CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues"

Transcrição

1 CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues

2 I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas medata pode ser uma tabela prmtva, onde os dados coletados se apresentam sem qualquer ordenação sstemátca, é o que chamamos de tabela prmtva ou rol. Exemplo : Uma pesqusa sobre a dade dos alunos de uma turma de Admnstração. Os dados serão smplesmente regstrados em forma de tabela, até mesmo sem cabeçalho : Essa tabulação prmtva podera ser expressa em uma ordem mas convenente, como, por exemplo, ordem crescente das dades : Nessa últma tabulação, algumas cosas fcam mas claras, como, por exemplo, o número de alunos com dades compreenddas dentro de determnado ntervalo, alunos com dades entre 0 e 30 anos ou alunos com dades superores a 5 anos. Mas se desejamos verfcar a freqüênca com que cada dade aparece, deveremos lançar mão de uma tabela como a segunte, onde cada dade aparece assnalada com o número de vezes em que fo regstrada, ou seja, a freqüênca com que apareceu na amostragem. Idade (anos) Freq Essa tabela anda podera ser apresentada por faxas de dade, ou classes, assm FAIXA ETÁRIA FREQÜÊNCIA (anos) 19 I I I I 35 8

3 II) ELEMENTOS DE UMA DISTRIBUIÇÃO DE FREQÜÊNCIA : II.1) CLASSES : São faxas ou ntervalos de varação da varável. No nosso exemplo anteror, são os ntervalos regstrados na prmera coluna da últma tabela ; essas classes são genercamente assnaladas por n, sendo n, o número da classe. Assm, no nosso exemplo temos 1 = prmera classe : 19 I 3 = segunda classe : 3 I 7 3 = tercera classe : 7 I 31 4 = quarta classe : 31 I 35 Cada classe n está assocada a uma freqüênca f n, regstrada na segunda coluna de nossa últma tabela ; assm temos f 1 = 11, f = 8, f 3 = 9, f 4 = 8 e II.) LIMITES DE CLASSE : 4 n= 1 f n = (total de alunos da turma) por São os extremos de cada classe. Denotaremos o lmte superor por L e o lmte nferor l. Assm, no nosso exemplo, temos na prmera classe : L 1 = 3 e l 1 = 19 na segunda classe : L = 7 e l = 3 na tercera classe : L 3 = 31 e l 3 = 7 na quarta classe : L 4 = 35 e l 4 = 31 II.3) AMPLITUDE DE UM INTERVALO DE CLASSE : h = L - É a dferença entre os lmtes superor L n e nferor l n. Então, temos No nosso exemplo, todas as classes têm a mesma ampltude e, então, podemos regstrar que h 1 = h = h 3 = h 4 = 3 19 = 7 3 = 31 7 = = 4 anos. l II.4) AMPLITUDE TOTAL DA DISTRIBUIÇÃO : É a dferença entre o lmte superor da últma classe L máx e o lmte nferor da prmera classe l ; ou seja, T = L máx - l. No nosso exemplo, T = = 16 anos. mn mn II.5) AMPLITUDE AMOSTRAL : É a dferença entre o valor máxmo e o valor mínmo constantes na amostra, ou seja, AA = x máx x mín. No presente caso, temos que AA = = 15 anos. II.6) PONTO MÉDIO DE UMA CLASSE : È o ponto que dvde uma classe em duas partes guas, ou seja, é a méda artmétca entre

4 os lmtes L e l de uma classe. Então, podemos escrever x = x 1 = = 1 anos, x = = 5 anos, x 3 = = 9 anos e x 4 = = 33 anos. l + L. No nosso exemplo II.7) FREQÜÊNCIA RELATIVA É a razão entre cada freqüênca absoluta de uma classe e a freqüênca total da dstrbução, ou seja, No nosso exemplo, tem-se : 11 - fr 1 = = 0,306 ou 30,6 % - fr = 8 = 0, ou, % - fr 3 = 9 = 0, 5 ou 5% 8 - fr 4 = = 0, ou,%. f fr = f Observe que fr = 100% = 1. II.8) FREQÜÊNCIA ACUMULADA : a) Freqüênca Acumulada "abaxo de " É o total das freqüêncas de todos os valores nferores ao lmte superor de uma determnada classe ; assm, temos, genercamente, F = f 1 + f + f f - + f -1 + f ou anda No nosso exemplo ncal temos : f k k= 1 F = F 1 = f 1 = 11 (Número de alunos com dade nferor a 3 anos) F = f 1 + f = = 19 (Número de alunos com dade nferor a 7 anos) F 3 = f 1 + f + f 3 = = 8 (Número de alunos com dade nferor a 31 anos) F 4 = f 1 + f + f 3 + f 4 = = (Total de alunos da pesqusa)

5 b) Freqüênca Acumulada "acma de " É o total das freqüêncas de todos os valores guas ou superores ao lmte superor de uma determnada classe ; assm, numa dstrbução com n classes, temos, genercamente F = f + f +1 + f f n-1 + f n ou F = No nosso exemplo ncal, temos F 1 = = (Alunos com dade maor ou gual a 19 anos) F = = 5 (Alunos com dade maor ou gual a 3 anos) F 3 = = 17 (Alunos com dade maor ou gual a 7 anos) F 4 = 8 (Alunos com dade maor ou gual a 31 anos) II.9) FREQÜÊNCIA ACUMULADA RELATIVA DE UMA CLASSE : É a razão entre a freqüênca acumulada da classe e a freqüênca total da dstrbução ; ou seja F Fr = f Do nosso exemplo ncal, podemos calcular, por exemplo 8 a) Percentual dos alunos com dade nferor a 31 anos = = 0,78 = 78% ("para baxo") 5 b) Percentual dos alunos com dade superor ou gual a 3 anos = = 0,69 = 69% ("para 6 cma") II.10) NÚMERO DE CLASSES NUMA DISTRIBUIÇÃO: Uma das regras mas utlzadas para se determnar o número de classes em função do número total de dados n é a Regra de Sturges; essa regra é dada pela fórmula n k = f k 1 + 3,3.log n Em que n é o número total de dados e é o número recomendado de classes. Exemplo : Se o número total de dados é 40, teremos 1 + 3,3.log (1,60) e teremos, fnalmente 6,8, ou seja, 6 classes. A aplcação desse fórmula para alguns valores de n gera a segunte tabela, de em função de n: n 3 a 5 6 a 11 1 a 3 a a a

6 EXERCÍCIOS PROPOSTOS : Em todos os exercícos, consdere a segunte notação : = número de classes numa dstrbução de freqüênca ; l = lmte nferor de uma classe numa dstrbução de freqüênca; L = lmte superor de uma classe numa dstrbução de freqüênca; h = ampltude de um ntervalo de classe ; T = ampltude total da dstrbução de freqüênca; AA = ampltude amostral ; x = ponto médo de uma classe numa dstrbução de freqüênca ; f = freqüênca absoluta de uma classe ; fr = freqüênca relatva de uma classe ; F = freqüênca acumulada ; Fr = freqüênca acumulada relatva. 1) Em cada tabulação descrta a segur, faça o que se pede : 1 o ) Converta a tabela dada numa tabela ordenada ; o ) Construa uma dstrbução de freqüêncas de classes com a mesma ampltude e a) calcule a ampltude das classes, b) calcule a ampltude total da dstrbução, c) calcule a ampltude amostral, d) calcule o ponto médo de cada classe. 3 o ) Construa e preencha uma tabela de freqüêncas com o formato abaxo : classes f x fr F Fr (para baxo) Fr (para cma) Tabela 1 : Saláros, em reas, de 30 funconáros de uma empresa Tabela : Estatura, em centímetros, de 4 atletas de um clube Tabela 3 : Número de ações de uma mesma empresa pertencentes a aconstas.

7 Tabela 4 : Notas de 45 canddatos numa prova de seleção para um emprego ) LIVRO : Crespo, Antôno Arnot, Estatístca Fácl, São Paulo, Ed. Sarava,.00. Exercícos das págnas 6, 66, 67, 68 e 69.

Medidas de Tendência Central. Prof.: Ademilson Teixeira

Medidas de Tendência Central. Prof.: Ademilson Teixeira Meddas de Tendênca Central Prof.: Ademlson Texera ademlson.texera@fsc.edu.br 1 Servem para descrever característcas báscas de um estudo com dados quanttatvos e comparar resultados. Meddas de Tendênca Central

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Capítulo 2 Estatística Descritiva Continuação. Prof. Fabrício Maciel Gomes

Capítulo 2 Estatística Descritiva Continuação. Prof. Fabrício Maciel Gomes Capítulo Estatístca Descrtva Contnuação Prof. Fabríco Macel Gomes Problema Uma peça após fundda sob pressão a alta temperatura recebe um furo com dâmetro especfcado em 1,00 mm e tolerânca de 0,5 mm: (11,75

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIAS

DISTRIBUIÇÃO DE FREQUÊNCIAS Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa DISTRIBUIÇÃO DE FREQUÊNCIAS 5 5. DISTRIBUIÇÃO

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

N 70 = 40 25N+1500 = N = 1300 N = 52 LETRA D

N 70 = 40 25N+1500 = N = 1300 N = 52 LETRA D QUESTÃO 01 QUESTÃO 0 Seja x a méda dos saláros do departamento comercal. A méda procurada é tal que 00 = x + 30 + 4 4 + + 4 x = 000 0 3300 x = R$ 400,00. QUESTÃO 03 4 0+ 3 Tem-se xp I = = 1,8 e 4+ Logo,

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho Professor Luz Antono de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos AULA e Raconas 9 e APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA PROGRESSÃO ARITMÉTICA

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Conceitos Iniciais de Estatística Módulo 3 : MEDIDAS DE POSIÇÃO Prof. Rogério Rodrigues

Conceitos Iniciais de Estatística Módulo 3 : MEDIDAS DE POSIÇÃO Prof. Rogério Rodrigues Concetos Incas de Estatístca Módulo 3 : MEDIDAS DE POSIÇÃO Pro. Rogéro Rodrgues MEDIDAS DE POSIÇÃO ) Introdução : Depos da coleta de dados, as varáves pesqusadas estão em estado bruto, sendo necessáro

Leia mais

CURSO de ESTATÍSTICA Gabarito

CURSO de ESTATÍSTICA Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letvo de 010 e 1 o semestre letvo de 011 CURSO de ESTATÍSTICA Gabarto INSTRUÇÕES AO CANDIDATO Verfque se este caderno contém: PROVA DE REDAÇÃO com

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Estatística

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Estatística Escola Secundára com º cclo D. Dns 10º Ano de Matemátca A Estatístca Trabalho de casa nº 15 GRUPO I 1. Num referencal o.n. Oxyz, a undade é o cm e a esfera defnda por ( ) ( ) está nscrta num cubo. O volume

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Apostila de Estatística

Apostila de Estatística Apostla de Estatístca Prof. Ms. Osoro Morera Couto Junor Capítulo 1 - Introdução Estatístca 1.1 Hstórco A estatístca é um ramo da matemátca aplcada. A partr do século XVI começaram a surgr as prmeras análses

Leia mais

Aula 5 Senado Federal Parte 2

Aula 5 Senado Federal Parte 2 Aula 5 Senado Federal Parte Estatístca... Classe... 8 Lmtes de classe... 8 Ampltude de um ntervalo de classe... 9 Ampltude total da Dstrbução... 9 Ponto médo de uma classe... 9 Tpos de frequêncas... 10

Leia mais

2. MEDIDAS DE TENDÊNCIA CENTRAL OU MEDIDAS DE POSIÇÃO

2. MEDIDAS DE TENDÊNCIA CENTRAL OU MEDIDAS DE POSIÇÃO Materal elaborado por Mara Tereznha Marott, Rodrgo Coral e Carla Regna Kuss Ferrera Atualzado por Mlton Procópo de Borba. MEDIDAS DE TENDÊNCIA CENTRAL OU MEDIDAS DE POSIÇÃO Para melhor caracterzar um conjunto

Leia mais

4 Critérios para Avaliação dos Cenários

4 Critérios para Avaliação dos Cenários Crtéros para Avalação dos Cenáros É desejável que um modelo de geração de séres sntétcas preserve as prncpas característcas da sére hstórca. Isto quer dzer que a utldade de um modelo pode ser verfcada

Leia mais

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 11 Estatístca.... Classe.... 7 Lmtes de classe... 7 Ampltude de um ntervalo de classe... 7 Ampltude total da Dstrbução... 8 Ponto médo de uma classe... 8 Tpos de frequêncas... 9 Meddas de Posção...

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tema III Estatística. Aula 1 do plano de trabalho nº 2

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tema III Estatística. Aula 1 do plano de trabalho nº 2 Aula 1 do plano de trabalho nº 2 Medram-se as alturas dos 40 alunos do prossegumento de estudos do 10º ano de uma escola e as alturas dos 40 alunos do 10º ano dos cursos tecnológcos dessa escola e obtveram-se

Leia mais

ESTATÍSTICA PARA TCU PROFESSOR: GUILHERME NEVES

ESTATÍSTICA PARA TCU PROFESSOR: GUILHERME NEVES Estatístca Descrtva A Estatístca, ramo da Matemátca Aplcada, teve orgem na hstóra do homem. Desde a Antgudade, város povos regstravam o número de habtantes, de nascmentos, de óbtos, dstrbuíam equtatvamente

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

Organização; Resumo; Apresentação.

Organização; Resumo; Apresentação. Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Grade Cojutos de Dados Orgazação; Resumo; Apresetação. Amostra ou População Defetos em uma lha de produção Lascado Deseho Torto Deseho Torto Lascado

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

2ª Atividade Formativa UC ECS

2ª Atividade Formativa UC ECS I. Explque quando é que a méda conduz a melhores resultados que a medana. Dê um exemplo para a melhor utlzação de cada uma das meddas de localzação (Exame 01/09/2009). II. Suponha que um professor fez

Leia mais

Resumos Numéricos de Distribuições

Resumos Numéricos de Distribuições Estatístca Aplcada à Educação Antono Roque Aula Resumos umércos de Dstrbuções As representações tabulares e grácas de dados são muto útes, mas mutas vezes é desejável termos meddas numércas quanttatvas

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 4. Resumos Numéricos de Distribuições

Probabilidade e Estatística I Antonio Roque Aula 4. Resumos Numéricos de Distribuições Probabldade e Estatístca I Antono Roque Aula Resumos umércos de Dstrbuções As representações tabulares e grácas de dados são muto útes, mas mutas vezes é desejável termos meddas numércas quanttatvas para

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Prof. Ms. Wiliam Gonzaga Pereira

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Prof. Ms. Wiliam Gonzaga Pereira Apostla de Estatístca Volume 1 Edção 007 Curso: Matemátca e Pscologa Amostragem, Séres Estatístcas, Dstrbução de Freqüênca, Méda, Medana, Quartl, Percentl e Desvo Padrão Prof. Dr. Celso Eduardo Tuna Prof.

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Caderno de Fórmulas em Implementação. SWAP Alterações na curva Libor

Caderno de Fórmulas em Implementação. SWAP Alterações na curva Libor Caderno de Fórmulas em Implementação SWAP Alterações na curva Lbor Atualzado em: 15/12/217 Comuncado: 12/217 DN Homologação: - Versão: Mar/218 Índce 1 Atualzações... 2 2 Caderno de Fórmulas - SWAP... 3

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL

MEDIDAS DE TENDÊNCIA CENTRAL 3.1- Introdução. ESTATÍSTICA MEDIDAS DE TENDÊNCIA CENTRAL Como na representação tabular e gráfca dos dados a Estatístca Descrtva consste num conjunto de métodos que ensnam a reduzr uma quantdade de dados

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Estatístca e Probabldade Professor conteudsta: Rcardo Vda Sumáro Estatístca e Probabldade Undade I 1 CONCEITOS BÁSICOS...1 1.1 Concetos fundamentas... 1. Processos estatístcos de abordagem... 1.3 Dados

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

Gráficos de Controle para Processos Autocorrelacionados

Gráficos de Controle para Processos Autocorrelacionados Gráfcos de Controle para Processos Autocorrelaconados Gráfco de controle de Shewhart: observações ndependentes e normalmente dstrbuídas. Shewhart ao crar os gráfcos de controle não exgu que os dados fossem

Leia mais

3 Método Numérico. 3.1 Discretização da Equação Diferencial

3 Método Numérico. 3.1 Discretização da Equação Diferencial 3 Método Numérco O presente capítulo apresenta a dscretação da equação dferencal para o campo de pressão e a ntegração numérca da expressão obtda anterormente para a Vscosdade Newtonana Equvalente possbltando

Leia mais

Matemática Financeira Seções: 3.1 até 4.3 Prof. Me. Diego Fernandes Emiliano Silva

Matemática Financeira Seções: 3.1 até 4.3 Prof. Me. Diego Fernandes Emiliano Silva 3.1 até 3.3 Stuações de fnancamento VP = parc [ 1 (1+) n ] (3.1) AV E = parc [ 1 (1+) n ] (3.2) (AV E) (1 + ) k 1 = parc [ 1 (1+) n ] (3.3) As fórmulas apresentadas acma são apresentadas nas seções 3.1,

Leia mais

EXERCÍCIO: VIA EXPRESSA CONTROLADA

EXERCÍCIO: VIA EXPRESSA CONTROLADA EXERCÍCIO: VIA EXPRESSA CONTROLADA Engenhara de Tráfego Consdere o segmento de va expressa esquematzado abaxo, que apresenta problemas de congestonamento no pco, e os dados a segur apresentados: Trechos

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro UNIVERIDADE DE ÃO PAULO FACULDADE DE ECONOMIA, ADMINITRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ADMINITRAÇÃO RAD1507 Estatístca Aplcada à Admnstração I Prof. Dr. Evandro Marcos adel Rbero

Leia mais

Primeiro Exercício da Lista de Interpolação TOL 10 9

Primeiro Exercício da Lista de Interpolação TOL 10 9 Prmero Exercíco da Lsta de Interpolação TOL 9 Busque uma expressão de segundo grau e outra de tercero grau que melhor aproxmam a função x 4 no ntervalo x. Analse e dscuta seus resultados confrontado-os

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

4.1 Modelagem dos Resultados Considerando Sazonalização

4.1 Modelagem dos Resultados Considerando Sazonalização 30 4 METODOLOGIA 4.1 Modelagem dos Resultados Consderando Sazonalzação A sazonalzação da quantdade de energa assegurada versus a quantdade contratada unforme, em contratos de fornecmento de energa elétrca,

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Algoritmos Genéticos com Parâmetros Contínuos

Algoritmos Genéticos com Parâmetros Contínuos com Parâmetros Contínuos Estéfane G. M. de Lacerda DCA/UFRN Mao/2008 Exemplo FUNÇÃO OBJETIVO : 1,0 f ( x, y) 0, 5 sen x y 0, 5 1, 0 0, 001 x 2 2 2 y 2 2 2 0,8 0,6 0,4 0,2 0,0-100 -75-50 -25 0 25 50 75

Leia mais

CONCEITOS BÁSICOS. Podemos assim caracterizar três áreas de interesse (ramos) da Estatística: Estatística Inferencial ESTATÍSTICA

CONCEITOS BÁSICOS. Podemos assim caracterizar três áreas de interesse (ramos) da Estatística: Estatística Inferencial ESTATÍSTICA 1 Estatístca CONCEITOS BÁSICOS 6 É uma metodologa ou conjunto de técncas que utlza a coleta de dados, sua classfcação, sua apresentação ou representação, sua análse e sua nterpretação vsando a sua utlzação

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População ESTATÍSTICA STICA DESCRITIVA Prof. Lorí Val, Dr. val@mat.ufrgs.br http://.ufrgs.br/~val/ Orgazação; Resumo; Apresetação. Cojuto de dados: Amostra ou População Um cojuto de dados é resumdo de acordo com

Leia mais

D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS

D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS O método das apromações sucessvas é um método teratvo que se basea na aplcação de uma fórmula de recorrênca que, sendo satsfetas determnadas condções de convergênca,

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 2 Definições Básicas: Freqüência, Dados Brutos e Rol Organização de dados quantitativos: Tabelas de distribuição de freqüência para dados agrupados e não agrupados em classes

Leia mais

Aula Características dos sistemas de medição

Aula Características dos sistemas de medição Aula - Característcas dos sstemas de medção O comportamento funconal de um sstema de medção é descrto pelas suas característcas (parâmetros) operaconas e metrológcas. Aqu é defnda e analsada uma sére destes

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 011 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Modelo de Alocação de Vagas Docentes

Modelo de Alocação de Vagas Docentes Reunão Comssão de Estudos de Alocação de Vagas Docentes da UFV Portara 0400/2016 de 04/05/2016 20 de mao de 2016 Comssão de Estudos das Planlhas de Alocação de Vagas e Recursos Ato nº 009/2006/PPO 19/05/2006

Leia mais

Ângulo de Inclinação (rad) [α min α max ] 1 a Camada [360,0 520,0] 2000 X:[-0,2065 0,2065] Velocidade da Onda P (m/s)

Ângulo de Inclinação (rad) [α min α max ] 1 a Camada [360,0 520,0] 2000 X:[-0,2065 0,2065] Velocidade da Onda P (m/s) 4 Estudo de Caso O estudo de caso, para avalar o método de estmação de parâmetros trdmensonal fo realzado em um modelo de referênca de três camadas, e foram realzados os seguntes passos: Descrção do modelo

Leia mais

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC)

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) UNDADE V DELNEAMENTO NTERAMENTE CASUALZADO (DC) CUABÁ, MT 015/ PROF.: RÔMULO MÔRA romulomora.webnode.com 1. NTRODUÇÃO Este delneamento apresenta como característca prncpal a necessdade de homogenedade

Leia mais

É um tipo de tabela que condensa uma coleção de dados conforme as freqüências (repetições de seus valores).

É um tipo de tabela que condensa uma coleção de dados conforme as freqüências (repetições de seus valores). DISTRIBUIÇÃO DE FREQUÊNCIAS 1 TABELA PRIMITIVA E ROL Tabela primitiva ou de dados brutos: é uma tabela ou relação de elementos que não foram numericamente organizados. É normalmente a primeira tabela a

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

Testes não-paramétricos

Testes não-paramétricos Testes não-paramétrcos Prof. Lorí Val, Dr. http://www.mat.ufrgs.br/val/ val@mat.ufrgs.br Um teste não paramétrco testa outras stuações que não parâmetros populaconas. Estas stuações podem ser relaconamentos,

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

TESTE DO QUI-QUADRADO - Ajustamento

TESTE DO QUI-QUADRADO - Ajustamento Exemplo 3: Avalar se uma moeda ou um dado é honesto; Em 100 lances de moeda, observaram-se 65 coroas e 35 caras. Testar se a moeda é honesta. 1 H 0 : a moeda é honesta; H 1 : a moeda não é honesta; 2 α

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D.

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Classificadores Lineares. Luiz Eduardo S. Oliveira, Ph.D. Unversdade Federal do Paraná Departamento de Informátca Reconhecmento de Padrões Classfcadores Lneares Luz Eduardo S. Olvera, Ph.D. http://lesolvera.net Objetvos Introduzr os o conceto de classfcação lnear.

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Análise de Regressão Linear Múltipla IV

Análise de Regressão Linear Múltipla IV Análse de Regressão Lnear Múltpla IV Aula 7 Guarat e Porter, 11 Capítulos 7 e 8 He et al., 4 Capítulo 3 Exemplo Tomando por base o modelo salaro 1educ anosemp exp prev log 3 a senhorta Jole, gerente do

Leia mais

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem

Leia mais