MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

Tamanho: px
Começar a partir da página:

Download "MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel"

Transcrição

1 MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel

2 Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão. Correlação amostral. Regressão lnear smples: hpóteses do modelo, estmação de parâmetros, propredades e nferênca dos estmadores. 3 Análse de varânca (ANOVA) em regressão. Intervalos de confança e de prevsão. Análse dos resíduos. 4 Dagnóstcos e reparação de problemas em regressão. Transformações. 5 Regressão lnear forma matrcal: estmação dos parâmetros, nferênca dos estmadores, ntervalos de confança. 6 Prova 7 Prncípos de regressão lnear múltpla. Dagnóstcos e reparação dos problemas em regressão lnear múltpla. Multcolneardade e seus efetos. 8 Seleção de varáves. Modelos polnomas. Modelos com varáves qualtatvas. 9 Introdução ao projeto de expermentos: estratéga de expermentação, prncípos báscos e aplcações típcas. Expermentos nteramente casualzados. Análse de varânca. 0 Expermentos fatoras com dos ou mas fatores. Expermentos fatoras k. Pontos centras. Expermentos em blocos casualzados. blocagem em expermentos k. 3 Prova 4 Expermentos fatoras fraconados. 5 Expermentos com fatores quanttatvos. Métodos de superfíce de resposta. 6 Otmzação de produtos e processos. Projetos robustos.

3 REGRESSÃO LINEAR MÚLTIPLA Professor: Rodrgo A. Scarpel

4 Regressão lnear múltpla: Modelos de regressão lnear múltpla são necessáros nos casos em que:. Houve omssão de varáves relevantes (para se obter um modelo aproprado, há a necessdade de ncorporar novas varáves ndependentes) quanttatvas, qualtatvas, nterações entre varáves,. A relação entre as varáves dependente e ndependente demanda funções polnomas de ordem k>. Stuações expermentas em que exstem mutas varáves (fatores) de controle e/ou com nterações entre os fatores Modelo: Y = k k +, em que 0 é o ntercepto, j (j=,,k) são os coefcentes angulares e (=,,n) é o termo de erro.

5 Regressão lnear múltpla: Etapas da análse:. Defnção do modelo (varável dependente e possíves varáves ndependentes). Seleção das varáves do modelo. Estmação dos parâmetros do modelo v. Inferêncas em relação aos parâmetros (sgnfcânca) v. Avalação da qualdade do ajuste v. Cração de prevsões e nferêncas em relação às prevsões (ntervalos de confança) v. Dagnóstcos e reparação de problemas em RLMúltpla Etapas, v e v: Regressão lnear Caso Geral OBS: Crar modelo de regressão lnear múltpla NÃO é tão smples como fazer um modelo de regressão com mas de uma varável ndependente.

6 Avalação da qualdade do ajuste: R ajustado É uma estatístca de aderênca do modelo de regressão múltpla R SQResíduos n k ajustado SQTotal n RESUMO DOS RESULTADOS SQResíduos SQTotal R n n k Estatístca de regressão R múltplo 0, R-Quadrado 0, R-quadrado ajustado 0, Erro padrão 3, Observações 0 R ajustado ,8 0 0,6797 ANOVA gl SQ MQ F F de sgnfcação Regressão 440, , , ,9833E-05 Resíduo 7 83, , Total 9 63,8 Coefcentes Erro padrão Stat t valor-p 95% nferores 95% superores Interseção -, , , , ,57677, Horas_Trenam () 0, ,047758, , , , Idade () 0, , , , , ,

7 Dagnóstcos e reparação de problemas em RLM: Para saber o modelo é aproprado, além dos dagnóstcos empregados anterormente: O modelo se ajusta apenas a um ou poucos outlers A função de regressão não é lnear Os termos de erro (resíduos) não tem varânca constante Os termos de erro (resíduos) não são ndependentes Os termos de erro (resíduos) não são normalmente dstrbuídos Outras varâves ndependentes foram omtdas do modelo deve-se tomar cudado com: Multcolneardade entre as varáves ndependentes

8 Dagnóstcos e reparação de problemas em RLM: Presença de outlers e observações nfluentes em RLM: A presença de outlers pode ser detectada a partr do gráfco de ^ dspersão /(QMRes) ½ x Y ou a partr da Dstânca de Cook: A presença de outlers podem gerar dstorções nos parâmetros estmados. Opções: remover os outlers ou trabalhar com métodos robustos

9 Dstânca de Cook (D ): Dagnóstcos e reparação de problemas em RLM: Y h Y H I HY Y Y-Y H HY Y Y Sendo (matrzchapéu) emque ) ( ) ( ) ( QMRes Na prátcaé calculado por h h k D k k Y Y D Obs: Alguns autores ndcam que uma observação é um outler se D >, outros se D > 4/n

10 Dagnóstcos e reparação de problemas em RLM: Multcolneardade entre as varáves ndependentes:

11 Dagnóstcos e reparação de problemas em RLM: Multcolneardade entre as varáves ndependentes: Problema que ocorre quando as varáves explcatvas não são ndependentes: Var Y I Indcações de Multcolneardade: Alta correlação entre as varáves ndependentes do modelo / determnante de ( ) 0 Baxa sgnfcânca das varáves (alto Valor-P) Valor dos parâmetros obtdos atentam contra o bom senso

12 Dagnóstcos e reparação de problemas em RLM: Stuação deal (varáves ndependentes ortogonas): A ortogonaldade entre as varáves ndependentes é comumente encontrada quando os expermentos são planejados. Neste caso: Exemplo: SQRegressão y y x x x x x x x x R R k k k k k k k Obs x:temperatura pó ( o C) x:taxa Extrusão y:rao do Grão de Propelente (mm) MATRIZ DE CORRELAÇÃO: x,000 x x y x 0,000,000 y 0,600 0,689,000 DETERMINANTE ( ):

13 Dagnóstcos e reparação de problemas em RLM: Exemplo Stuação deal (varáves ndependentes ortogonas): Estatístca de regressão ANOVA R múltplo 0,5996 gl SQ MQ F F de sgnfcação R-Quadrado 0,3595 Regressão ,367 0,6 R-quadrado ajustado 0,57 Resíduo 6 307,5 534,58 Erro padrão 3, Total ,5 Observações 8 Coefcentes Erro padrão Stat t valor-p Interseção -0,75 69,963-0,54 0,883 x:temperatura pó (oc) 0,75 0,409,835 0,6 Estatístca de regressão ANOVA R múltplo 0,6895 gl SQ MQ F F de sgnfcação R-Quadrado 0,4754 Regressão 380,5 380,5 5,437 0,0585 R-quadrado ajustado 0,3880 Resíduo ,83 Erro padrão 0,945 Total ,5 Observações 8 Coefcentes Erro padrão Stat t valor-p Interseção 65 3,394,778 0,03 x:taxa Extrusão,875,33,33 0,059 Estatístca de regressão ANOVA R múltplo 0,937 gl SQ MQ F F de sgnfcação R-Quadrado 0,8348 Regressão 480,5 090,5,638 0,0 R-quadrado ajustado 0,7688 Resíduo ,4 Erro padrão,8608 Total ,5 Observações 8 Coefcentes Erro padrão Stat t valor-p Interseção -6,5 4,37 -,56 0,90 x:temperatura pó (oc) 0,75 0,7 3,99 0,0 x:taxa Extrusão,875 0,758 3,794 0,03

14 Dagnóstcos e reparação de problemas em RLM: Exemplo Stuação com multcolneardade: Propaganda Desconto Vendas Propaganda Desconto 0,99 Vendas 0,80 0,78 Vendas =.54,5 + 3,83 Propaganda (R =0,64) (Valor-P=0,00) Vendas =.557, + 59,96 Desconto (R =0,6) (Valor-P=0,00) ou: Vendas =.540,4 + 6,8 Propaganda 48,7 Desconto (R =0,64) (Valor-P=0,4) (Valor-P=0,60)

15 Dagnóstcos e reparação de problemas em RLM: Multcolneardade entre as varáves ndependentes: Porque multcolneardade é um problema:. A nterpretação da mportânca relatva do efeto das varáves ndependentes (efeto margnal) não é aplcável. As nferêncas em relação aos parâmetros é prejudcada (alta varânca dos estmadores) os coefcentes parecem não sgnfcatvos, mesmo sendo. Embora as prevsões não sejam prejudcadas deve-se tomar cudado (não é possível tratar as varáves explcatvas de forma ndependente)

16 Dagnóstcos e reparação de problemas em RLM: Multcolneardade Alternatvas: Prncípo: Uma varável só deve estar no modelo se a sua presença resultar em um aumento sgnfcatvo na soma de quadrados da regressão. Aplcar métodos de seleção de varáves do modelo: A partr da matrz de correlação Utlzação do coefcente de correlação parcal Seleção Forward (nclur varável por vez crtéro de nclusão: aumento na SQRegressão) Elmnação Backward Transformação das varáves do modelo (regressão por componentes prncpas, regressão Rdge, partal least squares)

17 Dagnóstcos e reparação de problemas em RLM: Multcolneardade Alternatvas: Seleção das varáves do modelo (a partr da matrz de correlação): Propaganda Desconto Vendas Propaganda Desconto 0,99 Vendas 0,80 0,78 0,99 0,80 V 0,78 0,80 0,78 P 0,99 D Vendas =.54,5 + 3,83 Propaganda (R =0,64) (Valor-P=0,00) ou: Vendas =.557, + 59,96 Desconto (R =0,6) (Valor-P=0,00)

18 Dagnóstcos e reparação de problemas em RLM: Multcolneardade Alternatvas: Seleção das varáves do modelo (coefcente de correlação parcal): r, Y \ r, Y r r,,. r r, Y, Y 0,99 0,80 Propaganda Desconto Vendas Propaganda Desconto 0,99 Vendas 0,80 0,78 r P, V \ D 0,8 0,99.0,78 0,99 0,78 0,35 0,78 r D, V \ P 0,78 0,99.0,8 0,99 0,8 0,4

19 Para casa: Laboratóro 5 (ste: Letura: Walpole et al. cap.: Regressão Lnear Múltpla e... (.6 a.0) Montgomery e Runger cap.: Multple lnear reg. (.5 a.6)

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel MÉTODOS MULTIVARIADOS Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo INTRODUÇÃO Semana Conteúdo Introdução aos métodos multvarados 1 Análse de componentes prncpas Aplcações de análse de componentes

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11 EERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Lnear 4. EERCÍCIOS PARA RESOLVER NAS AULAS 4.1. O gestor de marketng duma grande cadea de supermercados quer determnar

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

1. Caracterização de séries com

1. Caracterização de séries com 1. Caracterzação de séres com sazonaldade Como dscutdo na Aula 1, sazonaldade é um padrão que se repete anualmente. A sazonaldade é determnístca quando o padrão de repetção anual é exato, ou estocástca,

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (5,5): A redução da

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

são os coeficientes desconhecidos e o termo ε (erro)

são os coeficientes desconhecidos e o termo ε (erro) Regressão Lnear Neste capítulo apresentamos um conjunto de técncas estatístcas, denomnadas análse de regressão lnear, onde se procura estabelecer a relação entre uma varável resposta e um conjunto de varáves

Leia mais

ANÁLISE DE VARIÂNCIA (ANOVA) CLÁSSICA: TÉCNICA ÚTIL, PORÉM RESTRITIVA!

ANÁLISE DE VARIÂNCIA (ANOVA) CLÁSSICA: TÉCNICA ÚTIL, PORÉM RESTRITIVA! ANÁLSE DE VARÂNCA (ANOVA) CLÁSSCA: TÉCNCA ÚTL, PORÉM RESTRTVA! Questões assocadas à verfcação de suas suposções: (adtvdade, ndependênca, homocedastcdade e normaldade) k..d.~n(0, ) quadrados mínmos ordnáros

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de Unversdade Federal de Vçosa Departamento de Estatístca Dscplna: EST 63 Métodos Estatístcos II Apostla Introdução à Metodologa de Superfíces de Resposta Paulo Roberto Cecon Anderson Rodrgo da Slva Vçosa,

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

2 Experimentos com Mistura

2 Experimentos com Mistura Modelagem em Expermentos Mstura-Processo para Otmzação de Processos Industras Expermentos com Mstura Neste capítulo são apresentados tópcos para planeamento e análse de Expermentos com Mstura (EM) com

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Variáveis dummy: especificações de modelos com parâmetros variáveis

Variáveis dummy: especificações de modelos com parâmetros variáveis Varáves dummy: especfcações de modelos com parâmetros varáves Fabríco Msso, Lucane Flores Jacob Curso de Cêncas Econômcas/Unversdade Estadual de Mato Grosso do Sul E-mal: fabrcomsso@gmal.com Departamento

Leia mais

APLICAÇÃO DE MÉTODOS ESTATÍSTICOS NO DESPORTO: ANÁLISE DO CAMPEONATO DE FUTEBOL, EM PORTUGAL

APLICAÇÃO DE MÉTODOS ESTATÍSTICOS NO DESPORTO: ANÁLISE DO CAMPEONATO DE FUTEBOL, EM PORTUGAL APLICAÇÃO DE MÉTODOS ESTATÍSTICOS NO DESPORTO: ANÁLISE DO CAMPEONATO DE FUTEBOL, EM PORTUGAL STATISTICAL METHODS APPLIED TO SPORTS: ANALISYS OF THE PORTUGUESE SOCCER CHAMPIONSHIP Autor: Paulo Almeda Perera

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

Aplicação de um modelo simulado na formação de fábricas

Aplicação de um modelo simulado na formação de fábricas Aplcação de um modelo smulado na formação de fábrcas Márca Gonçalves Pzaa (UFOP) pzaa@ldapalm.com.br Rubson Rocha (UFSC) rubsonrocha@eps.ufsc.br Resumo O objetvo deste estudo é determnar a necessdade de

Leia mais

EFEITOS DO ERRO AMOSTRAL NAS ESTIMATIVAS DOS PARÂMETROS DO MODELO FATORIAL ORTOGONAL

EFEITOS DO ERRO AMOSTRAL NAS ESTIMATIVAS DOS PARÂMETROS DO MODELO FATORIAL ORTOGONAL SACHIKO ARAKI LIRA EFEITOS DO ERRO AMOSTRAL NAS ESTIMATIVAS DOS PARÂMETROS DO MODELO FATORIAL ORTOGONAL Tese apresentada como requsto parcal à obtenção do grau de Doutora em Cêncas no Programa de Pós-Graduação

Leia mais

O PROBLEMA DA MODELAGEM DA VARIÂNCIA NA OTIMIZAÇÃO EXPERIMENTAL DE PRODUTOS OU PROCESSOS

O PROBLEMA DA MODELAGEM DA VARIÂNCIA NA OTIMIZAÇÃO EXPERIMENTAL DE PRODUTOS OU PROCESSOS O PROBLEMA DA MODELAGEM DA VARIÂNCIA NA OTIMIZAÇÃO EXPERIMENTAL DE PRODUTOS OU PROCESSOS Pedro Alberto Barbetta Departamento de Informátca e de Estatístca Unversdade Federal de Santa Catarna Antono Cezar

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

USO DE UM MODELO MATEMÁTICO NO ESTUDO DO DESENVOLVIMENTO DE MUDAS DE Brosimum gaudichaudii Tréc.

USO DE UM MODELO MATEMÁTICO NO ESTUDO DO DESENVOLVIMENTO DE MUDAS DE Brosimum gaudichaudii Tréc. GRUPO VERDE DE AGRICULTURA ALTERNATIVA (GVAA) ISSN 98-83 Artgo Centfco USO DE UM MODELO MATEMÁTICO NO ESTUDO DO DESENVOLVIMENTO DE MUDAS DE Brosmum gaudchaud Tréc. Rozlane Aparecda Pelegrn Gomes de Fara

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

OTIMIZAÇÃO DO PROCESSO DE HOMOGENEIZAÇÃO DE EMULSÕES W/O DE PETRÓLEO COM O USO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA

OTIMIZAÇÃO DO PROCESSO DE HOMOGENEIZAÇÃO DE EMULSÕES W/O DE PETRÓLEO COM O USO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA OTIMIZAÇÃO DO PROCESSO DE HOMOGENEIZAÇÃO DE EMULSÕES W/O DE PETRÓLEO COM O USO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA Anderson Paulo de Pava andersonppava@unfe.edu.br José Henrque de Fretas Gomes ze_henrquefg@yahoo.com.br

Leia mais

REGRESSÃO LINEAR SIMPLES PARTE III

REGRESSÃO LINEAR SIMPLES PARTE III REGRESSÃO LINEAR SIMPLES PARTE III Instalando e usando a opção Regressão do Excel. Francisco Cavalcante(f_c_a@uol.com.br) Administrador de Empresas graduado pela EAESP/FGV. É Sócio-Diretor da Cavalcante

Leia mais

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

Regressão múltipla linear

Regressão múltipla linear Regressão múltpla lnear (Análse de superfíces de tendênca) Coefcente de correlação lnear produto momento, segundo Pearson (r) SPXY = -( ) / n; SQX = - () / n; SQY = - () / n r cov(, ) var( )var( ) r SPXY

Leia mais

Diferenciais de Salários por Raça e Gênero: Aplicação dos procedimentos de Oaxaca e Heckman em Pesquisas Amostrais Complexas

Diferenciais de Salários por Raça e Gênero: Aplicação dos procedimentos de Oaxaca e Heckman em Pesquisas Amostrais Complexas N o 638 ISSN 0104-8910 Dferencas de Saláros por Raça e Gênero: Aplcação dos procedmentos de Oaxaca e Heckman em Pesqusas Amostras Complexas Alexandre Pnto de Carvalho, Marcelo Côrtes Ner, Dense Brtz Slva

Leia mais

CURRICULUM VITAE - RESUMIDO

CURRICULUM VITAE - RESUMIDO A estatístca tem uma partculardade: pesqusamos para dzer algo sgnfcatvo sobre o unverso que elegemos, porém a pesqusa só será sgnfcatva se conhecermos sufcentemente o unverso para escolhermos adequadamente

Leia mais

Avaliação de processos produtivos multivariados através das menores componentes principais

Avaliação de processos produtivos multivariados através das menores componentes principais XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, a 4 de out de 3 Avalação de processos produtvos multvarados através das menores componentes prncpas Adrano Mendonça Souza (UFSM) amsouza@ccne.ufsm.br

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos Tópcos em Econometra I Ala /7/23 Modelo Tobt para solção de canto Eemplos Solções de canto. Qantdade de dnhero doado para cardade: mtas pessoas não fazem este tpo de doação. Uma parcela epressva dos dados

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Regressão Logística Aplicada aos Casos de Sífilis Congênita no Estado do Pará

Regressão Logística Aplicada aos Casos de Sífilis Congênita no Estado do Pará Regressão Logístca Aplcada aos Casos de Sífls Congênta no Estado do Pará Crstane Nazaré Pamplona de Souza 1 Vanessa Ferrera Montero 1 Adrlayne dos Res Araújo 2 Edson Marcos Leal Soares Ramos 2 1 Introdução

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO

PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO PLANEJAMENTO DE GRÁFICOS DE CONTROLE DE REGRESSÃO VIA SIMULAÇÃO Ana Carolna Campana Nascmento 1, José Ivo Rbero Júnor 1, Mosés Nascmento 1 1. Professor da Unversdade Federal de Vçosa, Avenda Peter Henr

Leia mais

Tânia Lucia Hojo (UFMG) Sueli Aparecida Mingoti (UFMG)

Tânia Lucia Hojo (UFMG) Sueli Aparecida Mingoti (UFMG) Modelos de equações estruturas: uma avalação dos métodos de máxma verossmlhança, mínmos quadrados ordnáros e mínmos quadrados parcas usados na estmação de parâmetros do modelo. Tâna Luca Hojo (UFMG) hojo@est.mest.ufmg.br

Leia mais

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,

Leia mais

DA MATEMÁTICA AOS MODELOSECONOMETRICOS: APLICAÇÃO SUPERIOR ANGOLANO

DA MATEMÁTICA AOS MODELOSECONOMETRICOS: APLICAÇÃO SUPERIOR ANGOLANO DA MATEMÁTICA AOS MODELOSECONOMETRICOS: APLICAÇÃO AO ENSINO SUPERIOR ANGOLANO Josefa Ukalango dos Santos Chquete Mestrado em Fnanças Professor Doutor Paulo Alexantre Botelho Rodrgues Pres Junho de 014

Leia mais