Programa de Certificação de Medidas de um laboratório

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Programa de Certificação de Medidas de um laboratório"

Transcrição

1 Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas

2 Tratamento dos resultados de uma medção Rejeção de dados? -Tomar a decsão perante um conjunto de valores de rejetar ou não um ou mas valores - Opções: repetr as meddas verfcando se o resultado fora da méda é ou não repetdo nem sempre vável outros crtéros Crtéro de Chauvenet E: meddas 3,8; 3,5; 3,9; 3,9; 3,4;,8; segundos méd = 3,4 s sus =,8 s σ = 0,8 s méd - sus = σ P fora de σ = 0,05 em 0 meddas Em 6 meddas: Pfora de σ = 0,056 = 0,3 meddas em 6 Cabe ao metrologsta a decsão de rejetar ou não aquele valor sus!

3 Crtéro de Chauvenet: se a probabldade de sus é nferor a 0,5, este valor sus deve ser rejetado. Se em N meddas: t sus = sus - méd / σ nº de desvos padrão do sus em relação a méd n = N Pfora de t sus σ s < 0,5 valor rejetado Nota: não sgnfca que o valor seja de facto rejetado, mas eventualmente sujeto a estudos mas atentos, antes de ser consderado váldo

4 Méda pesada ep ep X P X P X X ep, X X X X X P P P probabldade de que ocorram os valores de e probabldade é tanto maor quanto menor este valor de χ método dos mínmos desvos quadrados

5 Dervando a epressão do e gualando a zero, obtemos a melhor estmatva de X baseada nas meddas de e. w w w w w w ; Nota: se w = w então o valor de é a méda artmétca. w w Para N meddas, com dferentes σ s assocados: / w Pela Fórmula de Propagação de Erros faclmente concluímos que:

6 Elmnação da derva: método crcular loop Sem derva méda teste méda padrão Com derva méda teste méda padrão méda teste méda padrão: a dferença mantêm-se a mesma desde que a derva seja constante e as meddas realzadas em Δt guas

7 Elmnação da derva: método sequencal Sem derva méda teste méda padrão méda teste Com derva méda padrão d =méda do teste-s ; d =u -méda padrão; s dferenças não serão afectadas pela derva se esta for constante e medda em Δt guas

8 Os métodos descrtos são versões smplfcadas da presença da derva numa medda ou calbração. Outras correcções que terão de ser consderadas quando: - a derva não for constante no tempo; - dervas do teste e do padrão não se comportem eactamente da mesma forma, lnear, etc - os ntervalos de tempo não forem eactamente guas; Geralmente estem programas de calbração adequados a cada stuação que prevêm as dervas eventualmente estentes

9 Certfcação de meddas de um laboratóro -Teste da competênca de um laboratóro: este teste pode ser feto comparando um tem calbrado por este laboratóro com as calbrações de outros laboratóros acredtados na mesma área. - é essencal que o laboratóro: - guarde os dados de calbrações realzadas para comparação e estudo da evolução temporal; - uso regular de materas ou aparelhos padrão devdamente calbrados; - partcpe em programas de comparação nter-laboratóros; - testes da repetbldade e reprodutbldade das meddas; - correlação dos resultados obtdos entre dferentes meddas; - utlzação de estatístca para análse dos resultados. Geralmente estem Programas de Certfcação de Meddas que são aconselhados pelos Laboratóros de Referênca de cada regão ou de cada País. E: -Meddas de massa; - meddas dmensonas; - tensão, capacdade e resstênca; energa eléctrca - temperatura -radação

10 Comparação entre laboratóros The Metrolog Handbook, Ja L. ucher, pg. 07 -O tem a ser testado pode crcular entre os dferentes laboratóros; - o tem qd possível pode ser dvddo e testados pedaços dferentes em dferentes laboratóros

11 Programa nterno de certfcação das meddas MP - calbração regular dos padrões usados; - utlzação de padrões de trabalho calbrados pela referênca; - avalação das ncertezas assocadas a cada padrão; - mplementação de um programa de controle de qualdade normas ISO - técncos de calbração e medda metrologstas; - audtoras nternas para verfcação da qualdade das calbrações e testes; - dsponblzação dos resultados das calbrações e testes gráfcos -meddas e decsões objectvas perante os resultados das calbrações e testes

12 E: padrão de massa e sua calbração semanal -permte detectar dervas; - varações ocasonas e encontrar razões para essa varação The Metrolog Handbook, Ja L. ucher, pg.

13 O eemplo anteror é um caso smples. Geralmente este programas poderão ser mas compleos com utlzação de materal dverso e dversas etapas que devem estar todas prevamente bem defndas: -descrção materal a utlzar; - método - método estatístco a utlzar para o tratamento dos dados - análse dos resultados verfcando a conformdade, ou não, com o esperado. automação e a utlzação de software actualmente mnmzam muto deste trabalho, testando e ajustando se necessáro os aparelhos de medda

14 Software de um sstema de calbração Objectvos: -Realzar procedmentos de calbração automátcos - fornecer dados com o seu tratamento estatístco ncluído -Estar protegdo contra alterações não requerdas -Permtr alterações necessáras - realzar back-up regulares Tpos de software: - fabrco própro - adqurdos comercalmente - equpamento automátco Devem ser responsablzados técncos de gestão deste software

15 blografa ISO 00-:997, Qualt ssurance for measurng equpment Part : Gudelnes for control of measurement process ISO 00:003, Measurement management sstems - Requrements for measurement processes and measurng equpment Internatonal Organzaton for Standardzaton / 0-pr-003 / 9 pages NIST Specal Publcaton 676, Measurement ssurance Programs, Part I and II, 988

16 juste de pontos a uma função o método dos mínmos desvos quadrados,,,, / ep...,..., / ep n n n P P P P - juste a uma recta: regressão lnear, ;, ; 3, 3 ;.. n, n

17 O ajuste será tanto melhor quanto menor o valor de χ, ou seja, quanto maor for a probabldade de obter aquele conjunto de meddas:, ;, ; 3, 3 ;.. n, n Os valores de e que tornam χ menor são obtdos dferencando: n 0 / 0 /

18 Valores de e pelo método dos mínmos desvos quadrados: n n Representando estes valores de e o melhor ajuste, desgnado geralmente por regressão lnear

19 Incertezas em -Fo assumdo um valor σ para as meddas em. - Este valor pode ser retrado do ajuste efectuado: se + fosse o verdadero valor de n Uma vez que e são valor estmados: n Nota: graus de lberdade assocados a uma medção estatístca = nº meddas nº parâmetros obtdos a partr dessas meddas

20 Incertezas em e / / N Podem obter-se a partr do desvo-padrão em, pela fórmula de propagação de erros n

21 juste a dferentes curvas pelo método dos mínmos desvos quadrados Polnómos e funções lneares nos parâmetros,, C, f C... H n f sn cos P,..., n ep / f,,.., H... H 0 dão os valores das constantes que melhor ajustam os pontos às respectvas funções, f Nota: qualquer função lnear em relação aos parâmetros,, etc, poderá ser ajustada por este método

22 Função eponencal e O processo anteror não permte determnar e! ln ln z= ln Podem determnar-se os parâmetros ln e pela regressão lnear, com os desvos respectvos assocados! Regressão múltpla Generalzação do processo descrto para funções de mas do que varável: z= ++C

23 Coefcente de correlação lnear, r, ;, ; 3, 3 ;, n, n : =+ r / Característcas de r: -<r< desgualdade de Schwarz - r se, estão relaconadas - r-> 0 quando n ->, se, não estão relaconadas

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos. Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos http://www.ufjf.br/nups/ Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 2013 PROTOCOLO

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 2013 PROTOCOLO PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM CHAPAS DE PAPELÃO ONDULADO CICLO 013 PROTOCOLO CT-Floresta - LPC - FOI/004 05/0/013 Aprovado: Mara Luza Otero D'Almeda / SUMÁRIO 1 INTRODUÇÃO... 1 PÚBLICO ALVO...

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

MEDIÇÕES DE VIBRAÇÕES NO CORPO HUMANO ESTIMATIVA DA INCERTEZA

MEDIÇÕES DE VIBRAÇÕES NO CORPO HUMANO ESTIMATIVA DA INCERTEZA Acústca 008 0 - de Outubro, Combra, Portugal Unversdade de Combra MEDIÇÕES DE VIBRAÇÕES NO CORPO HUMANO ESTIMATIVA DA INCERTEZA Jorge Fradque, Fátma Inglês Drecção Regonal da Economa de Lsboa e Vale do

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS EEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS Exemplo: Peso de 25 bolos ndustras Forma bruta: Dsposção ordenada 266 267 266 26 22 255 266 26 272 22 260 272 25 262 23 25 266 270 274 22 2 270 20

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais

Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais Avalação do tamanho da amostra de segmentos regulares para estmar a área plantada com café na regão sul de Mnas Geras Marcos Adam Maurco Alves Morera Bernardo Fredrch Theodor Rudorff Insttuto Naconal de

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno grande (formato A) pautada com

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Expermentas em Cêncas Mecâncas Professor Jorge Luz A. Ferrera Sumáro.. Dagrama de Dspersão. Coefcente de Correlação Lnear de Pearson. Flosofa assocada a medda da Estatstca. este de Hpótese 3. Exemplos.

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Fenômenos de Transporte, Calor e Massa - FTCM - Rotero Epermental - Relatóro Prof.: Dr. Cláudo S. Sartor - EXPERIMETO Dlatação Térmca ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

Regressão múltipla linear

Regressão múltipla linear Regressão múltpla lnear (Análse de superfíces de tendênca) Coefcente de correlação lnear produto momento, segundo Pearson (r) SPXY = -( ) / n; SQX = - () / n; SQY = - () / n r cov(, ) var( )var( ) r SPXY

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014)

Método dos Mínimos Quadrados com ênfase em variâncias e com recursos matriciais (13/2/2014) Método dos Mínmos Quadrados com ênfase em varâncas e com recursos matrcas (3//4) Otavano Helene Curso de etensão unverstára, IFUSP, feverero/4 Baseado no lvro Método dos Mínmos Quadrados com Formalsmo

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres Análse de Varânca Rejane Sobrno Pnhero Tana Gullén de Torres Análse de Varânca Introdução Modelos de análse de varânca consttuem uma classe de modelos que relaconam uma varável resposta contínua com varáves

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

3 Subtração de Fundo Segmentação por Subtração de Fundo

3 Subtração de Fundo Segmentação por Subtração de Fundo 3 Subtração de Fundo Este capítulo apresenta um estudo sobre algortmos para a detecção de objetos em movmento em uma cena com fundo estátco. Normalmente, estas cenas estão sob a nfluênca de mudanças na

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM PAPEL CICLO 2013 PROTOCOLO

PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM PAPEL CICLO 2013 PROTOCOLO PROGRAMA INTERLABORATORIAL PARA ENSAIOS EM PAPEL CICLO 013 PROTOCOLO CT-Floresta - LPC - FOI/005 7/1/01 Aprovado: Mara Luza Otero D'Almeda SUMÁRIO 1 INTRODUÇÃO... 1 PÚBLICO ALVO... 3 ENSAIOS OFERECIDOS...

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

Mecanismos de Escalonamento

Mecanismos de Escalonamento Mecansmos de Escalonamento 1.1 Mecansmos de escalonamento O algortmo de escalonamento decde qual o próxmo pacote que será servdo na fla de espera. Este algortmo é um dos mecansmos responsáves por dstrbur

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Determinação da Incerteza de Medição na Calibração da Área de Aberturas Circulares RESUMO

Determinação da Incerteza de Medição na Calibração da Área de Aberturas Circulares RESUMO Prodto & Prodção, vol. 11, n. 1, p. 70-79, fev. 010 Edção Metrologa Determnação da Incerteza de Medção na Calbração da Área de bertras Crclares Pedro B. Costa Wellngton S. Barros Insttto Naconal de Metrologa

Leia mais

EXPRESSÃO DA INCERTEZA DE MEDIÇÃO

EXPRESSÃO DA INCERTEZA DE MEDIÇÃO EXPRESSÃO DA INCERTEZA DE MEDIÇÃO NORMA N o NIT-DICLA-0 APROVADA EM AGO/07 N o 0/30 SUMÁRIO Objetvo Campo de Aplcação 3 Responsabldade 4 Requsto 5 Regstro de Modfcações Anexo Versão Braslera do Documento

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS PROCEDIMENTO DO SISTEMA DE GESTÃO DA QUALIDADE REVISÃO: 05 ABR/013 SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO REFERÊNCIAS 3 DEFINIÇÕES

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6 EXEMPLOS ADICIONAIS DA ENGENHARIA ELÉTRICA 1)Suponha que a probabldade de que um engenhero elétrco utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

AVALIAÇÃO DAS INCERTEZAS DOS PADRÕES DO LABORATÓRIO DE CALIBRAÇÃO DE GRANDEZAS ELÉTRICAS DA ELETRONORTE S/A

AVALIAÇÃO DAS INCERTEZAS DOS PADRÕES DO LABORATÓRIO DE CALIBRAÇÃO DE GRANDEZAS ELÉTRICAS DA ELETRONORTE S/A AVALIAÇÃO DAS INCERTEZAS DOS PADRÕES DO LABORATÓRIO DE CALIBRAÇÃO DE GRANDEZAS ELÉTRICAS DA ELETRONORTE S/A Jacklyn Res 1, João Claudo Carvalho 2, Marcelo Costa 3, Rodolfo Alves 4 1 Eletronorte S/A, Belém-PA,

Leia mais

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA

DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA DESENVOLVIMENTO DE UM PRÉ-PROCESSADOR PARA ANÁLISE ISOGEOMÉTRICA Pedro Luz Rocha Evandro Parente Junor pedroluzrr04@gmal.com evandroparentejr@gmal.com Laboratóro de Mecânca Computaconal e Vsualzação, Unversdade

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER Renaldo Bomfm da Slvera 1 Julana Mara Duarte Mol 1 RESUMO Este trabalho propõe um método para avalar a qualdade das prevsões

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

2 Fundamentos teóricos

2 Fundamentos teóricos 2 Fundamentos teórcos Neste capítulo, são apresentados sucntamente os fundamentos teórcos sobre os quas está alcerçada esta dssertação, que abrangem as característcas do sstema de medção e do sstema-fonte,

Leia mais

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000)

Medida de Quatro Pontas Autor: Mauricio Massazumi Oka Versão 1.0 (janeiro 2000) Medda de Quatro Pontas Autor: Maurco Massazum Oka Versão.0 (janero 000) Introdução A técnca de medda de quatro pontas é largamente usada para a medda de resstvdades e resstêncas de folha. O método em s

Leia mais

Materiais de Referência Certificados em Metrologia de Gases

Materiais de Referência Certificados em Metrologia de Gases Materas de Referênca Certfcados em Metrologa de Gases Florbela A. Das, Gonçalo Baptsta Laboratóro de Gases de Referênca do Laboratóro Central de Metrologa - Insttuto Português da Qualdade, Rua Antóno Gão

Leia mais

INTRODUÇÃO... 4 CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO

INTRODUÇÃO... 4 CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO 1 ÍNDICE INTRODUÇÃO... 4 CAPÍTULO 1... 6 INTRODUÇÃO... 6 Tpos de erros... 8 Erros aleatóros e sstemátcos em análses ttrmétrcas... 10 Manpulando erros sstemátcos... 1 CAPÍTULO... 16 ERROS EM ANÁLISES CLÁSSICAS...

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO Semnáro Anual de Pesqusas Geodéscas na UFRGS, 2. 2007. UFRGS METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL Iran Carlos Stallvere Corrêa Insttuto de Geocêncas UFRGS Departamento

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO RESUMO ABSTRACT

AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO RESUMO ABSTRACT AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO Rodrgo Mkosz Gonçalves John Alejandro Ferro Sanhueza Elmo Leonardo Xaver Tanajura Dulana Leandro Unversdade Federal do Paraná - UFPR

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais