CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA"

Transcrição

1 CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de observações n. MÉDIA ARITMÉTICA PARA DADOS AGRUPADOS uando os valores de x estão agrupados com suas respectvas freqüêncas absolutas F, a méda artmétca ou méda amostral é expressa por:.3 MEDIANA X ~ F X x n uando colocados em ordem crescente, é o valor que dvde a amostra ou população, em duas partes guas.

2 .3. CÁLCULO DA MEDIANA VARIÁVEL DISCRETA Determnação da ordem do elemento central que caracterza a medana: X ~ Se n for ímpar o elemento central será de ordem n+ Se n for par, a medana será a méda entre os elementos centras de ordem n e n % 00%.3. CÁLCULO DA MEDIANA VARIÁVEL CONTÍNUA Calcula-se a ordem da medana como sendo n, ndependente de n ser par ou ímpar. Pela F ac, dentfca-se a classe que contém a medana (classe Md) 3 Utlza-se a fórmula: n ~ f X l + Md F Md h

3 Onde: l Md n f h F Md lmte nferor da classe Md tamanho da amostra ou número de elementos soma das frequêncas anterores à classe Md ampltude da classe Md frequênca da classe Md.4 UARTIS Dvdem um conjunto de dados em quatro partes guas. 0% 5% 50% 75% 00% 0 Md 3 o uartl dexa 5% dos elementos. o uartl Medana dexa 50% dos elementos. 3 3 o uartl dexa 75% dos elementos..4. Como determnar o o e o 3 o uarts.

4 Para o o uartl, calcula-se a ordem 4 n e para o 3 o uartl a ordem será 3n 4 Identfca-se as classes dos quarts pelas F ac. Fórmulas para determnação dos o e 3 o uarts, respectvamente: l + 3 l + 3 n f h 4 F 3n f h 4 F 3.4. EXEMPLO Dada a dstrbução, determnar os ~ quarts e 3 e a medana ( X ) Classes F F ac 7 a a 7 5 Classe (contém o 4 o elemento) 7 a Classe Md (contém o 8 o elemento) 37 a Classe 3 (contém o 4 o elemento) 47 a

5 Σ 56 Passo n 56 ~? X? 3? n 56 o n 56 o 3n ( 56) o 4 Passo Determnado os elementos, as classes são dentfcadas pelas F ac, como mostrado na tabela anteror. Passo 3 Uso das fórmulas para a determnação de ~ e 3 e ( X ): Para temos: l 7; n 56; f 6; h 0; F ~ Para ( ) l Md X temos: 7; n 56; f ; h 0; F 5 0 Para 3 temos: l 3 37; n 56; f 4; h 0; F 0

6 Portanto: ~ X , , Conclusão: 5% das observações estão entre 7 e,33. 5% das observações estão entre,33 e 30,5. 5% das observações estão entre 30,5 e 38. 5% das observações estão entre 38 e DECIS E PERCENTIS Dvdem, respectvamente, a sére em 0 (Decl) e 00 (Percentl) partes guas..5. Cálculo para um decl (D ) 0% 0% 0% 30%40%50%60%70%80%90%00% D D D 3 D 4 D 5 D 6 D 7 D 8 D 9 Passo Calcula-se a ordem,,3,4,5,6,7,8 e 9 n, onde 0 Passo Identfca-se a classe D pela F ac Passo 3 Aplca-se a fórmula:

7 D l D n 0 + F.5. Cálculo de um percentl (P ) D f h 0% % % 3%...50%...97%98% 99%00% n Passo Calcula-se a ordem, onde 00,,3,...98,99 P P P 3 P 50 P 97 P 98 P 99 Passo Identfca-se a classe P pela F ac Passo 3 Aplca-se a fórmula: P l P n 00 + F P f h.6 MODA É o valor mas freqüente da dstrbução..6. Moda de uma dstrbução smples, ou seja, sem agrupamento em classes.

8 Identfca-se faclmente observando-se qual o elemento que apresenta maor freqüênca. Por exemplo: X F A moda será o elemento 48. Indca-se como: M o Moda para dados agrupados em classes, ou seja, varáves contínuas. Passo Identfcar a classe moda (aquela de maor freqüênca) Aplca-se a fórmula (de Czuber) Onde: M o l Mo + + h

9 l h M o lmte nferor da classe modal dferença entre a frequênca da classe modal e a frequênca da classe medatamente anteror. dferença entre a frequênca da classe modal e a frequênca da classe medatamente posteror. ampltude da classe modal..7 Um exemplo completo A tabela a segur mostra as notas de 50 alunos (a) Determne a ampltude total da amostra. O trabalho fcará mas fácl se construrmos uma tabela, colocando os dados em ordem decrescente. Utlzando-se o excel, sto não será necessáro. A ampltude total, R, é defnda como: R maor valor menor valor

10 O maor valor será gual a 98, enquanto o menor valor será 33. Assm, R R 65 (b) Número de classes pela fórmula de Sturges. Para determnarmos o número de classes, K, usaremos a fórmula de Sturges, ou seja: K ( n) + 3, log. No nosso caso n 50. Substtundo na fórmula acma, temos que K 6,47. Devemos arredondar este valor para o ntero medatamente superor. Portanto o número de classes será K 7 (c) Ampltude das classes. A ampltude das classes, h, é dado por: h O resultado acma não é um número ntero e, portanto, devemos arredondá-lo. No caso, encontramos h 0. Apresentaremos os tens (d); (e); (f); (g) e (h) através de uma tabela. (d) uas as classes? (Ince pelo 30). (e) Freqüêncas absolutas das classes. (f) Freqüêncas relatvas. (g) Pontos médos das classes. R K

11 (h) Freqüêncas acumuladas crescentes. classes Intervalos de Classes F f x F ac x F 30 a , a , a , a 70 0, a , a , a , Σ () Hstograma das freqüêncas absolutas. O hstograma apresentado abaxo fo construído com o excel. Hstograma Frequêncas Absolutas Classes

12 (j) Calcular a méda amostral. Para determnarmos a méda amostral, fo necessáro acrescentar mas uma coluna à tabela acma, contendo o produto obter a soma, ou seja: x e no fnal desta coluna, F x F A méda amostral será dada por: X xf n X X ,6 (k) Calcular e nterpretar a moda. A fm de determnarmos a Moda, usaremos a equação: M o l Mo + + Da tabela, vemos que a classe moda, ou seja, a classe de maor freqüênca absoluta é a 4 a e ; 9 3 a moda será: M o h l. Mo e h 0. Portanto, M o 66

13 Concluímos pos, que 66 fo a nota mas freqüente do grupo. (l) Calcular e nterpretar a medana. Como vsto na seção.3., a ordem da medana é gual 5, ou seja, 50/. Da tabela, concluímos que a classe da medana é a 4 a. n ~ f Usando a fórmula: X l + Md F Md h Onde da tabela vemos que: ~ X ( 5 ) 8 0 ~ 60 + X 65,83 Este resultado nos dz que 50% da amostra têm nota nferor a 65,83 (m) Determnar e nterpretar o o quartl. 50 e 4 A classe a qual pertence o o quartl será, 5 procurando na coluna da F ac da tabela, vemos que este elemento pertence à 3 a classe.

14 Calcula-se usando a fórmula: l + n f 4 F (,5 ) h ,5 Este resultado nos dz que 5% dos alunos têm nota nferor a 53,5. (n) Calcular e nterpretar o 55 o percentl. A classe a qual pertence o 55 o ,5 elemento pertence à 4 classe. Usando a fórmula que: P percentl será e da coluna F ac da tabela vemos este P ( 7,5 ) l P P n 00 + F P 67,9 f h, temos Isto sgnfca que 45% do grupo trou nota superor a este valor..8 MEDIDAS DE DISPERSÃO

15 São meddas que avalam a dspersão em torno da méda, verfcando a representatvdade da méda. Dspersão.8. AMPLITUDE TOTAL É uma medda de dspersão dada pela dferença entre o maor e o menor valor da sére. R X max X mn É de utlzação lmtada, pos, sendo uma medda que depende apenas dos valores extremos, não capta as possíves varações entre esses lmtes. X.8. VARIÂNCIA AMOSTRAL Desvo: mede quanto cada valor X se afasta em relação à X e é dado por: d X X É fácl verfcar que d 0. A fm de determnar a varânca, devemos consderar os quadrados dos desvos, ou seja,.8.. CÁLCULOS DA VARIÂNCIA d

16 A varânca, S, de uma amostra de n meddas é gual à soma dos quadrados dos desvos, dvdda por (n ), portanto: S d n ( X X ) n Para dados agrupados, a varânca será dada por: S d F n ( X X ) n.8.. Fórmulas prátcas para o cálculo da varânca amostral. S X n F ( X ) Para dados agrupados temos que: S X n F n ( X F ) uanto maor o valor de S, maor a dspersão dos dados amostras. n.8.3 DESVIO PADRÃO AMOSTRAL S S.8.4 INTERPRETAÇÃO DO DESVIO PADRÃO

17 Regra Empírca Para qualquer dstrbução amostral com méda X e desvo padrão S, tem-se que: O ntervalo X ± S contém entre 60% e 80% de todas as observações amostras. A porcentagem aproxmase de 70% para as dstrbuções aproxmadamente smétrca, chegando a 90% para dstrbuções fortemente assmétrcas. O ntervalo X ± S contém aproxmadamente 95% das observações amostras para dstrbuções smétrcas e aproxmadamente 00% para as de assmetra elevada. O ntervalo X ± 3S contém aproxmadamente 00% das observações amostras. Teorema de Tchebycheff Para qualquer dstrbução amostral com méda X e desvo padrão S, tem-se que: O ntervalo X ± S contém, no mínmo 75% de todas as observações amostras. O ntervalo X ± 3S contém, no mínmo 89% de todas as observações amostras.

18 .8.5 Exemplo Calcular a varânca e o desvo padrão da segunte dstrbução amostral: X F Construímos um nova tabela a fm de determnarmos os valores de X F e X F X F X F X F Σ Usando a fórmula prátca para calcular a varânca, temos que: S X F n 9 S Cálculo do desvo padrão: ( X F ) ( ) n,86 S S,86 S, Exemplo Consderemos a dstrbução amostral das dades de 50 funconáros de uma empresa e determnemos a varânca, o desvo padrão e constatemos as regras para nterpretação do desvo padrão.

19 Intervalo das classes F X X F X F 8 a 5 6, ,5 5 a 3 0 8,5 85 8,50 3 a ,5 46,5 6383,5 39 a , a , ,5 53 a ,5 8,5 596,5 60 a 67 63, ,5 Σ ,50 Cálculo da méda amostral: X F 9 X X n 50 38,44anos Cálculo da varânca amostral: S S X n F ( X F ) , Cálculo do desvo padrão: n 34,8 S S 34,8,58 anos Verfcação das regras para nterpretação do desvo padrão

20 X ± S 38,44 ±,58 ( 8,86; 50,0) Da tabela, concluímos que 60% das dades observadas estão entre 7 e 50 anos, o que concorda com a regra empírca que estabelece que o referdo ntervalo deverá conter de 60% a 80% das observações. X ± S 3,84 ±,58 ( 5,8 ; 6,60 ) Mas uma vez, consultando a tabela, vemos que 98% das dades observadas estão entre 6 e 6 anos, o que mas uma vez concorda com a regra empírca desde que a dstrbução estudada é altamente assmétrca. Esse resultado também confrma o crtéro de Tchebycheff que defne no mínmo 75% da observações para o ntervalo X ± S..9 COEFCIENTE DE VARIAÇÃO DE PEARSON A Ampltude total (R), Varânca (S ) e o desvo padrão (S), são meddas absolutas de dspersão. Mostraremos agora uma medda relatva de

21 dspersão, denomnada de Coefcente de Varação (C.V.), defnda como: S C. V 00 X Onde S desvo padrão amostral x méda amostral..0 REGRAS EMPÍRICAS PARA INTERPRETAÇÕES DO C.V Se C. V < 5% baxa dsperão 5% CV < 30% têm - se méda dspersão C. V 30% elevada dspersão. ESCORE PADRONIZADO (Z) Outra medda relatva de dspersão para uma medda X.

22 Z X S X Um escore Z negatvo ndca que a observação X está à esquerda da méda, enquanto um escore postvo ndca que a observação está á dreta da méda. Exemplos: São dados, os médos e os desvos padrões das avalações de duas dscplnas: Português Matemátca X 6,5 X 5, 0 P S, S 0, 9 P Relatvamente às dscplnas Português e Matemátca, em qual delas obteve melhor performance um aluno com 7,5 em Português e 6,0 em Matemátca? Determnando es escores padronzados para as notas obtdas temos que: 7,5 6,5, 6,0 5,0 0,9 Português: Z 0, 83 Matemátca Z, P M Uma vez que o escore padronzado de Matemátca é maor que o de Português, o aluno teve melhor performance na prmera. Os dados de uma pesqusa revelaram méda 0,43 e M M

23 desvo padrão 0,05 para determnada varável. Verfcar se os dados 0,380 e 0,455 podem ser consderados observações da referda varável. Para X 0,380 Z 0,380 0,43 0,05,63 Para X 0,455 Z 0,455 0,43 0,05 4,08 Como podemos observar, o dado 0,455 tem escore padronzado maor que 3, sto sgnfca dzer que esta observação foge da dmensão esperada (denomnada de outlers) e portanto pode ser descartada. Por outro lado, o dado 0,38, cujo escore padronzado fo gual a,63 pode ser consderado um dado normal.. MEDIDAS DE ASSIMETRIA Mede o grau de afastamento de uma dstrbução da undade de smetra, a medana. Em uma dstrbução smétrca, a méda, a medana e a moda têm os mesmos valores.

24 A fgura acma representa o gráfco de uma dstrbução smétrca. Em uma dstrbução assmétrca postva ou assmétrca à dreta, tem-se: M o < X ~ < X Como lustra o gráfco abaxo. Já para uma dstrbução assmétrca negatva, ou assmétrca à esquerda, tem-se:

25 X < X ~ < Segundo a lustração abaxo M o Entre as dversas fórmulas para a determnação do coefcente de assmetra, podemos ctar como útes as duas seguntes: 0 Coefcente de Pearson: X M 0 AS S 0 Coefcente de Pearson: Se: AS ~ + 3 X 3 AS 0, dz -se que a dstrbução é smétrca AS > 0, dz -se que a dstrbução é assmétrca postva AS < 0, dz - se que a dstrbução é assmétrca negatva

26 .3 Exemplo: Dada a dstrbução amostral, calcular os dos coefcentes de assmetra de Pearson. Saláro ($000) 30 a a a 50 Empregados Para determnar os dos coefcentes de Pearson, necesstamos calcular a méda, a moda, o desvo padrão, os 0 e 3 0 quarts e a medana. Assm, temos que: F X F F F h 30 a a , Classes F ac a 50 Σ Méda: Moda: M o X X F 0700 X n 60 lmo + h , ,49 Observe que não sendo as classes de mesma ampltude, fo necessáro determnar-se a ampltude relatva, ou seja, F h. Assm a ampltude relatva da classe modal é gual a 4 de modo que 4 e 4 3. Cálculo da varânca:

27 S S X n F Cálculo do Desvo Padrão: S S Cálculo de l + 3 l 3 ~ X l Md e, 3 : n f h 4 F 3n f h 4 + F 3 + n f F Md ( X F ) ( 0700) 60 n 0,6 3,96 ~ X h , Cálculo dos Coefcentes de Assmetra 50 X M 0 66,875 4,49 AS 0,796 S 3,96 ~ + 3 X AS 0,

28 Conclusão: Como nos dos casos AS > 0, a dstrbução é postvamente sm

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIAS

DISTRIBUIÇÃO DE FREQUÊNCIAS Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa DISTRIBUIÇÃO DE FREQUÊNCIAS 5 5. DISTRIBUIÇÃO

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho Professor Luz Antono de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos AULA e Raconas 9 e APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA PROGRESSÃO ARITMÉTICA

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 11 Estatístca.... Classe.... 7 Lmtes de classe... 7 Ampltude de um ntervalo de classe... 7 Ampltude total da Dstrbução... 8 Ponto médo de uma classe... 8 Tpos de frequêncas... 9 Meddas de Posção...

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Aula 5 Senado Federal Parte 2

Aula 5 Senado Federal Parte 2 Aula 5 Senado Federal Parte Estatístca... Classe... 8 Lmtes de classe... 8 Ampltude de um ntervalo de classe... 9 Ampltude total da Dstrbução... 9 Ponto médo de uma classe... 9 Tpos de frequêncas... 10

Leia mais

ESTATÍSTICA PARA TCU PROFESSOR: GUILHERME NEVES

ESTATÍSTICA PARA TCU PROFESSOR: GUILHERME NEVES Estatístca Descrtva A Estatístca, ramo da Matemátca Aplcada, teve orgem na hstóra do homem. Desde a Antgudade, város povos regstravam o número de habtantes, de nascmentos, de óbtos, dstrbuíam equtatvamente

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

n = 25) e o elemento (pois = 19) e terá o valor 8. Verifique que antes e depois do 19 o elemento, teremos 18 elementos.

n = 25) e o elemento (pois = 19) e terá o valor 8. Verifique que antes e depois do 19 o elemento, teremos 18 elementos. V) Mediana: A Mediana de um conjunto de números, ordenados crescente ou decrescentemente em ordem de grandeza (isto é, em um rol), será o elemento que ocupe a posição central da distribuição de freqüência

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A) Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Apostila de Estatística

Apostila de Estatística Apostla de Estatístca Prof. Ms. Osoro Morera Couto Junor Capítulo 1 - Introdução Estatístca 1.1 Hstórco A estatístca é um ramo da matemátca aplcada. A partr do século XVI começaram a surgr as prmeras análses

Leia mais

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Prof. Ms. Wiliam Gonzaga Pereira

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Prof. Ms. Wiliam Gonzaga Pereira Apostla de Estatístca Volume 1 Edção 007 Curso: Matemátca e Pscologa Amostragem, Séres Estatístcas, Dstrbução de Freqüênca, Méda, Medana, Quartl, Percentl e Desvo Padrão Prof. Dr. Celso Eduardo Tuna Prof.

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO 0 INTRODUÇÃO A medda de varação ou dperão, avalam a dperão ou a varabldade da eqüênca numérca em anále, ão medda que fornecem nformaçõe

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Exercícios de CPM e PERT Enunciados

Exercícios de CPM e PERT Enunciados Capítulo 7 Exercícos de CPM e PERT Enuncados Exercícos de CPM e PERT Enuncados 106 Problema 1 O banco TTM (Tostão a Tostão se faz um Mlhão) decdu transferr e amplar a sua sede e servços centras para a

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO Conteúdo Programátco Cálculo da varânca Cálculo e nterpretação do Devo-padrão VARIÂNCIA E DESVIO-PADRÃO A medda de varação ou dperão, avalam a varabldade da

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO ESTATISTICA EXPERIMENTAL: Com aplcaçoes em R Medcna

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

Licenciatura Análise de Dados e Probabilidade 1 e 2. Clara Costa Duarte. 1º Semestre 2006/2007

Licenciatura Análise de Dados e Probabilidade 1 e 2. Clara Costa Duarte. 1º Semestre 2006/2007 Lcencatura 34 -nálse de Dados e robabldade e º Semestre 6/7 Clara Costa Duarte 34- nálse de Dados e robabldade. Introdução Estatístca:é um conjunto de nstrumentos que servem para: Recolher Descrever e

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

INTRODUÇÃO À ANÁLISE ESTATÍSTICA DE MEDIDAS14

INTRODUÇÃO À ANÁLISE ESTATÍSTICA DE MEDIDAS14 ITRODUÇÃO À AÁLISE ESTATÍSTICA DE MEDIDAS4 Sérgo Rcardo Munz Fundamentos da Matemátca II 3. Introdução: o que é estatístca e para que serve? 3. A estatístca no da-a-da 3.3 Eatdão, precsão, erros e ncertezas

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

AULA 2 UNIDADE 1 DISTRIBUIÇÃO DE FREQUÊNCIAS 1.1 INTRODUÇÃO

AULA 2 UNIDADE 1 DISTRIBUIÇÃO DE FREQUÊNCIAS 1.1 INTRODUÇÃO AULA UNIDADE 1 DISTRIBUIÇÃO DE FREQUÊNCIAS 1.1 INTRODUÇÃO As tabelas estatísticas, geralmente, condensam informações de fenômenos que necessitam da coleta de grande quantidade de dados numéricos. No caso

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices Unversdade Federal Flumnense Insttuto de Matemátca e Estatístca Métodos Estatístcos Aplcados à Economa I (GET7) Números Índces Ana Mara Lma de Faras Departamento de Estatístca Agosto 25 Sumáro Índces Smples.

Leia mais

Sumário. Estatistica.indb 11 16/08/ :47:41

Sumário. Estatistica.indb 11 16/08/ :47:41 Sumário CAPÍTULO 1 CONCEITOS INICIAIS... 19 1.1. Introdução... 19 1.2. Estatística... 19 1.2.1. Estatística Descritiva ou Dedutiva... 21 1.2.2. Estatística Indutiva ou Inferencial... 21 1.3. População...

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais