explcatva) Erro Aleatóro Regressão Lear Smples: O Processo de Estmatva Modelo de Regressão α + βx +ε ι Equação de Regressão E() α + βx Parametros Descohecdos α, β Dados da amostra: x.... x a ad b são estmatvas de α ad β Equação de Regressão Estmada a + b. x Estatístcos da Regressão a, b 6

7 Regressão Lear Smples: Crtéro dos Mímos Quadrados O Melhor Ajustameto da recta é atgdo quado o somatóro das dfereças etre o valor real de ( )e o valor predto pela regressão ( )for mímo. Mas como as dfereças postvas cotrabalaçam as egatvas, cosderam-se as dfereças elevadas ao quadrado: e erro O Crtéro dos Mímos Quadrados assume que o Melhor Ajustameto é cosegudo quado o Somatóro dos Quadrados das Dfereças ete o valor real e o valor predto ( erro ) é o mímo possível: m m e m erro Regressão Lear Smples: Crtéro dos Mímos Quadrados CMQ mmza e e + e + e e 3 a + b. x + e e e4 e e3 a + bx 7

8 8 bx a x b a Declve Amostral Itercepção Amostral bx a + bx a + Equação de Predção ( )( ) x x x x b ( )( ) x x x x b Regressão Lear Smples: Cálculo dos Coefcetes Regressão Lear Smples: Iterpretação dos Coefcetes Declve (b) Valor médo da varação ocorrete a varável de resposta () por cada varação utára () em. Itercepção em (a) Valor médo de quado 0.

9 Regressão Lear Smples: Premssas do Modelo Premssas que o termo do erro ε deve satsfazer o Modelo de Regressão: O erro ε é uma varável aleatóra com méda gual a zero (µ ε 0). A varâca de ε, aotada por σ ε, é a mesma para todos os valores da varável depedete (σ ε costate). Os valores de ε são depedetes. O erro ε é uma varável com dstrbução ormal. Regressão Lear Smples: Premssas do Modelo f(e) 9

10 Regressão Lear Smples: Teste da Sgfcâca A sgfcâca de uma regressão (adequação do modelo de predção) é estabelecda medate a realzação de um teste de hpóteses para determar se o valor de β é zero: H 0 : β 0 H : β 0 Dos tpos de teste podem ser realzados: Teste t Teste F Ambos os testes requerem uma estmatva da varâca do erro o modelo de regressão (σ ε ). Regressão Lear Smples: Decomposção da Varação Total Varação Total Observada a Varável de Resposta () Varação Explcada pela Regressão de sobre TOTAL Regressão Varação Resdual, devda a outros factores, ão explcada pela Regressão Erro 0

11 Regressão Lear Smples: Decomposção da Varação Total Total Σ ( - ) ( ) Erro Σ ( - ) a+ bx Regressão Σ ( - ) Regressão Lear Smples: Teste da Sgfcâca Cálculo das Somas de Quadrados de Desvos: Compoete Total Regressão Erro Fórmula de Defção ( _ ) ( _ ) ( ) Fórmula de Trabalho ( SPD Total ) ( ) Re gressão

12 Regressão Lear Smples: Teste F (ANOVA) Apreseta-se sob a forma de Quadro ANOVA: Compoete GL QM F amostra Regressão ( SPD ) Re gressão QM Re gressão QM Erro Erro Total Re gressão - Erro ( ) - Total Rejeta-se H 0 : β 0 se: Famostra > F α ( ) Regressão Lear Smples: Teste t de Studet Para se testar a sgfcâca com um teste t, calcula-se: t b, ode sb sb amostra QM Erro Rejeta-se H 0 : β 0 se: t amostra < t α ( ) ou t amostra > t α ( )

13 Regressão Lear Smples: Coefcete de Determação O coefcete de determação (r ) represeta a proporção de varação da varável de resposta () que é explcada pela sua regressão sobre : r Varação explcada Varação total Re gressão O coefcete de determação é gual ao quadrado do coefcete de correlação de Pearso: ( SPD) SPD Re gressão r Notar que 0 r. Regressão Lear Smples: Exemplo Ilustratvo Numa vestgação, medu-se a quatdade de Cálco radoactvo absorvdo através da parede de células vegetas suspeddas por um período varável de tempo uma solução de Cálco radoactvo. Regstaram-se os valores das duas varáves (tempo de permaêca a solução, quatdade de Ca radoactvo absorvda) em 7 repetções da experêca. Pretede-se: estabelecer a equação de predção do Ca absorvdo () a partr do tempo de permaêca a solução (); testar a sgfcâca do modelo (α 0,05); averguar a fracção de varação em que é explcada por. 3

14 Regressão Lear Smples: Exemplo Ilustratvo tempo de suspesão Cálco da célula a solução absorvdo (m.) (moles/mg) Regressão Lear Smples: Exemplo Ilustratvo x. ( 84,80).( 7,5773). SPD x 66, , x ( 84,80) 943, ,87667 x 7 x x 84,80 7,5773 6, , 688 Coefcetes: b SPD 64, ,43 678,87667 a bx,688 ( 0,43).( 6,844), 07 Equação de predção:,07 + 0,43. x 4

15 Regressão Lear Smples: Exemplo Ilustratvo x. ( 84,80).( 7,5773). SPD x 66, , s: Re gressão ( ) ( 64,69866) SPD 678, ,95667 x ( 84,80) 943, ,87667 x 7 ( 7,5773) 48,536 53, Erro Re 53, , ,988 gressão Quadro ANOVA: OV Regressão Erro Total 39, ,988 53,8655 GL 5 6 QM 39, ,599 F amostra 75,50 Coclusão: Como F amostra excede F 0,05 (/5) 4,4, rejeta-se H 0 : β 0, e coclu-se que o modelo de regressão ajustado é aproprado para fazer predções. Regressão Lear Smples: Exemplo Ilustratvo Teste t de Studet: t amostra b QM Erro 0,43 0, , ,689 Como t amostra se ecotra fora do tervalo de rejeção [-t 0,05 (5) -,06; + t 0,05 (5),06], rejetamos H 0 : β 0,e cocluímos que o modelo é adequado. Repare-se que (t amostra ) 75,50 F amostra,o que mostra a equvalêca dos dos processos de teste da sgfcâca da regressão. 5

16 Regressão Lear Smples: Exemplo Ilustratvo Coefcete de Determação: r Re gressão 39, , 75 53,8655 Isto sgfca que o tempo de permaêca a solução explca tato como 75% da varação que ocorre a quatdade de Ca radoactvo absorvdo pelas paredes das células vegetas. Regressão Lear Smples: Exemplo Ilustratvo Iterpretação dos coefcetes: b 0,43: Um acréscmo de muto o tempo de permaêca a solução provoca, em méda, um acréscmo de 0,43 moles/mg a quatdade de Ca radoactvo absorvdo. a,07: O valor médo da quatdade de Ca radoactvo presete as paredes das células ates de serem troduzdas a solução era da ordem dos,07 moles/mg. Realzação de predções: Qual é a quatdade de Ca radoactvo absorvdo predto para um tempo de permaêca de 9 mutos das paredes celulares a solução?,07 + 0,43. x,07 + ( 0,43)( 9) 3, moles / mg 6

17 Regressão Lear Smples: Exemplo Ilustratvo Correlação: geeraldades Respode à questão Quão forte é a relação etre as duas varáves e? Calcula-se o chamado Coefcete de Correlação, calmete proposto por Karl Pearso: Aota-se por r a ível da amostra e por ρ a ível da população. Toma valores do tervalo etre - e +. Mede o grau (força) da assocação. 7

18 Correlação: geeraldades Se represetarmos as duas varáves um referecal cartesao, a uvem de potos (dagrama de dspersão) reflecte a maor ou meor tedêca para os potos se dsporem sstemátcamete ao logo de uma lha recta (descedete ou ascedete). Perre Dagele (973): Theore et Méthodes Statstques, vol.. Les Presses Agroomques de Gembloux. Correlação: geeraldades Correlação Negatva Perfeta Ausêca de Correlação Correlação Postva Perfeta ρ egatvo: tede a decrescer à medda que cresce ρ postvo: tede a crescer à medda que cresce ρ 0: ão há qualquer relação etre a varação de e a varação de. 8

19 Correlação: Cálculo Para uma amostra de pares (x, ) de observações realzadas para as varáves e, o coefcete de correlação (do mometoproduto, de Pearso) vem dado por: r Cov Var (, ) ( ). Var( ) SPD ( ). ( ) ( ) SPD. r ( )(. ) ( ).( ) Nestas expressões: Cov (, ) covarâca de e ; Var, Var varâcas de e, respectvamete;, Somatóros dos Quadrados dos Desvos de e de, respectvamete; SPD Somatóro dos Produtos Cruzados de e. Correlação: Propredades Como tem uma ampltude de varação bem defda (- ρ ), é fácl de terpretar. É depedete do tamaho da amostra. É depedete das udades de medda de e de. É seramete afectado pela preseça de outlers ou valores extremos os dados. O coefcete de correlação ão dca que haja qualquer relação causa efeto etre as duas varáves. 9

20 Correlação: Teste da Sgfcâca O teste da sgfcâca do coefcete de correlação evolve duas hpóteses: H 0 : ρ 0 (ausêca de correlação) H : ρ 0 (preseça de correlação sgfcatva) O estatístco t de Studet calculado da forma segute é o crtéro do teste : t amostra A H 0 é rejetada quado: r. r t amostra t α ( ) Correlação: Exemplo Ilustratvo No decurso de um estudo sobre a qualdade do ar a zoa ode se ecotra um lago, fzeram-se medções do ph da água do lago (varável ), e avalou-se a qualdade do ar medate um ídce qualtatvo (varável ). O ídce vara de 0 a 00, sedo que valores mas elevados represetam íves mas graves de polução. Pretede-se aalsar o grau de assocação etre a duas varáves (α 0,05) ph da água Ídce de qualdade do ar

21 Correlação: Exemplo Ilustratvo x. ( 46,).( 40). SPD x 684,5 05,6 0 x ( 46,) 0,8 8,89 x 0 r SPD. 05,6 0,959 ( 8,89).( 5540) ( 40) t amostra ( r 0 0,959.. r ( 0, 959) 9,66 versus t 8) 860 0, 05, Decsão e Coclusão: Rejetar H 0 : ρ 0, e coclur que o ph da água do lago está egatva e sgfcatvamete correlacoada com o ídce de qualdade do ar.

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Regressão Linear - Introdução

Regressão Linear - Introdução Regressão Lear - Itrodução Na aálse de regressão lear pretede-se estudar e modelar a relação (lear) etre duas ou mas varáves. Na regressão lear smples relacoam-se duas varáves, x e Y, através do modelo

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

3. TESTES DE QUALIDADE DE AJUSTAMENTO

3. TESTES DE QUALIDADE DE AJUSTAMENTO Testes da qualdade de ajustameto 3 TESTES DE QULIDDE DE JUSTMENTO 3 Itrodução formação sobre o modelo da população dode se extra uma amostra costtu, frequetemete, um problema estatístco forma da dstrbução

Leia mais

Análise de Regressão e Correlação

Análise de Regressão e Correlação Aálse e Regressão e Correlação Fo já estuao a forma e escrever um cojuto e oservações e uma só varável. Quao se coseram oservações e uas ou mas varáves surge um ovo poto. O estuo as relações porvetura

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

A Medição e o Erro de Medição

A Medição e o Erro de Medição A Medção e o Erro de Medção Sumáro 1.1 Itrodução 1.2 Defções 1.3 Caracterzação da qualdade de medção 1.4 O erro da medção 1.4.1 Os erros aleatóros 1.4.2 Os erros sstemátcos 1.5 O verdadero valor, o erro

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO 1 VARIÁVEIS ALEATÓRIAS O que se etede por varável aleatóra? Até agora ossos estudos estavam pratcamete voltados mas para defrmos osso Espaço Amostral U, sem assocarmos suas respectvas probabldades aos

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq Qwertyuopasdghjklzcvbmqwerty uopasdghjklzcvbmqwertyuopasd ghjklzcvbmqwertyuopasdghjklz cvbmqwertyuopasdghjklzcvbmq wertyuopasdghjklzcv bmqwertyuopasdghjklzcvbmqw ertyuopasdghjklzcvbmqwertyuo pasdghjklzcvbmqwertyuopasdgh

Leia mais

3. METODOLOGIAS ESTATÍSTICAS E GEOESTATÍSTICAS

3. METODOLOGIAS ESTATÍSTICAS E GEOESTATÍSTICAS 33 3 METODOLOGIAS ESTATÍSTICAS E GEOESTATÍSTICAS 3 Aálse Estatístca A eecução de aálses estatístcas báscas é tarefa pratcamete obrgatóra o tratameto de amostrages e o processameto de quatdades sgfcatvas

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

3 Modelos Lineares Generalizados

3 Modelos Lineares Generalizados 3 Modelos Leares Geeralzados No capítulo foram cosderados apeas modelos leares com dstrbução ormal e fução de lgação detdade. Neste capítulo apresetamos os modelos leares geeralzados (MLG, que foram propostos

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas Uversdade Federal de Alfeas - Ufal-MG Departameto de Cêcas Exatas Apostla Laboratóro de Físca I Prof. Dr. Célo Wsewsk Alfeas 05. oções geras sobre meddas de gradezas e avalação de certezas.. Medção (measuremet).....

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Apêndice 1-Tratamento de dados

Apêndice 1-Tratamento de dados Apêdce 1-Tratameto de dados A faldade deste apêdce é formar algus procedmetos que serão adotados ao logo do curso o que dz respeto ao tratameto de dados epermetas. erão abordados suctamete a propagação

Leia mais

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000 Aas III Smpóso Regoal de Geoprocessameto e Sesorameto Remoto Aracaju/SE, 25 a 27 de outubro de 2006 UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 99-2000 OLIVEIRA,

Leia mais

Medidas de Localização

Medidas de Localização 07/08/013 Udade : Estatístca Descrtva Meddas de Localzação João Garbald Almeda Vaa Cojuto de dados utlzação de alguma medda de represetação resumo dos dados. E: Um cojuto com 400 observações como aalsar

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA)

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA) I Metodologa da Ecoometra O MODELO CLÁSSICO DE REGRESSÃO LINEAR. Formulação da teora ou da hpótese.. Especfcação do modelo matemátco da teora. 3. Especfcação do modelo ecoométrco da teora. 4. Obteção de

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

MODELAGEM DE DADOS POR REGRESSÃO LINEAR MÚLTIPLA PARA AVALIAÇÃO DE IMÓVEIS RURAIS DO SUBMÉDIO SÃO FRANCISCO

MODELAGEM DE DADOS POR REGRESSÃO LINEAR MÚLTIPLA PARA AVALIAÇÃO DE IMÓVEIS RURAIS DO SUBMÉDIO SÃO FRANCISCO ODEAGE DE DADOS POR REGRESSÃO INEAR ÚTIPA PARA AVAIAÇÃO DE IÓVEIS RURAIS DO SUBÉDIO SÃO FRANCISCO JOSÉ ANTONIO OURA E SIVA Isttuto Nacoal de Colozação e Reforma Agrára - INCRA UIZ RONADO NAI 3 Isttuto

Leia mais

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional.

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional. Curso Aperfeçoameto em Avalação de Programas Socas ª Turma Dscpla: Téccas quattatvas de levatameto de dados: prcpas téccas de amostragem Docete: Claudete Ruas Brasíla, ovembro/005 Pesqusa por amostragem

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES Aa Mara Lma de Faras Luz da Costa Laurecel Com a colaboração dos motores Maracajaro

Leia mais

Teoria da Amostragem

Teoria da Amostragem Teora da Amostragem I- oções fudametas sobre amostragem. Amostragem é todo o processo de recolha de uma parte, geralmete pequea, dos elemetos que costtuem um dado couto. Da aálse dessa parte pretede obter-se

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA

CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS ICE DEPARTAMENTO DE ESTATÍSTICA CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA Autores (em ordem alfabétca)

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

ANÁLISE DE CORRELAÇÃO: ABORDAGEM TEÓRICA E DE CONSTRUÇÃO DOS COEFICIENTES COM APLICAÇÕES

ANÁLISE DE CORRELAÇÃO: ABORDAGEM TEÓRICA E DE CONSTRUÇÃO DOS COEFICIENTES COM APLICAÇÕES UNIVERIDADE FEDERAL DO PARANÁ ANÁLIE DE CORRELAÇÃO: ABORDAGEM TEÓRICA E DE CONTRUÇÃO DO COEFICIENTE COM APLICAÇÕE CURITIBA 004 ACHIKO ARAKI LIRA ANÁLIE DE CORRELAÇÃO: ABORDAGEM TEÓRICA E DE CONTRUÇÃO DO

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

Ana Clara P. Campos 1 Denise Nunes Viola 1 Moacyr Cunha Filho 2 Guilherme Vilar 2 Vanessa Van Der Linden 3

Ana Clara P. Campos 1 Denise Nunes Viola 1 Moacyr Cunha Filho 2 Guilherme Vilar 2 Vanessa Van Der Linden 3 Idetfcação da exstêca de padrão espacal aleatóro a dstrbução dos pacetes portadores de doeça geétca rara com defcêca físca da Assocação de Assstêca à Craça Defcete (AACD) de Perambuco Aa Clara P. Campos

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

REGRESSÕES DINÂMICAS: UMA APLICAÇÃO PARA PREVER A DEMANDA DE USUÁRIOS DO HOSPITAL UNIVERSITÁRIO DE SANTA MARIA

REGRESSÕES DINÂMICAS: UMA APLICAÇÃO PARA PREVER A DEMANDA DE USUÁRIOS DO HOSPITAL UNIVERSITÁRIO DE SANTA MARIA UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS DEPARTAMENTO DE ESTATÍSTICA REGRESSÕES DINÂMICAS: UMA APLICAÇÃO PARA PREVER A DEMANDA DE USUÁRIOS DO HOSPITAL UNIVERSITÁRIO DE SANTA

Leia mais

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Volume 1 Edção 007 Curso: Pscologa Amostragem, Séres Estatístcas, Dstrbução de Freqüêca, Méda, Medaa, Quartl, Percetl e Desvo Padrão Prof. Dr. Celso Eduardo Tua 1 Capítulo 1 - Itrodução

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Coordenação directa de pontos novos, a partir de um ponto conhecido, medindo-se um ângulo e uma distância.

Coordenação directa de pontos novos, a partir de um ponto conhecido, medindo-se um ângulo e uma distância. Irradada Smples Coordeação drecta de potos ovos, a partr de um poto cohecdo, meddo-se um âgulo e uma dstâca. P N M M M V E P P P V E P E R EN α c M V M M ser C P cos R C EV EV R EV R EN α c dstâca cartográfca

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Capítulo "O estatístco, está casado em méda com 1,75 esposas, que procuram fazê-lo sar de casa,5 otes com 0,5 de sucesso apeas. Possu frote com 0,0 de clação (deotado poder metal),

Leia mais

Universidade Federal da Bahia Departamento de Hidráulica e Saneamento Capítulo 3

Universidade Federal da Bahia Departamento de Hidráulica e Saneamento Capítulo 3 3.6 PRECIPITAÇÃO MÉDIA SOBRE UMA BACIA 3.6. MÉTODO ARITMÉTICO A precptação méda, calculada por este método, ada mas é do que a méda artmétca dos valores de precptação meddos a área da baca, o que mplca

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini Estatístca Agosto 009 Campus do Potal Prof. MSc. Qutlao Squera Schrode Nomel - ESTATÍSTICA DESCRITIVA. - A NATUREZA DA ESTATÍSTICA COMO SURGIU A ESTATÍSTICA????? A Matemátca surge do covívo socal, da cotagem,

Leia mais

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período.

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período. ESTATÍSTICA - 01 1. (UERJ 01) Téccos do órgão de trâsto recomedaram velocdade máxma de 80 km h o trecho de uma rodova ode ocorrem mutos acdetes. Para saber se os motorstas estavam cumprdo as recomedações,

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemátca Fcha de Trabalho Meddas de tedêca cetral - 0º ao MEDIDAS DE LOCALIZAÇÃO Num estudo estatístco, depos de recolhdos e orgazados os dados, há a ase de trar coclusões através de meddas que possam,

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Pós-Graduação latu sensu em Engenharia de Produção

Pós-Graduação latu sensu em Engenharia de Produção CENTRO UNIVERSITÁRIO UNA PRÓ-REITORIA DE PÓS-GRADUAÇÃO Pós-Graduação latu sesu em Egehara de Produção ESTATÍSTICA APLICADA (0 hs) Belo Horzote - 011 Dscpla: Estatístca Aplcada Prof.: Kerley Alberto Perera

Leia mais

INTRODUÇÃO À EVOLUÇÃO MOLECULAR: O MODELO DE JUKES-CANTOR

INTRODUÇÃO À EVOLUÇÃO MOLECULAR: O MODELO DE JUKES-CANTOR Departameto de Matemátca ITRODUÇÃO À EVOLUÇÃO MOLECULAR: O MODELO DE JUKES-CATOR Aluo: Adraa Cruz Marts Oretador: Sérgo Berardo Volcha Itrodução A bologa molecular tem tdo eorme mpacto em dversos ramos

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais