Análise de Variância. Comparação de duas ou mais médias

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Análise de Variância. Comparação de duas ou mais médias"

Transcrição

1 Análse de Varânca Comparação de duas ou mas médas

2 Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA) em gestantes normas (N), com tolerânca dmnuída (TD) e dabétcas (D). Foram escolhdas 10 gestantes de cada tpo e meduse suas HbA. normal Tpos de gestante tolerânca dmnuída dabétca

3 Varável Resposta Y ( ou Varável Dependente) : Hemoglobna glcoslada (HbA) Tpo de gestante N TD D 7,86 6,20 9,67 6,38 7,82 8,08 6,90 8,50 9,25 7,78 6,50 8,20 8,17 8,09 8,64 6,26 6,90 9,67 6,30 7,82 9,23 7,86 7,45 10,43 7,42 7,75 9,97 8,63 7,43 9,59 Fazer análse descrtva

4 Modelo: observação Y = sstemátca + aleatóra componente sstemátca (prevsível): ncorpora o conhecmento que o pesqusador tem sobre o fenômeno componente aleatóra: representa varações ndvduas e fatores que não são explcados pela parte sstemátca Subpopulações: P 1, P 2,..., P k representadas por um nível do fator No exemplo: fator tpo de gestante 3 níves Suponha que : P 1 méda de Y : 1 P 2 méda de Y : 2 P k méda de Y : k

5 Queremos testar: H 0 : 1 = 2 = = k H A : pelo menos uma das médas é dferente das demas Análse de Varânca : compara a varabldade entre as médas amostras dos grupos e a varação dentro dos grupos. Se H 0 é verdadera, a varabldade entre as médas dos grupos deve ser pequena

6 Em cada nível do fator : uma amostra de observações k amostras ndependentes Nível 1 Nível 2... Nível k y 11 y 21 y k1 y 12 y y k2 y 1n1 y 2n2 y knk médas: y 1. y 2. y k. n=n 1 +n n k

7 Modelo estatístco (1): Y j = + e j =1,...,k; j =1,...,n onde: : méda do nível (efeto do nível ) e j : efeto aleatóro do j-ésmo ndvíduo do nível Y j : varável resposta do j-ésmo ndvíduo do nível Se a hpótese H 0 for verdadera, o modelo pode ser reescrto: Modelo estatístco (0): Y j = + e * j =1,...,k; j =1,...,n

8 Informação que não é explcada pela parte sstemátca Modelo 1: k n 1 j 1 e 2 j k n 1 j 1 ( y j ) 2 Modelo 0: k n 1 j 1 ( e * j ) 2 k n 1 j 1 ( y j ) 2

9 Modelo 1 (médas dferentes): n 1 n 1 Modelo 0 (mesma méda): y k n 1 n 1 j 1 j y j y. y.. Substtundo temos: SQD k 1 n j 1 ( y j y. ) 2 SQT k 1 n j 1 ( y j y.. ) 2

10 SQE = SQT - SQD SQE k 1 n (y y ) 2.. Varabldade Total = Varabldade entre grupos + Varabldade dentro dos grupos SQT = SQE + SQD

11 Cada uma das somas de quadrados envolve um certo número de quantdades que estão sendo estmadas. Então defnmos os correspondentes quadrados médos: SQT SQD SQE QMT QMD QME n 1 n k k 1 Se H 0 não for verdadera modelo 1 é mas adequado do que o modelo 0 (resíduos do modelo 1 são menores) QME: nformação dos dados captada pelo modelo 1 QMD: nformação que não é explcada pelo modelo1 F QME QMD Se QME for grande comparado à QMD, parte sstemátca do modelo 1 está captando grande parte da nformação. Quanto maor for o valor de F, maores as evdêncas contra H 0.

12 Para realzarmos o teste, precsamos da dstrbução da estatístca F Suposções 1) As amostras são ndependentes 2) Dentro de cada amostra as observações são ndependentes. 3) As observações são seleconadas de uma população na qual a varável resposta tem dstrbução Normal com varâncas guas. Y j ~ N(, 2 ), para todo e j.

13 Ou seja, Nível 1 Nível 2... Nível k y 11 y y k1 y 12 y 22 y k2 y 1n1 y 2n2 y knk amostra N( 1, 2 ) amostra N( 2, 2 ) amostra N( k, 2 )

14 Se as suposções estverem satsfetas, sob a hpótese H 0 temos que: a estatístca do teste F =QME/QMD tem dstrbução F-Snedecor com (k-1) e (n-k) graus de lberdade. F QME QMD ~ F k 1,n k Rejetamos H 0 para valores grandes de F ou seja RC = {F a} Pelo Teorema de Cochran temos que sob H 0 : SQE 2 SQD 2 ~ ~ 2 ( k 1 ) 2 ( n k ) SQE e SQD ndependen tes

15 Resumo: Tabela de Análse de Varânca - ANOVA Fonte de Graus de Soma de Quadrado F varação lberdade quadrados médo Entre k-1 SQE QME QME/QMD Dentro n-k SDQ QMD Total n-1 SQT com F~F (k-1, n-k) QMD é um estmador para a varânca populaconal 2. Combnação das varâncas amostras dentro de cada grupo Só tem sentdo se a suposção de gualdade das varâncas populaconas é verdadera

16 Analyss of Varance Source DF SS MS F P Factor 2 23,403 11,702 19,36 0,000 Error 27 16,316 0,604 Total 29 39,719 Indvdual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev C1 10 7,356 0,8469 (-----*-----) C2 10 7,446 0,7183 (-----*-----) C3 10 9,273 0,7614 (-----*-----) Pooled StDev = 0,7774 7,20 8,00 8,80 9,60 Y. ~ N(, n 2 ) Y. QMD n ~ t n k

17 Quando rejetamos a Hpótese nula Localzar as dferenças através de Técncas de Comparações Múltplas. Alguns Métodos Tukey Scheffé Bonferron Comparar os grupos dos a dos por meo de ntervalos de confança para a dferença. Se o ntervalo não contém o zero, podemos obter conclusões sobre a razão da rejeção.

18 Comparação entre os métodos a) Tukey deve ser adotado quando tvermos nteresse em todas as possíves comparações de médas duas a duas. Quando o no. for pequeno em relação a k(k-1)/2, Bonferron é mas precso que o Tukey. b) Scheffé deve ser adotado quando temos nteresse em comparações envolvendo mas de duas médas

19 Análse de Resíduos Verfcar se o modelo adotado fo adequado O resíduo da observação y j é defndo como: y j - méda amostral do grupo = j. A méda dos resíduos é zero, e a varânca é a mesma das observações. A análse descrtva dos resíduos pode sugerr a valdade das suposções de Normaldade, Igualdade de Varâncas e Independênca ( quando dspusermos da ordem em que as observações foram obtdas)

20 Teste de Igualdade de Varâncas Teste de Bartlett (dstrbução normal) Teste de Levene (qualquer dstrbução contínua) Teste de Normaldade Uma forma de se verfcar descrtvamente a suposção de normaldade das observações, é construr o gráfco de probabldade normal dos resíduos

21 Desvos das Suposções Se as suposções de Normaldade ou Igualdade de Varâncas não estverem satsfetas, podem ser fetas transformações nos dados. No caso de não ser encontrada uma transformação adequada, podem ser adotadas técncas não paramétrcas

22 Fugas da Normaldade garantr a valdade da dstrbução F O modelo de ANOVA é robusto Teorema Lmte Central ( Dstr. Amostral da Méda ) Em casos extremos Testes Não Paramétrcos

23 Heterocedastcdade Transformação dos dados orgnas Testes não paramétrcos Utlzação de modelos mas geras Lembrar que heterocedastcdade já é uma dferença mportante entre os grupos

24 2 proporconal a Y Y Y Y Y 1 ou proporconal a Y logy 2 proporconal a 2 Y 1 Y

25 Fugas da Independênca Ajuste de Modelos Específcos Stuações Expermentas Meddas Repetdas Dados Longtudnas A) Comparação das glcemas médas na população de pacentes submetdos à revascularzação do mocárdo com a utlzação de crculação extracorpórea nos períodos, pré-operatóro, prmero e segundo das do pós-operatóro B) Comparação de graus médos de melhora em pacentes Esquzofrêncos ou Depressvos submetdos a três tpos de tratamento

26 Ths document was created wth Wn2PDF avalable at The unregstered verson of Wn2PDF s for evaluaton or non-commercal use only.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (5,5): A redução da

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Análise de Regressão Linear Múltipla IV

Análise de Regressão Linear Múltipla IV Análse de Regressão Lnear Múltpla IV Aula 7 Guarat e Porter, 11 Capítulos 7 e 8 He et al., 4 Capítulo 3 Exemplo Tomando por base o modelo salaro 1educ anosemp exp prev log 3 a senhorta Jole, gerente do

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres Análse de Varânca Rejane Sobrno Pnhero Tana Gullén de Torres Análse de Varânca Introdução Modelos de análse de varânca consttuem uma classe de modelos que relaconam uma varável resposta contínua com varáves

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

Regressão Linear Múltipla. Frases. Roteiro

Regressão Linear Múltipla. Frases. Roteiro Regressão Lnear Múltpla Frases Por serem mas precsos que as palavras, os números são partcularmente adequados para transmtr conclusões centífcas Pagano e Gauvre, 004 Rotero 1. Especfcação do Modelo. Modelo

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

ANÁLISE DE VARIÂNCIA (ANOVA) CLÁSSICA: TÉCNICA ÚTIL, PORÉM RESTRITIVA!

ANÁLISE DE VARIÂNCIA (ANOVA) CLÁSSICA: TÉCNICA ÚTIL, PORÉM RESTRITIVA! ANÁLSE DE VARÂNCA (ANOVA) CLÁSSCA: TÉCNCA ÚTL, PORÉM RESTRTVA! Questões assocadas à verfcação de suas suposções: (adtvdade, ndependênca, homocedastcdade e normaldade) k..d.~n(0, ) quadrados mínmos ordnáros

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Expermentas em Cêncas Mecâncas Professor Jorge Luz A. Ferrera Sumáro.. Dagrama de Dspersão. Coefcente de Correlação Lnear de Pearson. Flosofa assocada a medda da Estatstca. este de Hpótese 3. Exemplos.

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO ESTATISTICA EXPERIMENTAL: Com aplcaçoes em R Medcna

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais Avalação do tamanho da amostra de segmentos regulares para estmar a área plantada com café na regão sul de Mnas Geras Marcos Adam Maurco Alves Morera Bernardo Fredrch Theodor Rudorff Insttuto Naconal de

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Resumo 7-22, Janete Pereira Amador 1, Sidinei José Lopes 2, João Eduardo Pereira 1, Adriano Mendonça Souza 1, Marcos Toebe 3

Resumo 7-22, Janete Pereira Amador 1, Sidinei José Lopes 2, João Eduardo Pereira 1, Adriano Mendonça Souza 1, Marcos Toebe 3 7-, 011 Análse das pressuposções e adequação dos resíduos em modelo de regressão lnear para valores ndvduas, ponderados e não ponderados, utlzando pro- cedmentos do SAS Janete Perera Amador 1, Sdne José

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Estatístca Expermental Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 03 ÍNDICE AULA ESTATÍSTICA DESCRITIVA º EXERCÍCIO

Leia mais

APLICAÇÕES DE PLANEJAMENTO DE EXPERIMENTO PARA DADOS NÃO NORMAIS

APLICAÇÕES DE PLANEJAMENTO DE EXPERIMENTO PARA DADOS NÃO NORMAIS UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Centro de Cêncas Matemátcas e da Natureza Insttuto de Matemátca Departamento de Métodos Estatístcos Dogo da Hora Elas APLICAÇÕES DE PLANEJAMENTO DE EXPERIMENTO PARA

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Plano de amostragem do ISA-Capital 2008 Maria Cecília Goi Porto Alves Maria Mercedes L. Escuder 24 de junho de 2009

Plano de amostragem do ISA-Capital 2008 Maria Cecília Goi Porto Alves Maria Mercedes L. Escuder 24 de junho de 2009 Plano de amostragem do ISA-Captal 2008 ara Cecíla Go Porto Alves ara ercedes L. Escuder 24 de junho de 2009 Tamanho da amostra A população de estudo refere-se àquela resdente em área urbana do uncípo de

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos. Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos http://www.ufjf.br/nups/ Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6:

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6: Lsta de Exercícos - Probabldade INE 700 GABARITO LISTA DE EXERÍIOS PROBABILIDADE ) Vamos medr o tempo de duração da lâmpada. Ao lgarmos a lâmpada ela pode não funconar, ou durar um tempo ndetermnado. a)

Leia mais

CAPÍTULO 7 TESTES DE HIPÓTESES

CAPÍTULO 7 TESTES DE HIPÓTESES CAPÍTULO 7 TESTES DE HIPÓTESES Além dos métodos de estmação de parâmetros e de construção de ntervalos de confança, os testes de hpóteses são procedmentos usuas da nferênca estatístca, útes na tomada de

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Aplicação de um modelo simulado na formação de fábricas

Aplicação de um modelo simulado na formação de fábricas Aplcação de um modelo smulado na formação de fábrcas Márca Gonçalves Pzaa (UFOP) pzaa@ldapalm.com.br Rubson Rocha (UFSC) rubsonrocha@eps.ufsc.br Resumo O objetvo deste estudo é determnar a necessdade de

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

Estimação Bayesiana das Fragilidades Individuais de Pacientes em Tratamento de Hemodiálise

Estimação Bayesiana das Fragilidades Individuais de Pacientes em Tratamento de Hemodiálise Estmação Bayesana das Fragldades Indvduas de Pacentes em Tratamento de Hemodálse Grazela Dutra Rocha Gouvêa 2 Vera Lúca Damasceno Tomazella 3 João Domngos Scalon 4 Introdução Em análse de sobrevvênca consdera-se,

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 2013 PROTOCOLO

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 2013 PROTOCOLO PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 013 PROTOCOLO CT-Floresta - LPC - FOI/004 05/0/013 Aprovado: Mara Luza Otero D'Almeda / SUMÁRIO 1 INTRODUÇÃO... 1 PÚBLICO ALVO...

Leia mais

F = O modelo de Regressão Múltipla Geral é dado por: Y i = β 1 + β 2 X 1i + β 3 X 2i + +β k X ki + U i Para testar a hipótese nula de que: H

F = O modelo de Regressão Múltipla Geral é dado por: Y i = β 1 + β 2 X 1i + β 3 X 2i + +β k X ki + U i Para testar a hipótese nula de que: H Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ Nem sempre se quer testar os coefcentes ndvduas da regressão. Pode ser necessáro e é convenente testar o modelo como um todo, sto é testar

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014)

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014) Método dos Mínmos Quadrados com ênfase em varâncas e com recursos matrcas (3//4) Otavano Helene Curso de etensão unverstára, IFUSP, feverero/4 Baseado no lvro Método dos Mínmos Quadrados com Formalsmo

Leia mais

DECISÃO SOB INCERTEZA

DECISÃO SOB INCERTEZA PPGE/UFRGS - Prof. Sabno Porto Junor 19/10/2005 Incerteza: o básco Curso de especalzação em Fnanças e Economa Dscplna: Incerteza e Rsco Prof: Sabno da Slva Porto Júnor Sabno@ppge.ufrgs.br 1 Introdução

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

EST 220 ESTATÍSTICA EXPERIMENTAL

EST 220 ESTATÍSTICA EXPERIMENTAL UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ESTATÍSTICA EST 0 ESTATÍSTICA EXPERIMENTAL Vçosa Mnas Geras 00 / II UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de

Leia mais

Medidas de Tendência Central. Prof.: Ademilson Teixeira

Medidas de Tendência Central. Prof.: Ademilson Teixeira Meddas de Tendênca Central Prof.: Ademlson Texera ademlson.texera@fsc.edu.br 1 Servem para descrever característcas báscas de um estudo com dados quanttatvos e comparar resultados. Meddas de Tendênca Central

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares novembro 0 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares quadrmestre 0 Além destes eercícos,

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL

CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL ESCOLA FEDERAL DE ENGENHARIA DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE PRODUÇÃO CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL Dego

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais