37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8"

Transcrição

1 Resposta da questão 1: [C] Calculando:, , ,4 + x + 7,4 = 8, 8, , ,4 + x + 7,4 = 5, x = 9,9 Moda = Medana = = 8, , ,4 + 7,4 Méda das outras 7 notas = = 7,9 7 Assm, a únca alternatva correta é a letra C. Resposta da questão : [A] Tem-se que a resposta é dada por % = 40% Resposta da questão 3: [B] 1,4 1, = Ou seja, aproxmadamente 1 mlhão de desempregados. Resposta da questão 4: [A] O únco mês que satsfaz todas as condções é janero. Com efeto, tem-se que: I. de feverero para março e de novembro para dezembro houve redução na temperatura máxma; II. a varação da pluvosdade de agosto para setembro e de dezembro para janero fo maor do que 50 mm. Resposta da questão 5: [D] [A] Falsa, pos 50% de 5 = 8. [B] Falsa Taxa de crescmento dos homens: = 0,1 = 1% Taxa de crescmento das mulheres: = 0,7 = 7% 37 [C] Verdadera. Veja justfcatva do tem [B]. [D] Falsa = 0,15 = 1,5% [E] Falsa. = 0,08 = 8% 54 Resposta da questão : [C] Calculando a méda artmétca, temos: x = = ( ) + (100 88) + (100 11) + (100 94) + (100 10) E depos o desvo padrão: σ = = 7 8,5 5 Resposta da questão 7: [D] Consderando as entradas e saídas de pessoas do elevador, tem-se os seguntes resultados: 4, 5, 5, 5, 7 e 3. Portanto, a moda é 5. Resposta da questão 8: [A] Faremos a méda artmétca ponderada (M) das médas de cada turma , M= = =

2 Resposta da questão 9: [D] Consdere a tabela. x f x f x f = 410 Tem-se que a méda é gual a 410, = Sendo 3 o valor mas frequente, podemos conclur que a moda vale 3. Ademas, como o número de observações é gual a 00, segue que a medana é gual à méda artmétca das observações de ordem 100 e ordem 101, sto é, + =. Resposta da questão 10: [C] Toneladas Frequêncas x f exportadas acumuladas Dados fctícos f = 30 Determnando o ntervalo de classe onde se encontra a medana, temos: f 30 = = 15 a prmera frequênca acumulada maor que 15 é a da 4ª classe. Portanto, a medana dos dados se encontra na 4ª classe. Resposta da questão 11: [C] O menos regular é o que apresenta maor desvo-padrão e o mas regular é o que apresenta menor desvo-padrão. Portanto, a luta será entre os atletas II e III. Resposta da questão 1: [C] Consdere a tabela abaxo. Número de lvros (x ) Número de alunos (f ) x f f = 40 x f = 7 x f 7 Portanto, a resposta é x = = = 1,9. n 40 Resposta da questão 13: [C] Se o número de homens com rmãos é 100, e o número de mulheres com rmãos é 10, então a razão pedda é gual a 100, 10 ou seja, cnco sextos.

3 Resposta da questão 14: [D] Sendo o total de homens gual a = 40, o total de mulheres gual a = 10, e o número de pessoas com rmãos gual a = 0, tem-se que a resposta é 0 100% 55%. 400 = Resposta da questão 15: [C] Consdere a tabela. Partda x x x Brasl Croáca 4 1 Méxco Camarões 1 Brasl Méxco 0 3 Croáca Camarões 4 1 Camarões Brasl 5 Croáca Méxco x = 18 A méda de gols marcados nas partdas fo de x x = 10 1 x 1 18 x = = = 3. Portanto, o desvo médo de gols marcados por partda nos jogos desse grupo fo x x 1 10 Dm = = 1,7. Resposta da questão 1: [D] Escrevendo os tempos em ordem crescente, temos 0,50; 0,0; 0,0; 0,80; 0,90; 0,90; 0,90; 0,9. Logo, o tempo medano é dado por 0,8 + 0,9 = 0,85. Resposta da questão 17: [E] Sejam x e y, respectvamente, o número de gols marcados e o número de gols sofrdos na partda, com Desse modo, tabulando os resultados, obtemos Partda () x y x y (x y ) = 3 (x y ) Portanto, a resposta é 3 = = 0, Resposta da questão 18: [B] Internet e Correos, respectvamente, por possuírem o maor percentual em cada classe. Resposta da questão 19: [C] Varação entre 1990 e 000: 0,5 0,00 = 0,05. Varação entre 000 e 010: 0,715 0,5 = 0,050. Portanto, o IDH aumentou com varações decenas decrescentes.

4 Resposta da questão 0: [A] Do gráfco, podemos nferr que, no ntervalo de 40 a 0 anos: () a habldade verbal é crescente e atnge seu pco nesse ntervalo; () a resolução de problemas permanece pratcamente constante e também atnge seu pco nesse ntervalo; () a habldade numérca sofre uma queda relevante a partr dos 4 anos. Portanto, as habldades verbal e de resolução de problemas destacam-se entre 40 e 0 anos. Resposta da questão 1: [C] O atleta número III fo o mas regular, pos apresentou o menor desvo padrão. Resposta da questão : [C] Seja x o valor total reservado pela dona de casa para a compra mensal. Do gráfco, segue-se que ela gastou 30,% + 17,5% + 1,4% +,3% = 8,4% de x. 88 Portanto, o resultado peddo é (100% 8,4%) x = 88 x = = R$ 500,00. 0,17 Resposta da questão 3: [D] Seja n o número de passageros transportados entre o Brasl e os cnco destnos mas procurados. Tem-se que 0,35 n = n Portanto, o resultado peddo é gual a (0,11 + 0,1) Resposta da questão 4: [B] O número total de funconáros da empresa é gual a = Logo, a medana corresponde à méda artmétca de e 14, sto é, Md = = R$ 933,00. Resposta da questão 5: [A] A partr dos dados da fgura podemos calcular a massa atômca méda ponderada: M.A = (0, , ,0 ) u.m.a M.A = 0,05 u.m.a Resposta da questão : [D] Total = 30(aproxmadamente) + 9(aproxmadamente) = 197. Aproxmadamente 00. Resposta da questão 7: [B] A famíla de maor renda tem um gasto com almentação de 0, = R$ 540,00, enquanto que a famíla de menor 540 renda gasta 0, = R$ 13,00. Portanto, como 4, segue que a famíla de maor renda tem um gasto com 13 almentação aproxmadamente quatro vezes maor do que o gasto com almentação da famíla de menor renda. Resposta da questão 8: [C] 5,3 blhões 100% x 43% x =,8 blhões Resposta da questão 9: [B] Como os três países que mas conqustaram medalhas de ouro fcaram com = 100 medalhas, segue que esses países ganharam = do total de medalhas

5 Resposta da questão 30: [D] Sabendo que a + b = c + d = 50% e que se a = 35% então b = 15%. 70 respostas 15% a 35% a = 30 respostas b = 70 respostas a + b = c + d = 900 respostas c = 450 respostas d = 450 respostas Resposta da questão 31: [D] O total de árvores não nferores a 8 cm é gual a: = 18 árvores Resposta da questão 3: [B] Resposta da questão 33: [D] O crescmento em 005 será maor do que o crescmento em 004 desde que a taxa de varação seja maor, ou seja, que a nclnação da reta em 005 seja maor do que a de 004. Desse modo, a meta para 005 fo atngda em abrl, agosto e novembro. Resposta da questão 34: [C] Total = 0,3 5,0 + 1, 5,0 + 8,0 5,0 + 5,0 = 34,9 Porcentagem = 34,9 5% 1,5 Resposta da questão 35: [D] X = ,40.0,0 = 80 mulheres Resposta da questão 3: [E] De acordo com os gráfcos, a taxa de crescmento populaconal da Índa no período sera de % 100% 5% Portanto, no níco do século XXII, a população da Índa, em blhões de habtantes, será: 1, 5 157, 5 >, 3, ou seja, superor a,3 blhões de habtantes.

6 Resposta da questão 37: [A] Resposta da questão 38: [D] Medana =,5 (x 0 + x 1 )/ =,5; assm x 0 + x 1 = 5, Como a soma dos números é 5, e de acordo com a tabela, o x 0 = e o x 1 = 3, portanto do elemento x 11 ao x 0 são todos guas a, logo sua frequênca é 10. Méda =, ( x y + 5.z)/40 =,. + x y + 5z = 40., +.(10) y + 5z = 104 4y + 5z = y + 5z = 9 (equação 1) Sabendo que somatóro = 40, então temos: 4 + x y + z = y + z = 40 y + z = 17. (equação ) Resolvendo o sstema das equações (1) e (): y + z = 17 ( 4) 4y + 5z = 9 4y 4z = 8 4y + 5z = 9 z = 1 y + z = 17 y + 1 = 17 y = 1. Substtundo os valores de x, y e z na tabela: notas F A moda é 4.

7 Resposta da questão 39: [E] camnhar mea hora a 3 km/h : 9 caloras 0. - correr 1 km, a uma velocdade constante, em 1 hora :. 455 cal = 910 caloras nadar durante 1 hora:. 79 cal = 558 caloras andar 9 km de bccleta, a uma velocdade constante, em mea hora: 01 caloras Total : 1.71 caloras Resposta da questão 40: [E] Resposta da questão 41: [E] ; ; ; ; ; ; ; 7 ; 7 ; 9 Méda =,5 Varânca = 0, ,5. +,5 10 = 0,85 Resposta da questão 4: [D] Resposta da questão 43: [B] Resposta da questão 44: [B] Alternatva B, pos o desvo padrão nos mostra qual canddato manteve uma maor regulardade (proxmdade da méda), já que as médas foram guas. Resposta da questão 45: [A] Testes 1 e (nota 3) alunos Testes e 3 (nota ) alunos Testes 1, e 3 (nota 7) aluno Teste ( nota ) aluno Temos, então 10 alunos ( )

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

a) 3 c) 5 d) 6 b) i d) i

a) 3 c) 5 d) 6 b) i d) i Colégo Marsta Docesano de Uberaba ª Lsta de eercícos de Compleos Prof. Maluf Se é a undade magnára, para que a b seja um número real, a relação c d entre a, b, c e d deve satsfaer: 0 - (UNESP SP/00) a)

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO Conteúdo Programátco Cálculo da varânca Cálculo e nterpretação do Devo-padrão VARIÂNCIA E DESVIO-PADRÃO A medda de varação ou dperão, avalam a varabldade da

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos da físca Undade B Capítulo 9 Geradores elétrcos esoluções dos testes propostos 1 T.195 esposta: d De U r, sendo 0, resulta U. Portanto, a força eletromotrz da batera é a tensão entre seus termnas quando

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

2ª ACTIVIDADE ESCRITA DE MATEMÁTICA A 12.º C 2009 NOVEMBRO 20 Duração da prova: 45 minutos VERSÃO 1. Grupo I

2ª ACTIVIDADE ESCRITA DE MATEMÁTICA A 12.º C 2009 NOVEMBRO 20 Duração da prova: 45 minutos VERSÃO 1. Grupo I ª ATIVIDADE ESRITA DE MATEMÁTIA A.º 009 NOVEMBRO 0 Duração da prova 4 mnutos VERSÃO Grupo I Para cada uma das três questões deste grupo, seleccone a resposta correcta de entre as alternatvas que lhe são

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR - Mecânca Computaconal para Mecatrônca CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problema de derencação numérca aparentemente é semelante ao de ntegração numérca ou seja obtendo-se um polnômo nterpolador

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2)

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2) METODOLOGIA DO ÍNDICE CARBONO Abrl/2015 [data] METODOLOGIA DO ÍNDICE CARBONO O ICO2 é o resultado de uma cartera teórca de atvos, elaborada de acordo com os crtéros estabelecdos nesta metodologa. Os índces

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO 0 INTRODUÇÃO A medda de varação ou dperão, avalam a dperão ou a varabldade da eqüênca numérca em anále, ão medda que fornecem nformaçõe

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos.

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos. Resolução das atvdades comlementares Matemátca M Números Comleos. Resolva as equações no camo dos números comleos. a 0 {, } b 8 0 a 0 D?? D 8 D Cálculo das raíes? S {, } b 8 0 D?? 8 Cálculo das raíes D

Leia mais

1. Na figura estão representados dois ciclistas, A e B, pedalando a caminho de um cruzamento. Ao chegarem ao cruzamento, ambos continuam em frente.

1. Na figura estão representados dois ciclistas, A e B, pedalando a caminho de um cruzamento. Ao chegarem ao cruzamento, ambos continuam em frente. Escla Secundára Dr. Ângel August da Slva Teste de MATEMÁTICA A 10º An Duraçã: 90 mnuts 6º Teste, Junh 2006 Nme Nº T: Classfcaçã O Prf. (Luís Abreu) 1ª PARTE Para cada uma das seguntes questões de esclha

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

RESOLUÇÃO Nº 32/2014/CONEPE. O CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO da Universidade Federal de Sergipe, no uso de suas atribuições legais,

RESOLUÇÃO Nº 32/2014/CONEPE. O CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO da Universidade Federal de Sergipe, no uso de suas atribuições legais, SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE SERGIPE CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO RESOLUÇÃO Nº 32/2014/CONEPE Aprova as Normas Geras do Processo Seletvo para

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

Cálculo de Índices de Preços do Setor Sucroalcooleiro

Cálculo de Índices de Preços do Setor Sucroalcooleiro Cálculo de Índces de reços do Setor Sucroalcoolero Introdução O projeto tem como objetvo desenvolver uma metodologa que mensure a nflação mensal dos processos de produção de cana-deaçúcar, açúcar e etanol.

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Exercícios de CPM e PERT Enunciados

Exercícios de CPM e PERT Enunciados Capítulo 7 Exercícos de CPM e PERT Enuncados Exercícos de CPM e PERT Enuncados 106 Problema 1 O banco TTM (Tostão a Tostão se faz um Mlhão) decdu transferr e amplar a sua sede e servços centras para a

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

ÓPTICA GEOMÉTRICA ÓPTICA REFLEXÃO MEIOS DE PROPAGAÇÃO DA LUZ. Estuda os fenômenos luminosos, sem se interessar com sua natureza.

ÓPTICA GEOMÉTRICA ÓPTICA REFLEXÃO MEIOS DE PROPAGAÇÃO DA LUZ. Estuda os fenômenos luminosos, sem se interessar com sua natureza. 12. Num calorímetro de capacdade térmca 8,0 cal/ o C ncalmente a 10º C são colocados 200g de um líqudo de calor específco 0,40 cal/g. o C. Verfca-se que o equlíbro térmco se estabelece a 50º C. Determne

Leia mais

Probabilidade: Diagramas de Árvore

Probabilidade: Diagramas de Árvore Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r F Físca 1998 1. Um certo calorímetro contém 80 gramas de água à temperatura de 15 O C. dconando-se à água do calorímetro 40 gramas de água a 50 O C, observa-se que a temperatura do sstema, ao ser atngdo

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Surpresa para os calouros. Série Matemática na Escola. Objetivos

Surpresa para os calouros. Série Matemática na Escola. Objetivos Surpresa para os calouros Sére Matemátca na Escola Objetvos 1. Usando a decomposção de um número em fatores prmos, pode-se provar que um número ntero é um quadrado perfeto, se e somente se tem um número

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Apostila de Estatística

Apostila de Estatística Apostla de Estatístca Prof. Ms. Osoro Morera Couto Junor Capítulo 1 - Introdução Estatístca 1.1 Hstórco A estatístca é um ramo da matemátca aplcada. A partr do século XVI começaram a surgr as prmeras análses

Leia mais

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A NOTAÇÕES N = f1; ; ; g C conjunto dos números comlexos R conjunto dos números reas undade magnára = 1 [a; b] = fx R; a x bg jzj módulo do número z C [a; b[ = fx R; a x < bg z conjugado do número z C ]a;

Leia mais

Lei das Malhas (KVL) Lei dos Nós (KCL)

Lei das Malhas (KVL) Lei dos Nós (KCL) Le das Malhas (KL) Le dos Nós (KCL) Electrónca Arnaldo Batsta 5/6 Electrónca_omed_ef KCL (Krchhoff Current Law) Nó é o ponto de lgação de dos ou mas elementos de crcuto amo é uma porção do crcuto contendo

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude AMPLIAÇÃO E ESCALA Admensonas: Reynolds Re ρ N /μ Número de Potênca dq dq dqs o dqv Número de Froude Fr N / g AMPLIAÇÃO E ESCALA COMO CORRELACIONAR k L a com potênca de agtação? Os japoneses propões aquecer

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6 EXEMPLOS ADICIONAIS DA ENGENHARIA ELÉTRICA 1)Suponha que a probabldade de que um engenhero elétrco utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco

Leia mais

Mecanismos de Escalonamento

Mecanismos de Escalonamento Mecansmos de Escalonamento 1.1 Mecansmos de escalonamento O algortmo de escalonamento decde qual o próxmo pacote que será servdo na fla de espera. Este algortmo é um dos mecansmos responsáves por dstrbur

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período.

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período. ESTATÍSTICA - 01 1. (UERJ 01) Téccos do órgão de trâsto recomedaram velocdade máxma de 80 km h o trecho de uma rodova ode ocorrem mutos acdetes. Para saber se os motorstas estavam cumprdo as recomedações,

Leia mais