CAPÍTULO 2 - Estatística Descritiva

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 2 - Estatística Descritiva"

Transcrição

1 INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente de varação Dados:, 3, 5, 1,, 1, 4, 3, 3, 4, 3. R.:,81; 1,56; 1,4; 0,37; 44,1% ) Em certa regão a temperatura méda é 0 0 C e a precptação méda é 700 mm. O desvo padrão para temperatura é 3 0 C, enquanto que a varânca para a precptação é 15 mm. Qual dos dos fenômenos apresenta maor varabldade? Justfque. R.: a temperatura apresenta maor varabldade relatva. Você justfca 3) Um artgo retrado da revsta Technometrcs (Vol. 19, 1977, p. 45) apresenta os seguntes dados sobre a taxa de octanagem de váras msturas de gasolna: 88,5 87,7 83,4 86,7 87,5 91,5 88,6 100,3 96,5 93,3 94,7 91,1 91,0 94, 87,8 89,9 88,3 87,6 84,3 86,7 84,3 86,7 88, 90,8 88,3 98,8 94, 9,7 93, 91,0 90,1 93,4 88,5 90,1 89, 88,3 85,3 87,9 88,6 90,9 89,0 96,1 93,3 91,8 9,3 90,4 90,1 93,0 88,7 89,9 89,8 89,6 87,4 88,4 88,9 91, 89,3 94,4 9,7 91,8 91,6 90,4 91,1 9,6 89,8 90,6 91,1 90,4 89,3 89,7 90,3 91,6 90,5 93,7 9,7 9, 9, 91, 91,0 9, 90,0 90,7 (a) Construa o dagrama de folhas-e-ramos para esses dados (b) Construa a dstrbução de frequênca e o hstograma. Use 8 ntervalos de classe. (c) Construa a dstrbução de frequênca e o hstograma, agora com 16 ntervalos de classe. (d) Compare a forma dos dos hstogramas em b e c. Ambos os hstogramas mostram nformações smlares? 4) O segunte conjunto de dados representa as vdas de 40 bateras de carro da mesma marca e mesmas característcas com aproxmação até décmos do ano. As bateras tnham garanta para 3 anos., 4,1 3,5 4,5 3, 3,7 3,0,6 3,4 1,6 3,1 3,3 3,8 3,1 4,7 3,7,5 4,3 3,4 3,6,9 3,3 3,9 3,1 3,3 3,1 3,7 4,4 3, 4,1 1,9 3,4 4,7 3,8 3,,6 3,9 3,0 4, 3,5 (a) Construa a dstrbução de frequênca e o hstograma; (b) Faça o gráfco da dstrbução de frequêncas relatvas acumuladas. 13

2 INF 16 Prof. Luz Alexandre Peternell (c) Calcule a méda artmétca dos dados orgnas (d) Usando a dstrbução de frequênca conforme obtdo em a calcule a méda novamente. Para tal, consdere os pontos médos de cada classe (méda entre os dos lmtes de cada classe) para serem os valores da varável no cálculo da méda. (e) Obtenha a varânca para os dados orgnas conforme feto para a méda em c. (f) Obtenha a varânca a partr da dstrbução de frequênca conforme feto para a méda no ítem d. obs.: use 7 ntervalos de classe. Ampltude da classe gual a 0,5. E o níco do ntervalo mas baxo em 1,5. ( f x ) 5) Mostre que f ( x x) = f x f 6) Mostre que a soma de quadrados dos desvos (SQD) em relação à méda é um mínmo. Dca: Consdere f(a) a função que representa a SQD em relação a a. Ou seja, n = 1 f ( a) = ( x a). Usando seus conhecmentos de cálculo, mostre que f(a) será mínmo quando a for gual a méda dos valores de X. 7) Calcule a méda, medana, e ampltude total dos valores dspostos no segunte dagrama de ramos e folhas

3 INF 16 Prof. Luz Alexandre Peternell UNIVERSIDADE FEDERAL DE VIÇOSA --Departamento de Informátca / CCE INF Incação à Estatístca / INF 16 Estatístca I Lsta de Exercícos: Estatístca Descrtva 1) Os dados abaxo se referem a meddas tomadas em uma amostra de 10 cães: Cão Peso (kg) 3,0,7 1, 1,5 17,0 8,4 19,0 14,5 19,0 19,5 Comprmento (cm) Pede-se, para as característcas avaladas, peso e comprmento, as estatístcas: a) Méda; b) Varânca; c) Desvo-padrão; d) Erro-padrão da méda; e) Coefcente de varação; f) Qual das duas característcas é a mas homogênea; g) Medana; h) Moda. ) Um pesqusador dspõe das seguntes nformações, a respeto dos valores de uma amostra: - a méda de todos os valores é gual a 50,34; - a soma dos quadrados dos valores é gual a ; - a amostra é consttuída de 5 valores dstntos. Pergunta-se: Com essas nformações é possível obter alguma(s) medda(s) de dspersão dos valores amostras? Em caso afrmatvo, efetue os cálculos e obtenha a(s) respectva(s) medda(s). 3) Consdere os dados: 1, 17, 17, 17, 10, 10, 9, 9, 9, 1, 1, 6, 6, 6, 17, 17, 1, 1, 9, 9, 9, 1, 1, 1, 1. Supondo que sejam valores assumdos por uma varável aleatóra dscreta X, pede-se: a) Méda, medana e moda; b) Erro-padrão da méda e C.V.(%). 15

4 INF 16 Prof. Luz Alexandre Peternell 4) Duas turmas A e B com n A = 50 e n B = 80 apresentaram médas X A = 65 e X B = 70 e varâncas s A = 5 e s B = 35. Qual é a turma mas homogênea? 5) A méda de aprovação na dscplna de Estatístca é 6 ou mas. Durante um período letvo foram realzadas quatro provas, sendo que a prmera prova teve peso dos, a segunda e a tercera o dobro do peso da prmera e a últma gual ao peso da prmera. Os resultados, nclundo os de uma prova de substtução optatva, foram os seguntes: Estudantes 1 a a 3 a 4 a Optatva 1,5 4,5 5,0 6,0 7,0,0 8,5 7,0 3,0 5,0 3 8,5 10,0 9,0 8,5 nc 4 3,5 5,5 8,5 7,5 6,5 5 3,0 5,0 6,0 4,5 5,0 6 6,0 3,0 4,0 5,0,0 7 8,0 1,5,0 9,0 5,0 8 1,5,0 1,0,5 nc 9 7,5 8,0 8,5 10,0 nc 10 5,5 4,5 5,0 4,5,5 Sabendo-se que a nota da prova optatva substtu a menor nota das provas precedentes, determne: a) Méda de cada estudante; b) Para cada prova: méda, moda, medana, varânca, desvo-padrão, erro-padrão da méda e CV. c) Para o período: méda, varânca, desvo-padrão, erro-padrão da méda, CV. d) Lste as provas em ordem crescente de homogenedade. 16

5 INF 16 Prof. Luz Alexandre Peternell 1. a) X = 0,58kg; Y = 101,3cm ˆ ( X ) = 14,973kg ; Vˆ ( Y ) ( X ) = 3,781kg; s( Y ) = RESPOSTAS b) V = 17,7889cm c) s 4,177cm d) s( X ) = 1,1957kg; s( Y ) = 1,3338cm e) CVX = 18,37%; CVY = 4,16% f) Comprmento, pos é a que possu menor CV. g) Md X = 0,35kg; MdY = 10,50cm h) Mo = 19,0kg; Mo = 100 cm, 104cm e 105cm X Y. s = 357,373; s = 18,9043; CV = 37,55%; s(x) =, a) X = 11,4; Md = 1; Mo = 1 b) ( ) Turma B 5. a) s X = 0, ; CV = 30,8% Estudante b) Méda 5,33 6,50 9,17 7,00 5,5 3,83 5,17 1,67 8,4 4,50 1 a a 3 a 4 a Argução X 6,05 5,50 5,60 5,85 Mo 5 ; 4,5; 5 5; 8,5,5 Md 6,5 5,0 5,5 5,5 s 4,0 6,94 7,54 7,78 s,01,64,75,79 s( X) 0,63 0,83 0,87 0,88 CV(%) 33,16% 47,91% 49,05% 47,68% ( ) c) X= 5, 6833; s = 6, 098 ; s= 4919 ; s X = 0, 75 ; CV= 43, 85% d) 3 a, a, 4 a, 1 a 17

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares novembro 0 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares quadrmestre 0 Além destes eercícos,

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS EEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS Exemplo: Peso de 25 bolos ndustras Forma bruta: Dsposção ordenada 266 267 266 26 22 255 266 26 272 22 260 272 25 262 23 25 266 270 274 22 2 270 20

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO Conteúdo Programátco Cálculo da varânca Cálculo e nterpretação do Devo-padrão VARIÂNCIA E DESVIO-PADRÃO A medda de varação ou dperão, avalam a varabldade da

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

1. Na figura estão representados dois ciclistas, A e B, pedalando a caminho de um cruzamento. Ao chegarem ao cruzamento, ambos continuam em frente.

1. Na figura estão representados dois ciclistas, A e B, pedalando a caminho de um cruzamento. Ao chegarem ao cruzamento, ambos continuam em frente. Escla Secundára Dr. Ângel August da Slva Teste de MATEMÁTICA A 10º An Duraçã: 90 mnuts 6º Teste, Junh 2006 Nme Nº T: Classfcaçã O Prf. (Luís Abreu) 1ª PARTE Para cada uma das seguntes questões de esclha

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecnologa de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 7. GRÁFICOS DE INFORMAÇÕES São grácos tpcamente epostvos destnados, prncpalmente, ao públco em geral, objetvando

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 11 Estatístca.... Classe.... 7 Lmtes de classe... 7 Ampltude de um ntervalo de classe... 7 Ampltude total da Dstrbução... 8 Ponto médo de uma classe... 8 Tpos de frequêncas... 9 Meddas de Posção...

Leia mais

FACULDADE DE TECNOLOGIA TUPY CURITIBA

FACULDADE DE TECNOLOGIA TUPY CURITIBA FACULDADE DE TECNOLOGIA TUPY CURITIBA MÉTODOS QUANTITATIVOS ESTATÍSTICA APLICADA VAGNER J. NECKEL 2010 Rev. 00 SUMÁRIO 1. CONCEITOS GERAIS...3 1.1 PANORAMA HISTÓRICO...3 1.2 DEFINIÇÃO...3 1.3 A ESTATÍSTICA

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Aula 5 Senado Federal Parte 2

Aula 5 Senado Federal Parte 2 Aula 5 Senado Federal Parte Estatístca... Classe... 8 Lmtes de classe... 8 Ampltude de um ntervalo de classe... 9 Ampltude total da Dstrbução... 9 Ponto médo de uma classe... 9 Tpos de frequêncas... 10

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Apostila de Estatística

Apostila de Estatística Apostla de Estatístca Prof. Ms. Osoro Morera Couto Junor Capítulo 1 - Introdução Estatístca 1.1 Hstórco A estatístca é um ramo da matemátca aplcada. A partr do século XVI começaram a surgr as prmeras análses

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO

ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ADMINISTRAÇÃO ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Eemplos em STATA. Prof. Dr. Evandro Marcos

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO

PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO PROBABILIDADE E ESTATÍSTICA UNIDADE IV - MEDIDAS DE DISPERSÃO OU VARIAÇÃO 0 INTRODUÇÃO A medda de varação ou dperão, avalam a dperão ou a varabldade da eqüênca numérca em anále, ão medda que fornecem nformaçõe

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão LCE Etatítca Aplcada à Cêca Soca e Ambeta 00/0 Eemplo de revão Varável Aleatóra Cotíua Eemplo: Para e etudar o comportameto de uma plata típca de dua, a Hydrocotlle p., quato ao eu deevolvmeto, medu-e

Leia mais

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres Análse de Varânca Rejane Sobrno Pnhero Tana Gullén de Torres Análse de Varânca Introdução Modelos de análse de varânca consttuem uma classe de modelos que relaconam uma varável resposta contínua com varáves

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Electromagnetsmo e Óptca aboratóro - rcutos OBJETIOS Obter as curvas de resposta de crcutos do tpo sére Medr a capacdade de condensadores e o coefcente de auto-ndução de bobnas por métodos ndrectos Estudar

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais