Prof. Lorí Viali, Dr.

Tamanho: px
Começar a partir da página:

Download "Prof. Lorí Viali, Dr."

Transcrição

1 Prof. Lorí Val, Dr.

2 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

3 Numa relação expermental os valores de uma das varáves são controlados. No relaconamento correlaconal, por outro lado, não se tem nenhum controle sobre as varáves sendo estudadas. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

4

5 O Estoque de Moeda (M1) está relaconado com a varação dos preços. Verfque se exste correlação entre o IPC amercano com a oferta monetára, consderando dados do período de 1960 a 003. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

6 Ano Y M1 X IPC ,7 9, , 9, ,8 30, ,3 30, ,3 31, ,8 3, ,9 177, ,4 179, ,1 184,0 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

7 O prmero passo para determnar se exste relaconamento entre as duas varáves é obter o dagrama de dspersão (scatter dagram). Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

8 IPC M Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

9 O dagrama de dspersão fornece uma dea do tpo de relaconamento entre as duas varáves. Neste caso, percebe-se que exste um relaconamento lnear. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

10 Quando o relaconamento entre duas varáves quanttatvas for do tpo lnear, ele pode ser meddo através do: Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

11

12 Observado um relaconamento lnear entre as duas varáves é possível determnar a ntensdade deste relaconamento. O coefcente que mede este relaconamento é denomnado de Coefcente de Correlação (lnear). Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

13 Quando se está trabalhando com amostras o coefcente de correlação é ndcado pela letra r e é uma estmatva do coefcente de correlação populaconal que é representado por ρ (rho). Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

14

15 Para determnar o coefcente de correlação (grau de relaconamento lnear entre duas varáves) vamos determnar ncalmente a varação conjunta entre elas, sto é, a covarânca. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

16 A covarânca entre duas varáves X e Y, é representada por Cov Cov(X (X; Y) e calculada por: Cov( X,Y ) ( X X )( Y n 1 Y ) Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

17 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca Mas nxy Y X nxy nxy nxy Y X XY X Y Y X Y X XY Y X X Y Y X XY ] Y X X Y Y X [ ) Y Y )( X X (

18 Então: Cov( X,Y ) ( X X )( Y n 1 Y ) X Y n 1 nxy Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

19 A covarânca podera ser utlzada para medr o grau e o snal do relaconamento entre as duas varáves, mas ela é dfícl de nterpretar por varar de - a +. Assm é mas convenente utlzar o coefcente de correlação lnear de Pearson (momento produto). Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

20 O coefcente de correlação lnear (de Pearson) é defndo por: Cov ( X,Y ) r X Y Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

21 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca Onde: 1 n ny Y 1 n X n X 1 n nxy Y X ) X,Y Cov( Y X

22 Esta expressão não é muto prátca para calcular o coefcente de correlação. Pode-se obter uma expressão mas convenente para o cálculo manual e o cálculo de outras meddas necessáras mas tarde. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

23 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca Tem-se: ( )( ) Y n Y X n X n X Y Y X 1 n Y n Y 1 n X n X 1 n n X Y Y X ),Y X ( Cov r Y X

24 F a Fazendo: z e n d 0 Tem se : XY XX YY X Y X Y r n X ny XY nxy XX. YY Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

25 A vantagem do coefcente de correlação (de Pearson) é ser admensonal e varar de 1 a + 1, que o torna de fácl nterpretação. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

26 Assm se r -1, temos uma relaconamento lnear negatvo perfeto, sto é, os pontos estão todos alnhados e quando X aumenta Y decresce e vce-versa. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

27 50 40 r Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

28 e r +1, temos uma relaconamento lnear postvo perfeto, sto é, os pontos estão todos alnhados e quando X aumenta Y também aumenta. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

29 50 40 r Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

30 Assm se r 0, temos uma ausênca de relaconamento lnear, sto é, os pontos não mostram alnhamento. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

31 50 40 r Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

32 Assm se 1 < r < 0, temos uma relaconamento lnear negatvo, sto é, os pontos estão mas ou menos alnhados e quando X aumenta Y decresce e vce-versa. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

33 < r < Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

34 Assm se 0 < r < 1, temos uma relaconamento lnear postvo, sto é, os pontos estão mas ou menos alnhados e quando X aumenta Y também aumenta. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

35 < r < Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

36 Uma correlação amostral não sgnfca necessaramente uma correlação populaconal e vce-versa. É necessáro testar o coefcente de correlação para verfcar se a correlação amostral é também populaconal. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

37 Observada uma amostra de ses pares, pode-se perceber que a correlação é quase um, sto é, r 1. No entanto, observe o que ocorre quando mas pontos são acrescentados, sto é, quando se observa a população! Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

38 50 40 r ρ Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

39 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

40 Determnar o grau de relaconamento lnear entre as varáves X Índce de Preços ao Consumdor versus Y Estoque de Moeda, para os valores da Economa Amercana de 1960 a 003. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

41 Ano X Y XY X Y ,7 9, , 9, ,8 30, ,3 30, ,3 31, ,8 3, ,9 177, ,4 179, ,1 184,0 Total 5894,5 410, , , ,97

42 Vamos calcular r utlzando a expressão em destaque vsta anterormente, sto é, através das quantdades, xy, XX e YY. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

43 Tem-se: n 44 X 5894,50 Y 410,90 X 588,5114 Y 93,477 XY ,69 X ,1 Y ,97 Então: XY X Y nxy ,4161 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

44 XX X n X ,7043 YY Y ny 10601,8698 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

45 r XY XX. YY , ,8698 0, ,4161 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

46 Apesar de r ser um valor admensonal, ele não é uma taxa. Assm o resultado não deve ser expresso em percentagem. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

47

48 Em mutas stuações duas ou mas varáves estão relaconadas e surge então a necessdade de determnar a natureza deste relaconamento. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

49 A análse de regressão é uma técnca estatístca para modelar e nvestgar o relaconamento entre duas ou mas varáves. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

50 De fato a regressão pode ser dvdda em dos problemas: () o da especfcação e ( ) o da determnação. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

51 O problema da especfcação é descobrr dentre os possíves modelos (lnear, quadrátco, exponencal, etc.) qual o mas adequado. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

52 O problema da determnação é uma vez defndo o modelo (lnear, quadrátco, exponencal, etc.) estmar os parâmetros da equação. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

53 Normalmente é suposto que exsta uma varável Y (dependente ou resposta), que está relaconada a k varáves (ndependentes ou regressoras) X ( 1,,..., k). Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

54 A varável resposta Y é aleatóra, enquanto que as varáves regressoras X são normalmente controladas. O relaconamento entre elas é caracterzado por uma equação denomnada de equação de regressão. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

55 Quando exstr apenas uma varável regressora (X) tem-se a regressão smples, se Y depender de duas ou mas varáves regressoras, então tem-se a regressão múltpla. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

56 Vamos supor que a regressão é do tpo smples e que o o modelo seja lnear, sto é, vamos supor que a equação de regressão seja do tpo: Y α + βx + U. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

57 y Y α + βx + U; x 1 x x n x Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

58 O termo U é o termo erro, sto é, U representa outras nfluêncas sobre a varável Y, além da exercda pela varável X. A varação resdual (termo U) é suposto de méda zero e desvo constante e gual a σ. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

59 Ou anda pode-se admtr que o modelo fornece o valor médo de Y, para um dado x, sto é: E(Y/x) α + βx Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

60 Y α + βx + U; E(Y/x) α + βx, sto é, E(U) 0 V(Y/x) σ ; Cov(U, Uj) 0, para j; A varável X permanece fxa em observações sucessvas e os erros U são normalmente dstrbuídos. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

61 O modelo suposto E(Y/x) α + βx é populaconal. Vamos supor que se tenha n pares de observações, dgamos: (x 1, y 1 ), (x, y ),..., (x n, y n ) e que através deles queremos estmar o modelo acma. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

62 A reta estmada será representada por: Ŷ a + bx ou Y a + bx + E Onde a é um estmador de α e b é um estmador de β, sendo Ŷ um estmador de E(Y/x). Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

63 Exstem dversos métodos para a determnação da reta desejada. Um deles, denomnado de MMQ (Métodos dos Mínmos Quadrados), consste em mnmzar a soma dos quadrados das dstâncas da reta aos pontos. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

64 Tem-se: Y a + bx + E, Então: E Y - (a + bx ) Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

65 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca Deve-se mnmzar: φ n 1 n 1 n 1 ) bx a Y ( ) Ŷ Y ( E

66 Y a + b X + E y ŷ E x Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

67 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca Dervando parcalmente tem-se: ) X b a Y ( x b ) X b a Y ( a n 1 n 1 φ φ

68 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca Igualando as dervadas parcas a zero vem: 0 ) X b a Y ( x 0 ) X b a Y ( n 1 n 1

69 Isolando as ncógntas, tem-se: Y na + b X X Y n X + b X Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

70 Resolvendo para a e b, segue: b X X y nxy n X XY XX a Y bx Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

71 Lembrando que: XY X Y nxy XX X n X YY Y ny Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

72 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

73 Consderando os valores das varáves Oferta Monetára e Índce de Preços ao Consumdor, consderadas anterormente, determnar uma equação de regressão lnear para prever o IPC dado um determnado nível de Oferta Monetára. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

74 Ano Y IPC X M ,6 140, ,9 145, , 147, ,6 153, ,5 160, ,4 167, ,1 117, ,9 110, ,0 187,1 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

75 Da mesma forma que para calcular o coefcente de correlação é necessáro a construção de três novas colunas. Uma para X, uma para Y e outra para XY. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

76 Ano X Y XY X Y ,7 9, , 9, ,8 30, ,3 30, ,3 31, ,8 3, ,9 177, ,4 179, ,1 184,0 Total 5894,5 410, , , ,97 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

77 Tem-se: n 44 X 5894,50 Y 410,90 X 588,5114 Y 93,477 XY ,69 X ,1 Y ,97 Então: XY X Y nxy ,4161 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

78 XX X n X , 7043 YY Y ny 10601,8698 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

79 A equação de regressão, será, então: b XY XX ,4161,7043 0,133 0,13 a Y bx 93,477 0, , , ,89 Yˆ 14,89 + 0,13x Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

80 A pergunta que cabe agora é: este modelo representa bem os pontos dados? A resposta é dada através do erro padrão da regressão. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

81 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

82 O objetvo do MMQ é mnmzar a varação resdual em torno da reta de regressão. Uma avalação desta varação é dada por: E ( Y a bx ) n n Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

83 O cálculo da varânca resdual, por esta expressão, é muto trabalhoso, pos é necessáro prmero determnar os valores prevstos. Entretanto é possível obter uma expressão que não requera o cálculo dos valores prevstos, sto Ŷ a + bx é, de. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

84 vem: Desenvolvendo o numerador da expressão, ( Y a bx ) [Y Y ( Y Y ) YY b [Y ( Y + bx bx] b ( X X )(Y Y ) XY + b [Y XX bx ) bx] Y b( X X )] + b ( X X ) Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

85 Uma vez que: ( X X )( Y Y ) X Y nxy ( X X ) ( Y Y ) XY X n X Y ny XX YY Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

86 Deste modo, tem-se: ( Y a bx ) YY b XY + b XX Mas: b XY XX XY b XX Então: ( Y a bx ) YY b XX + b YY b XX XY YY + b b XX XX Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

87 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca Assm: n b n b s XY YY XX YY n ) bx a Y ( n E s erá, fnalmente:

88 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

89 Consderando os valores do exemplo anteror, determnar o erro padrão da regressão. Tem-se: XY ,4161 XX ,7043 b XY ,4161 0,133 XX ,7043 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

90 Então: s YY -b n - XY 10601,8698 8,878 8,83-0, ,4161 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

91 A pergunta, agora, é: este erro é razoável?, quer dzer, ele não é muto grande? A resposta envolve o cálculo do erro relatvo, sto é, devemos comparar este resultado com a varável de nteresse. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

92 A varável envolvda aqu é a Y, sto é, a base monetára, então, o erro relatvo, será: s 8,878 g s Y 93,477 9,47% Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

93 Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

94 Y Ŷ Y Y Y Y Ŷ Ŷ Y Y Y Y x Ŷ + Ŷ Y ( Y Y ) ( Y Ŷ ) + ( Ŷ Y ) VT VR + VE Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

95 (a) Varação Total: VT VT ( Y Y ) YY (b) Varação Resdual: VR VR ( ) Y Ŷ b YY XX VT VE (c) Varação Explcada: VE VE ( ) Yˆ Y b XX Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

96 Uma manera de medr o grau de aderênca (adequação) de um modelo é verfcar o quanto da varação total de Y é explcada pela reta de regressão. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

97 Para sto, toma-se o quocente entre a varação explcada, VE e a varação total,vt: R VE / VT Este resultado é denomnado de Coefcente de Determnação. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

98 R b VE b XX XY VT YY YY XY XX YY Este resultado mede o quanto as varações de uma das varáves são explcadas pelas varações da outra varável. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

99 Ou anda, ele mede a parcela da varação total que é explcada pela reta de regressão, sto é: VE b XX R YY A varação resdual corresponde a: VR (1 R ) YY Assm 1 R é o Coefcente de Indetermnação. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca - Departamento de Estatístca

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5.

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5. Correlação Frases Uma probabldade razoável é a únca certeza Samuel Howe A experênca não permte nunca atngr a certeza absoluta. Não devemos procurar obter mas que uma probabldade. Bertrand Russel Rotero

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (5,5): A redução da

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno grande (formato A) pautada com

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

Aplicação de um modelo simulado na formação de fábricas

Aplicação de um modelo simulado na formação de fábricas Aplcação de um modelo smulado na formação de fábrcas Márca Gonçalves Pzaa (UFOP) pzaa@ldapalm.com.br Rubson Rocha (UFSC) rubsonrocha@eps.ufsc.br Resumo O objetvo deste estudo é determnar a necessdade de

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de Unversdade Federal de Vçosa Departamento de Estatístca Dscplna: EST 63 Métodos Estatístcos II Apostla Introdução à Metodologa de Superfíces de Resposta Paulo Roberto Cecon Anderson Rodrgo da Slva Vçosa,

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Varáves Varável: característcas ou tens de nteresse de cada elemento de uma população ou amostra Também chamada parâmetro, posconamento, condção...

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER Renaldo Bomfm da Slvera 1 Julana Mara Duarte Mol 1 RESUMO Este trabalho propõe um método para avalar a qualdade das prevsões

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO ESTATISTICA EXPERIMENTAL: Com aplcaçoes em R Medcna

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

INTRODUÇÃO... 4 CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO

INTRODUÇÃO... 4 CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO 1 ÍNDICE INTRODUÇÃO... 4 CAPÍTULO 1... 6 INTRODUÇÃO... 6 Tpos de erros... 8 Erros aleatóros e sstemátcos em análses ttrmétrcas... 10 Manpulando erros sstemátcos... 1 CAPÍTULO... 16 ERROS EM ANÁLISES CLÁSSICAS...

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais