UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO"

Transcrição

1 UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO

2 Conteúdo Programátco Cálculo da varânca Cálculo e nterpretação do Devo-padrão

3 VARIÂNCIA E DESVIO-PADRÃO A medda de varação ou dperão, avalam a varabldade da eqüênca numérca em anále. São medda que fornecem nformaçõe complementare à nformação da méda artmétca. A prncpa medda de dperão ão: a varânca e o devopadrão. Uaremo a letra para denotar a varânca de uma amotra e para denotar o eu devo-padrão.

4 CÁLCULO DA VARIANCIA E DESVIO-PADRÃO DE DADOS BRUTOS FÓRMULA PARA O CÁLCULO DA VARIÂNCIA DE DADOS BRUTOS ( n 1 ) = Varânca = Cada um do valore aumdo pela varável = Méda artmétca do dado bruto n = Total de elemento obervado FÓRMULA PARA O CÁLCULO DO DESVIO-PADRÃO DE DADOS BRUTOS = Devo-padrão = Varânca

5 Quadro 1 Nota de etudante da Turma A, B e C CÁLCULO DA VARIÂNCIA DE DADOS BRUTOS ( ) Calcule a varânca e o devo padrão da nota de trê turma de etudante. Quadro 1 Nota de etudante da Turma A, B e C Turma Nota do aluno Méda Devo-Padrão A ,31 B ,51 C ,5 7,5 6,69 O DESVIO-PADRÃO É CALCULADO A PARTIR DA VARIÂNCIA. VAMOS RESOLVER?

6 CÁLCULO DA VARIÂNCIA DE DADOS BRUTOS ( ) Vamo obervar como fo calculada a varânca e o devo-padrão da nota da turma A Para uar a fórmula devemo prmero ter o valor da méda artmétca da nota da turma A ( n 1 ) Turma Nota A Uando a nota da turma A para fazer o cálculo temo: n A méda da nota da turma A é 6

7 CÁLCULO DA VARIÂNCIA DE DADOS BRUTOS ( ) Vamo calcular a varânca da nota da turma A Turma Nota do aluno A ( n 1 ) (4 6) (5-6) (5-6) (6-6) 8 (6-6) 1 (7-6) (7-6) (8-6) , Temo que a varânca da nota vale 1,71

8 CÁLCULO DO DESVIO-PADRÃO DE DADOS BRUTOS ( ) Vamo calcular o devo-padrão da nota uando a fórmula: 1, 71 =1,31 O devo-padrão da nota vale 1,31 Para calcular o devo-padrão da turma B e C fo proceddo da mema forma.

9 CÁLCULO DO DESVIO-PADRÃO DE DADOS BRUTOS ( ) Conderaçõe Quadro 1 Nota de etudante da Turma A, B e C Turma Nota do aluno Méda Devo-Padrão A ,31 B ,51 C ,5 7,5 6,69 A nota que geraram méda 6 na trê turma ão batante dferente. O devo-padrão ão bem dferente. A groo modo dzemo que o devo-padrão no motra e a méda artmétca ofreu pouca ou muta nfluênca do valore etremo (muto grande ou muto pequeno). Nee cao podemo armar que: A turma A fo a meno nfluencada por valore etremo A turma C fo medanamente nfluencada por valore etremo A turma B fo a ma nfluencada por valore etremo.

10 CÁLCULO DA VARIÂNCIA E DESVIO-PADRÃO DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL DISCRETA FÓRMULA PARA O CÁLCULO DA VARIÂNCIA ( ) 1. = Varânca = Cada um do valore aumdo pela varável = freqüênca aboluta = Méda artmétca da varável dcreta - 1 = Soma do total de elemento obervado meno 1 FÓRMULA PARA O CÁLCULO DO DESVIO-PADRÃO = Devo-padrão = Varânca

11 CÁLCULO DA VARIÂNCIA DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL DISCRETA Vejamo um eemplo: O quadro abao repreenta a nota de Matemátca, calcule a varânca e o devo-padrão. Quadro Nota de Matemátca Nota de Matemátca () Tota 0

12 CÁLCULO DA VARIÂNCIA DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL DISCRETA ( ). 1 Prmero temo que calcular a méda artmétca ponderada para podermo depo calcular a varânca Lembra-e da fórmula da méda artmétca ponderada? É ela que remo uar! X.

13 CÁLCULO DA VARIÂNCIA DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL DISCRETA Vamo uar a dtrbução da nota de Matemátca e abrr uma coluna para podermo multplcar por e calcular a méda Nota de Matemátca (). 3.3 = = = = 0 Tota 0 73 X. X ,65 A méda da nota de Matemátca é 3,65

14 CÁLCULO DA VARIÂNCIA DA DISTRIBUIÇÃO DE FREQUENCIA VARIÁVEL DISCRETA Vamo calcular agora a Varânca uando a fórmula. Para podermo fazer, ( ). f vamo abrr uma nova coluna na dtrbução de freqüênca da nota de Matemátca, para poder facltar noo cálculo Nota de Matemátca () ( - ). 3 ( - 3,65). 3 = 8, (3-3,65). 5 =, (4-3,65). 8 = 0, (5-3,65). 4 = 7,9 Tota 0 18,55 Conclumo daí que ( ). f 18,55. Completando a reolução 1 = 0-1 = 19 ( ) 1. Subttundo o valore 18, ,98

15 CÁLCULO DO DESVIO-PADRÃO DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL DISCRETA A varânca vale 0,98 Vamo calcular o devo-padrão da nota de Matemátca 0,98 = 0,99 Conderaçõe Podemo conclur pelo cálculo que o devo-padrão vale 0,99, o que no demontra uma varabldade pequena na nota de Matemátca.

16 CÁLCULO DA VARIÂNCIA E DESVIO-PADRÃO DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL CONTINUA FÓRMULA PARA O CÁLCULO DA VARIÂNCIA ( ) 1. = Varânca = Cada um do valore aumdo pela varável = freqüênca aboluta = Méda artmétca da varável dcreta - 1 = Soma do total de elemento obervado meno 1 FÓRMULA PARA O CÁLCULO DO DESVIO-PADRÃO = Devo-padrão = Varânca

17 CÁLCULO DA VARIÂNCIA DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL CONTÍNUA Vamo ver um eemplo: O quadro 3, repreenta um banco de hora de uma pequena emprea. Calcule a varânca e o devo-padrão. Quadro 3 Banco de hora Banco de hora (h) Total 10

18 CÁLCULO DA VARIÂNCIA DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL CONTÍNUA ( ). 1 Prmero temo que calcular a méda artmétca ponderada para podermo depo calcular a varânca X. Na varável contínua para podermo calcular a méda temo que fazer aparecer o, calculando o ponto médo entre cada uma da hora.

19 CÁLCULO DA VARIÂNCIA DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL DISCRETA Vamo abrr uma coluna na dtrbução para colocar o ponto médo e outra para podermo multplcar por. Banco de hora (h) (ponto médo) =.1 = = = = = = =14 Total X. X ,4 Temo que a méda do banco de hora é 8,4 h

20 CÁLCULO DA VARIÂNCIA DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL CONTÍNUA Vamo calcular agora a Varânca uando a fórmula. Para podermo fazer, ( ). f vamo abrr uma nova coluna na dtrbução de freqüênca da nota de Matemátca, para poder facltar noo cálculo Banco de hora (h) (ponto médo) ( - ) ( 8,4). 1 = 40, (6 8,4). 3 = 17, (10 8,4). 5 = 1, (14 8,4). 1 = 31,36 TotaL 10-10,4 ( ). Temo que = 10,4 1 Que é gual a 10-1 = 9 ( ) 1. 10,4 11,38 A varânca vale 11,38 9

21 CÁLCULO DO DESVIO-PADRÃO DA DISTRIBUIÇÃO DE FREQUÊNCIA VARIÁVEL CONTÍNUA A varânca vale 11,38 Vamo calcular o devo-padrão da nota de Matemátca 11,38 = 3,37 Conderaçõe Feto o cálculo vercamo que a varânca do banco de hora é 3,37, o que demontra uma varabldade méda na hora.

22 DESVIO-PADRÃO NOTA Quanto maor o devo-padrão maor a varação ou dperão do dado Quanto menor o devo-padrão, menor a varação ou dperão do dado

23 FINALIZANDO Fnalzamo ma uma Undade onde aprendemo a calcular a varânca e calcular e nterpretar o devo-padrão. O devo-padrão fornece nformaçõe que complementam a nformação da méda artmétca, motrando e a varação do dado que geraram a méda artmétca é pequena, méda ou grande. Só conegumo dentcar e um devo-padrão é pequeno ou grande e tvermo do conjunto que tenham méda gua para podermo comparar eu devo-padrão. Etou conante e tenho certeza que você coneguram acompanhar e que etão atfeto por terem conegudo vencer ma ea etapa.

24 Obrgada... Campu Lberdade R. Galvão Bueno, São Paulo SP Bral T F

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO 0 INTRODUÇÃO A medda de varação ou dperão, avalam a dperão ou a varabldade da eqüênca numérca em anále, ão medda que fornecem nformaçõe

Leia mais

Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Medidas de Dispersão

Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Medidas de Dispersão Univeridade Cruzeiro do Sul Campu Virtual Unidade I: Unidade: Medida de Diperão 010 0 A medida de variação ou diperão avaliam a diperão ou a variabilidade da equência numérica em análie. São medida que

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Etatítica Material teórico Medida de Diperão ou Variação Reponável pelo Conteúdo: Profª M. Roangela Maura C. Bonici MEDIDAS DE DISPERSÃO OU VARIAÇÃO Introdução ao Conteúdo Cálculo da

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Escola Secundária de Jácome Ratton

Escola Secundária de Jácome Ratton Ecola Secudára de Jácome Ratto Ao Lectvo / Matemátca Aplcada à Cêca Soca Na Ecola Secudára do Suceo aualmete é premado o aluo que tver melhor méda a ua clafcaçõe a dferete dcpla. No ao lectvo 9/, o do

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Etatítca Aplcada à Educação Antono Roque Aula 5 Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção Prof. Lorí Val, Dr. val@pucr.br http://www.pucr.br/~val/ Grade Cojuto de Dado Orgazação; Reumo; Apreetação. Amotra ou População Defeto em uma lha de produção Lacado Deeho Torto Deeho Torto Lacado Torto

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

PROBABILIDADE E ESTATISTICA. Unidade III Medidas de Posição

PROBABILIDADE E ESTATISTICA. Unidade III Medidas de Posição PROBABILIDADE E ESTATISTICA Unidade III Medidas de Posição 0 1 MEDIDAS DE POSIÇÃO As medidas de posições mais importantes são as medidas de tendência central e as medidas separatrizes. As medidas de tendência

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

= n. Observando a fórmula para a variância, vemos que ela pode ser escrita como, i 2

= n. Observando a fórmula para a variância, vemos que ela pode ser escrita como, i 2 Etatítca II Atoo Roque Aula 4 O Coefcete de Correlação de Pearo O coefcete de correlação de Pearo é baeado a déa de varâca, dada o curo de Etatítca I Como vto aquele curo, quado temo uma amotra compota

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

Capítulo III Medidas Estatísticas

Capítulo III Medidas Estatísticas 8 Capítulo III Medda Etatítca III. Medda de Tedêca Cetral A apreetação de dado em tabela e gráco motra a orma da dtrbução. A medda de tedêca cetral dcam o valor do poto em toro do qual o dado e dtrbuem.

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

ESTATÍSTICA. Turma Valores Intervalo A [4,8] B 4 4 4,2 4,3 4, [4,8]

ESTATÍSTICA. Turma Valores Intervalo A [4,8] B 4 4 4,2 4,3 4, [4,8] .. - Medida de Diperão O objetivo da medida de diperão é medir quão próximo un do outro etão o valore de um grupo (e alguma menuram a diperão do dado em torno de uma medida de poição). Intervalo É a medida

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

[Ano] CÁLCULOS ESTATÍSTICOS PARA ANÁLISE E TOMADA DE DECISÃO. Universidade Cruzeiro do Sul

[Ano] CÁLCULOS ESTATÍSTICOS PARA ANÁLISE E TOMADA DE DECISÃO. Universidade Cruzeiro do Sul [Ano] CÁLCULOS ESTATÍSTICOS PARA ANÁLISE E TOMADA DE DECISÃO Universidade Cruzeiro do Sul www.cruzeirodosul.edu.br CÁLCULOS ESTATÍSTICOS PARA ANÁLISE E TOMADA DE DECISÃO Responsável pelo Conteúdo: Carlos

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

Etapas para a construção de uma distribuição de frequências por ponto

Etapas para a construção de uma distribuição de frequências por ponto Dtrbuçõe de Frequêca Uma dtrbução de requêca é uma tabela que reúe o cojuto de dado, coorme a requêca ou a repetçõe de eu valore o capítulo ateror, vmo como ão eta ea tabela quado a varável é qualtatva

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral,

Intervalo de Confiança para a Variância de uma População Distribuída Normalmente. Pode-se mostrar matematicamente que a variância amostral, Etatítica II Antonio Roque Aula 8 Intervalo de Confiança para a Variância de uma População Ditribuída Normalmente Pode-e motrar matematicamente que a variância amotral, ( x x) n é um etimador não envieado

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

Unidade MEDIDAS E POSIÇÕES. Unidade I:

Unidade MEDIDAS E POSIÇÕES. Unidade I: Unidade I: 0 MEDIDAS DE POSIÇÃO As medidas de posições mais importantes são as de tendência central e as medidas separatrizes. As medidas de tendência central recebem este nome por posicionar-se no centro

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

a) 3 c) 5 d) 6 b) i d) i

a) 3 c) 5 d) 6 b) i d) i Colégo Marsta Docesano de Uberaba ª Lsta de eercícos de Compleos Prof. Maluf Se é a undade magnára, para que a b seja um número real, a relação c d entre a, b, c e d deve satsfaer: 0 - (UNESP SP/00) a)

Leia mais

Ecologia Geral Riqueza e Diversidade de Espécies

Ecologia Geral Riqueza e Diversidade de Espécies Ecologa Geral Rqueza e Dverdade de Epéce Prof. Wllam Cota Rodrgue Pó-Doutor em Entomologa/Ecologa Unverdade Severno Sombra Tranparênca Extra I 1 Conceto A dverdade de epéce refere-e à varedade de epéce

Leia mais

Gonçalo X. Silva Alda Carvalho

Gonçalo X. Silva Alda Carvalho Goçalo X. Slva Alda Carvalho ÍNDICE. ESTATÍSTICA DESCRITIVA..... INTRODUÇÃO..... DEFINIÇÕES..... CLASSIFICAÇÃO DOS DADOS.... CARACTERIZAÇÃO DOS DADOS....5 ESTATÍSTICAS AMOSTRAIS... 0.5.. Medda de localzação...

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Organização de dados -Dados não agrupados n. Mediana:

Organização de dados -Dados não agrupados n. Mediana: Orgazação de dado -Dado ão agruado Medaa: Poto de ocoameto: Méda: Moda: valor que ocorre com maor freqüêca Méda de Itervalo: + m max + Quartl: (ara j, ou 3) j( +) Poto de ocoameto: 4 Méda da Juta: Q +

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

Algoritmos Genéticos com Parâmetros Contínuos

Algoritmos Genéticos com Parâmetros Contínuos com Parâmetros Contínuos Estéfane G. M. de Lacerda DCA/UFRN Mao/2008 Exemplo FUNÇÃO OBJETIVO : 1,0 f ( x, y) 0, 5 sen x y 0, 5 1, 0 0, 001 x 2 2 2 y 2 2 2 0,8 0,6 0,4 0,2 0,0-100 -75-50 -25 0 25 50 75

Leia mais

ESTATÍSTICA PARA TCU PROFESSOR: GUILHERME NEVES

ESTATÍSTICA PARA TCU PROFESSOR: GUILHERME NEVES Estatístca Descrtva A Estatístca, ramo da Matemátca Aplcada, teve orgem na hstóra do homem. Desde a Antgudade, város povos regstravam o número de habtantes, de nascmentos, de óbtos, dstrbuíam equtatvamente

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014)

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014) Método dos Mínmos Quadrados com ênfase em varâncas e com recursos matrcas (3//4) Otavano Helene Curso de etensão unverstára, IFUSP, feverero/4 Baseado no lvro Método dos Mínmos Quadrados com Formalsmo

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

Surpresa para os calouros. Série Matemática na Escola. Objetivos

Surpresa para os calouros. Série Matemática na Escola. Objetivos Surpresa para os calouros Sére Matemátca na Escola Objetvos 1. Usando a decomposção de um número em fatores prmos, pode-se provar que um número ntero é um quadrado perfeto, se e somente se tem um número

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 11 Estatístca.... Classe.... 7 Lmtes de classe... 7 Ampltude de um ntervalo de classe... 7 Ampltude total da Dstrbução... 8 Ponto médo de uma classe... 8 Tpos de frequêncas... 9 Meddas de Posção...

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

UNIDADE DE REVISÃO E RECUPERAÇÃO PROBABILIDADE E ESTATÍSTICA

UNIDADE DE REVISÃO E RECUPERAÇÃO PROBABILIDADE E ESTATÍSTICA UNIDADE DE REVISÃO E RECUPERAÇÃO PROBABILIDADE E ESTATÍSTICA Organizamos esta unidade para orientá-lo na revisão dos conteúdos trabalhados ao longo da disciplina. Siga as orientações, reveja os conteúdos

Leia mais

Medidas de Dispersão para uma Amostra. Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO

Medidas de Dispersão para uma Amostra. Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO Medidas de Dispersão para uma Amostra Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO Medidas de Dispersão para uma Amostra Para entender o que é dispersão, imagine que quatro alunos

Leia mais

BIOESTATÍSTICA. Unidade III - Medidas de Tendência Central e de Dispersão

BIOESTATÍSTICA. Unidade III - Medidas de Tendência Central e de Dispersão BIOESTATÍSTICA Unidade III - Medidas de Tendência Central e de Dispersão 0 INTRODUÇÃO Vamos abordar um assunto importante no que diz respeito a transmissão das informações relativas à amostra ou população

Leia mais

Aula 5 Senado Federal Parte 2

Aula 5 Senado Federal Parte 2 Aula 5 Senado Federal Parte Estatístca... Classe... 8 Lmtes de classe... 8 Ampltude de um ntervalo de classe... 9 Ampltude total da Dstrbução... 9 Ponto médo de uma classe... 9 Tpos de frequêncas... 10

Leia mais

Estatística I Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 3. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 3 Prof.: Patricia Maria Bortolon, D. Sc. Estatística: Prof. André Carvalhal Dados quantitativos: medidas numéricas Propriedades Numéricas Tendência Central Dispersão Formato Média Mediana

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

INTRODUÇÃO À ANÁLISE ESTATÍSTICA DE MEDIDAS14

INTRODUÇÃO À ANÁLISE ESTATÍSTICA DE MEDIDAS14 ITRODUÇÃO À AÁLISE ESTATÍSTICA DE MEDIDAS4 Sérgo Rcardo Munz Fundamentos da Matemátca II 3. Introdução: o que é estatístca e para que serve? 3. A estatístca no da-a-da 3.3 Eatdão, precsão, erros e ncertezas

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6:

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6: Lsta de Exercícos - Probabldade INE 700 GABARITO LISTA DE EXERÍIOS PROBABILIDADE ) Vamos medr o tempo de duração da lâmpada. Ao lgarmos a lâmpada ela pode não funconar, ou durar um tempo ndetermnado. a)

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Bioestatística Medidas de tendência central, posição e dispersão PARTE II Roberta de Vargas Zanini 11/05/2017

Bioestatística Medidas de tendência central, posição e dispersão PARTE II Roberta de Vargas Zanini 11/05/2017 Bioestatística Medidas de tendência central, posição e dispersão PARTE II Roberta de Vargas Zanini 11/05/2017 10/03/2016 As medidas de tendência central são uma boa forma para descrever resumidamente

Leia mais

ESTATÍSTICA Medidas de Síntese

ESTATÍSTICA Medidas de Síntese 2.3 - Medidas de Síntese Além das tabelas e gráficos um conjunto de dados referente a uma variável QUANTITATIVA pode ser resumido (apresentado) através de Medidas de Síntese, também chamadas de Medidas

Leia mais

TRABALHO DE COMPENSAÇÃO DE FALTAS - DP

TRABALHO DE COMPENSAÇÃO DE FALTAS - DP Cotrole do Proº Compesou as Faltas Não Compesou as Faltas TRABALHO DE COMPENSAÇÃO DE FALTAS - DP (De acordo coma s ormas da Isttução) CURSO: CIÊNCIAS CONTÁBEIS DISCIPLINA: INTRODUÇÃO À ESTATÍSTICA 2º ANO

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO

ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ADMINISTRAÇÃO ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Eemplos em STATA. Prof. Dr. Evandro Marcos

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Matemática Financeira

Universidade Cruzeiro do Sul. Campus Virtual Unidade I: Unidade: Matemática Financeira Universidade Cruzeiro do Sul Campus Virtual Unidade I: Unidade: Matemática Financeira 2010 0 Nesta Unidade iremos apresentar alguns conceitos importantes de Matemática Financeira tais como porcentagem,

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Etatítca - Devo Padrão e Varânca Preparado pelo Prof. Antono Sale,00 Suponha que tenhamo acompanhado a nota de quatro aluno, com méda 6,0. Aluno A: 4,0; 6,0; 8,0; méda 6,0 Aluno B:,0; 8,0; 8,0; méda 6,0

Leia mais

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão LCE Etatítca Aplcada à Cêca Soca e Ambeta 00/0 Eemplo de revão Varável Aleatóra Cotíua Eemplo: Para e etudar o comportameto de uma plata típca de dua, a Hydrocotlle p., quato ao eu deevolvmeto, medu-e

Leia mais