Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres"

Transcrição

1 Análse de Varânca Rejane Sobrno Pnhero Tana Gullén de Torres Análse de Varânca Introdução Modelos de análse de varânca consttuem uma classe de modelos que relaconam uma varável resposta contínua com varáves ndependentes categórcas nomnas. Na verdade, os modelos focam a análse das médas e a varabldade entre estas médas. As covaráves nos modelos ANOVA desgnam pertnênca a grupo, por exemplo raça, gênero, stuação de resdênca, tpo de tratamento, stuação empregatíca etc. Tas covaráves são denomnadas fatores ou varáves de classe. Determnados valores assumdos por um fator são chamados de níves deste fator. Exemplo: Stuação de resdênca: 1 rural; subúrbo; 3 urbana Genero: Femnno 1 Masculno Introdução Covaráves deste tpo são especas, pos a atrbução de valores numércos é arbtrára, representam códgos apenas. Na regressão, dversos são os tpos das varáves ndependentes (nomnas, ordnas e contínuas. Na ANOVA, os fatores são todos varáves nomnas pode ser pensada como caso especal da análse de regressão. Porém, permte análse sob uma ótca dferente. Número de Fatores A abordagem usada nos modelos de análse de varânca são dêntcos à abordagem usada em análse de regressão: Descrção dos dados Formulação do Modelo Ajuste do modelo e estmatva dos parâmetros Análse de varânca (devance e nferênca Análse de resíduos Modelos ANOVA são classfcados segundo o número de fatores: 1 fator one-way ANOVA fatores two-way ANOVA 3 fatores three-way ANOVA

2 Exstem dferenças de foco nos modelos ANOVA devdos a dferenças entre fatores e covaráves numércas: 1. Avalação de dferenças entre grupos e não a assocação entre varável resposta e covaráves generalzação de um teste-t de Student para amostras.. Nos modelos two-way ANOVA (e maores, o foco é na nteração entre os fatores: O efeto de um fator na varável resposta muda para dferentes níves de outro fator? fator A nível da droga X (1 controle, tratamento fator B gênero (1 masculno, femnno. (tratamento - controle masculno (tratamento - controle femnno 3. Uma vez que a atrbução dos valores aos níves de um fator (categoras é arbtrára, a nterpretação das estmatvas dfere da nterpretação obtda na análse de regressão. O uso de varáves dummy unfcam metodologcamente. 4. Em ANOVA, são realzados mutos testes de sgnfcânca para o mesmo conjunto de dados. Este fato leva ao problema de múltplas comparações e é smlar ao problema de obtenção de ntervalos de confança para um grande número de parâmetros numa análse de regressão. O Teste T e aproprado para comparar médas de dos grupos, quando a varável resposta é contnua. Comparação de médas de três grupos ou mas é mas dfícl. A tendênca natural é realzar testes T pares de grupos. Por exemplo a comparação de médas de 4 grupos nos levara a realzar 6 testes T ( vs. G, vs. G3, vs. G4, G vs. G3, G vs. G4, G3 vs. G4. Com a análse de varânca de um fator é possível calcular um únco valorp que responda a pergunta: as médas dos grupos são guas? O valor-p é determnado pela varação entre as médas, o desvo padrão dentro dos grupos e o tamanho das amostras. One Way ANOVA Suponha que temos p grupos e n observações para a varável resposta Y no grupo. Onde: Y é a j-ésma observação do grupo. Análse exploratóra prelmnar nclu méda dos grupos e box plot para cada grupo. Isto auxla na vsualzação a grosso modo sobre a gualdade dos grupos e uma avalação grossera sobre a varabldade ntra grupo e entre grupos.

3 No Stata - banco: ascorbc.dta Summares, tables & test Tables Tables of summary statstcs (table No Stata - banco: ascorbc.dta Graphcs Tables Tables of summary statstcs (table aac pm table pm, contents( medan aac mean aac sd aac pm med(aac mean(aac sd(aac Graphs by pm 1 3 Modelo Assume-se que as observações y são: representatvos da população ndependentes, normalmente dstrbuídas com varânca constante σ. A parte sstemátca do modelo é a méda µ (população Y méda da amostra. O prncpal nteresse é a análse da dferença entre as médas dos grupos. Analsa-se se a varabldade nterna a cada grupo é muto dferente da varabldade entre as médas dos dferentes grupos. Estmatvas do modelo ajustado µ méda global, todos os valores em conjunto [ ] α dferença entre a méda do grupo e a méda global [ Y ] e termo de erro de cada observação ndvdualmente Ou: Y ˆ Y Y µ + e Y Y ˆ + e Y µ + α + e e ~ N (, σ (resposta observada ajuste + resíduo Escolhe-se a estmatva que mnmza os mínmos quadrados dos resíduos: SSE k n 1 j 1 ( Y Yˆ Y G Y G

4 Teste de Hpótese da ANOVA: H : µ 1 µ... µ k H 1 : nem todos os µ são guas Ou: H : α 1 α... α k H 1 : pelo menos 1 α Utlza-se o teste F. Onde o desvo de cada observação Y para a méda global pode ser representada por: Y G Y Y G ( Y Y + ( Y YG desvo entre observação e a méda global desvo entre observação e a méda do seu grupo + desvo entre a méda de cada grupos e a méda global varabldade ntra - grupo varabldade entre - grupos Soma dos quadrados dos desvos: k n ( Y YG 1 j 1 k 1 ( Y Y k n + 1 j 1 ( Y SST SSE + SSR Se a varabldade entre grupos é grande e a varabldade ntragrupos é pequena, a hpótese H pode ser rejetada médas dos grupos são dferentes. Se a varabldade entre grupos for pequena e a varabldade ntragrupos for grande, então H pode ser aceta médas dos grupos são as mesmas. G Y Teste F MSR F F SSR k 1 MSR MSE ( Y SSR ( k 1 SSE /( N k Y k 1 G MSE SSE N k ( SST SSE ( k 1 SSE /( N k Rejeta-se H se n k ( Y Y 1 j 1 N k F F k-1,n-k,1-α

5 Tabela ANOVA Análse dos resíduos e Y Yˆ Y Y e Se resíduo padronzado S e Hstograma e boxplot geral dos resíduos padronzados, permtem avalar pressuposto de normaldade e avalar presença de possíves outlers Boxplots dos resíduos por grupos ajudam a avalar pressuposto de gualdade de varânca nos grupos. No Stata Análse de Varânca de um Fator: Banco ascorbc.dta" Lnear Models and related ANOVA ONE-WAY ANOVA No Stata Análse de Varânca de um Fator: Banco ascorbc.dta". oneway aac pm, tabulate Summary of aac pm Mean Std. Dev. Freq Total Analyss of Varance Source SS df MS F Prob > F Between groups Wthn groups Total Bartlett's test for equal varances: ch( Prob>ch.11

6 Problema da comparação múltpla Na análse de varânca, quando encontramos uma estatístca F sgnfcante para um fator (tratamento, por exemplo, é natural que queramos saber que níves (quas tratamentos são dferentes. Este problema é conhecdo como o problema das múltplas comparações. Não exste uma alternatva consensual. Exstem dversas formas de tratar este problema. Consderemos o teste F: H : µ 1 µ... µ k H 1 : nem todos os µ são guas Se H é rejetada, podemos conclur que há dferenças entre as médas. k Poderíamos ter dversas hpóteses. Para testá-las, teríamos hpóteses : H 1 µ 1 µ ; H 13 µ 1 µ 3 ;... ; H 1k µ 1 µ k H 3 µ µ 3 ;... ; H k µ µ k H k-1,k µ k-1 µ k Testar todas estas hpóteses pode levar à nflaconar os níves de sgnfcânca. Suponha que temos k hpóteses a serem testadas. Então: P(rejetar pelo menos 1 de todas as k verdaderas 1 - P (rejetar nenhuma das k verdaderas Se as hpóteses são baseadas em testes estatístcos ndependentes, temos: P(rejetar nenhuma das k verdaderas P (de não rejetar H H verdadera 1 [1 - P(rejetar H H é verdadera] Se cada hpótese é testada a um nível de sgnfcânca α, o nível de sgnfcânca global é: P (rejetar pelo menos 1 de todas as k verdaderas 1 - (1 - α k Para α. e α.1, temos os resultados: k k 1 No. de testes α. α Probabldades de obter pelo menos um valor-p sgnfcante e níves de sgnfcânca corrgdos nas Comparações Múltplas N de Hpóteses Nulas ndependentes P* α* P* - Probabldade de obter pelo menos um (p-valores. pelo acaso. α* - Nível de sgnfcânca das comparações das comparações múltplas para obter um nível de sgnfcânca global de α. Nota-se o rápdo aumento da probabldade de erro Tpo I à medda que o nº. de testes aumenta. Realzando um grande número de testes, aumenta grandemente a probabldade de erro Tpo I.

7 Desgualdade de Bonferron Para k hpóteses H 1, H,..., H k : P(rejetar pelo menos 1 P (rejetar H 1 H... H k P(rejetar H 1 + P(rejetar H P(rejetar H k Caso seja desejado um erro α, é sufcente escolher uma taxa de erro para comparação de α/k. P(rejetar pelo menos 1 de H 1, H,..., H k α α α α k k k. oneway aac pm, tabulate bonf Summary of aac pm Mean Std. Dev. Freq Total Analyss of Varance Source SS df MS F Prob > F Between groups Wthn groups Total Bartlett's test for equal varances: ch( Prob>ch.11 Comparson of aac by pm (Bonferron Row Mean- Col Mean Mean aac by pm level pm. regress aac pm pm3 Source SS df MS Number of obs F(, Model Prob > F. Resdual R-squared Adj R-squared.6981 Total Root MSE aac Coef. Std. Err. t P>t [9% Conf. Interval] pm pm _cons Hstograma dos resíduos e boxplots por grupos 4 resd Interpretação dos coefcentes α e β do modelo quando a varável ndependente é categórca. Ajuste o modelo: altura α + β * escola + ε. regress altura escola Source SS df MS Number of obs F( 1, Model Prob > F.98 Resdual R-squared Adj R-squared.39 Total Root MSE altura Coef. Std. Err. t P>t [9% Conf. Interval] escola _cons Fracton. No caso da varável ndependente ser categórca o α representa a méda da altura dos alunos da escola tpo Prvada e representa a dferença da meda da altura da escola rural em relação a prvada (.e. a méda da altura dos alunos da escola rural é.87cm menor que a méda da altura dos alunos da escola prvada resd Total

8 Análse de Covarânca ANCOVA O nteresse nesta técnca é pela análse da relação de uma varável resposta contínua e fatores (varáves nomnas, controlados por covaráves (que podem ser varáves de qualquer tpo. As razões para a aplcação da ANCOVA são avalar possíves nterações, confundmento e melhorar a precsão das estmatvas da assocação de nteresse. O foco é determnar o efeto de fatores de nteresse na varável resposta, ajustada por varáves de controle. A ANCOVA permte levar em conta as dferenças na dstrbução das covaráves dentro dos grupos. Análse de Covarânca ANCOVA Descrção dos dados: Temos observações (Y, X 1, X,..., X k, onde: Y é o j-ésmo valor da varável resposta no grupo. X é o j-ésmo valor da covarável no grupo. Exstem k grupos ( 1,...,k O número de observações no grupo é n. A tabela apresenta as observações para o grupo, no caso de ter uma únca covarável X. school school1 Pobre Rca 17 1 Note que dentro de cada grupo, temos uma regressão lnear smples O prmero passo na análse exploratóra sera um gráfco para cada grupo da relação varável resposta vs covarável. Se tver na análse mas de uma covarável faça o grafco delas para nvestgar colneardade Construa tabelas das medas da varável resposta por níves da varável categórca Se as nclnações parecem dferentes, sto complcará as análses e será abordado mas na frente. Altura (cm Idade (meses Graphs by Tpo de Escola. tabulate school, summ(heght Total Tpo de Summary of Altura (cm Escola Mean Std. Dev. Freq. Rural Partcul Total Altura (cm altura (cm Total 1 3 Idade (anos Graphs by Conteudo de protena na deta 1. tabulate proten, summ(heght Conteudo de Summary of altura (cm protena na deta Mean Std. Dev. Freq Pobre Rca Total altura (cm Rural Partcul 4 Pobre Rca

9 Modelo As varáves aleatóras Y são ndependentes com dstrbução normal, varânca comum σ e E(Y µ ou Y µ +ε, onde µ α + β x representa a parte sstemátca do modelo. O caso trval sera quando não há dferença entre os grupos e o modelo sera representado como: µ α + β x Os outros dos casos mportante ocorrem quando: As nclnações são guas : µ α + β x As nclnações são dferentes : µ α + β x Inclnações Iguas Neste caso temos que β 1 β... β p Logo o componente sstemátco do modelo sera: µ α + β x Obs. A verdadera dferença entre os grupos é medda por G α 1 - α Inclnações Dferentes Neste caso espera-se que: β β j para algum par j A componente sstemátca do modelo sera expressa como: µ α + β x Neste caso o valor da dferença esperada entre os grupos depende do valor da covarável no qual os dos grupos estão sendo comparados G Obs. - nteração entre uma covarável numérca e um fator sgnfca que a nclnação da covarável muda entre os níves do fator. G Modelo... Cont Este tpo de análse pode ser abordado como um problema de regressão múltpla no qual os fatores de nteresse em estudo são consderados como varáves nomnas e as covaráves poder ser meddas em qualquer escala. Y β + β 1 X + β Z +β 3 XZ + ε Onde Y representa a varável resposta, X a covarável, Z o fator e XZ o termo de nteração entre a covarável e o fator. Duas questões de nteresse neste tpo de análse são: 1. A relação lnear entre Y e X é a mesma para cada categora do fator Z? (Supondo que a regressão lnear é um modelo aproprado.. São os níves médos da varável Y dferentes para cada categora da varável Z, depos de levar em conta o possível efeto confunddor da varável X? (X pode ter dstrbução dferente nas categoras da varável Z

10 Ajustando o modelo de regressão lnear: Y β + β 1 X + β Z +β 3 XZ + ε Podemos chegar a uma das as seguntes conclusões: a As lnhas concdem (.é., β β 3 b As lnhas são paralelas (.é., β e β 3, ou c As lnhas não são paralelas (.é., β 3 Estas conclusões nfluencam a resposta a segunda questão. Se a for aproprada dremos que os grupos da varável Z não dferem no nível médo da varável Y, quando controlada pelo efeto da varável X G Se b for aproprada dremos que o grupo assocado com à maor reta tem os maores níves médos de Y para qualquer valor de X Se c for aproprada e as retas não cruzam, na faxa de valores observados, dremos que o grupo assocado com a reta que apresenta a maor nclnação, tem os maores níves médos de Y para qualquer valor de X, mas a dferença va mudando conforme os valores de X mudam. Se as retas cruzam dremos que um grupo tem as maores médas de Y para valores pequenos de X e um outro grupo tem as maores médas para valores grandes de X G G G Tabela de análse de Varânca Inclnações Dferentes Fonte de Varação g.l. Soma de Quadrados Quadrado Médo Teste F Covarável 1 SSX MSX MSX / MSE Fator: Grupos p - 1 SS(GRUPOS MS(GRUPOS MS(GRUPOS / MSE Interação p - 1 SS(INTERAÇÃO MS(INTERAÇÃO MS(INTERAÇÃO / MSE Resduo n - p SSE MSE ToTal n-1 SST Tabela de análse de Varânca Inclnações Iguas Fonte de Varação g.l. Soma de Quadrados Quadrado Médo Teste F Covarável 1 SSX MSX MSX / MSE Fator: Grupos p - 1 SS(GRUPOS MS(GRUPOS MS(GRUPOS / MSE Resduo n - p SSE MSE ToTal n-1 SST. anova heght proten age age*proten, cat( proten Number of obs 7 R-squared.97 Root MSE.7863 Adj R-squared.9686 Source Partal SS df MS F Prob > F Model proten age age*proten Resdual Total anova heght school age age*school, cat( school Number of obs 3 R-squared.963 Root MSE Adj R-squared.9 Source Partal SS df MS F Prob > F Model school age age*school Resdual Total

11 . test school*age Source Partal SS df MS F Prob > F school*age Resdual anova heght school age, cat( school Number of obs 3 R-squared.88 Root MSE Adj R-squared.77 Source Partal SS df MS F Prob > F Model school age Resdual Total

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Introdução Experimentos Aleatórios Propensity Score Matching Variável Instrumental Diferença-em-Diferença Regressões com Designe Descontínuo

Introdução Experimentos Aleatórios Propensity Score Matching Variável Instrumental Diferença-em-Diferença Regressões com Designe Descontínuo Avalação de Programas: Aplcações com o Software Stata Leandro Costa Vtor Mro Fortaleza, Janero de 2011 Sumáro Introdução Expermentos Aleatóros Propensty Score Matchng Varável Instrumental Dferença-em-Dferença

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Aula Prática: Regressão Linear Simples

Aula Prática: Regressão Linear Simples Universidade Federal do Rio de Janeiro Faculdade de Medicina Departamento de Medicina Preventiva Núcleo de Estudos de Saúde Coletiva Disciplina: Modelos de Regressão em saúde Aula Prática: Regressão Linear

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Teste de Hipóteses = 0 = 0

Teste de Hipóteses = 0 = 0 Teste de Hipóteses Nos estudos analíticos, além da descrição estatística, às vezes é necessário tomar uma decisão. O teste de hipóteses é um procedimento estatístico que tem por objetivo ajudar o pesquisador,

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (5,5): A redução da

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Análise dos resíduos e Outlier, Alavancagem e Influência

Análise dos resíduos e Outlier, Alavancagem e Influência Análse dos resíduos e Outler, Alavancagem e Influênca Dagnóstco na análse de regressão Usadas para detectar problemas com o ajuste do modelo de regressão. Presença de observações mal ajustadas (pontos

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos Tópcos em Econometra I Ala /7/23 Modelo Tobt para solção de canto Eemplos Solções de canto. Qantdade de dnhero doado para cardade: mtas pessoas não fazem este tpo de doação. Uma parcela epressva dos dados

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5.

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5. Correlação Frases Uma probabldade razoável é a únca certeza Samuel Howe A experênca não permte nunca atngr a certeza absoluta. Não devemos procurar obter mas que uma probabldade. Bertrand Russel Rotero

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ECONOMIA RURAL. ERU ECONOMETRIA I Segundo Semestre/2010

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ECONOMIA RURAL. ERU ECONOMETRIA I Segundo Semestre/2010 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ECONOMIA RURAL ERU 66 - ECONOMETRIA I Segundo Semestre/010 AULA PRÁTICA N o 3- Dados em Panel Ana Carolna Campana Nascmento Fernanda

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11 EERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Lnear 4. EERCÍCIOS PARA RESOLVER NAS AULAS 4.1. O gestor de marketng duma grande cadea de supermercados quer determnar

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

M l u t l i t c i oli l n i e n arid i a d de

M l u t l i t c i oli l n i e n arid i a d de Multicolinearidade 1 Multicolinearidade Quando existem relação linear exata entre as variáveis independentes será impossível calcular os estimadores de MQO. O procedimento MQO utilizado para estimação

Leia mais

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA

PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA 658 Gaudo & Zandonade Qum. Nova Qum. Nova, Vol. 4, No. 5, 658-671, 001. Dvulgação PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA Anderson Coser Gaudo

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Expermentas em Cêncas Mecâncas Professor Jorge Luz A. Ferrera Sumáro.. Dagrama de Dspersão. Coefcente de Correlação Lnear de Pearson. Flosofa assocada a medda da Estatstca. este de Hpótese 3. Exemplos.

Leia mais

1. Caracterização de séries com

1. Caracterização de séries com 1. Caracterzação de séres com sazonaldade Como dscutdo na Aula 1, sazonaldade é um padrão que se repete anualmente. A sazonaldade é determnístca quando o padrão de repetção anual é exato, ou estocástca,

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

CAPÍTULO IV Análise de variância

CAPÍTULO IV Análise de variância CAPÍTULO IV Análise de variância O objectivo principal da análise de variância (analysis of variance - ANOVA) é a comparação de mais do que dois grupos no que diz respeito à localização. Para exemplificar,

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

Regressão múltipla linear

Regressão múltipla linear Regressão múltpla lnear (Análse de superfíces de tendênca) Coefcente de correlação lnear produto momento, segundo Pearson (r) SPXY = -( ) / n; SQX = - () / n; SQY = - () / n r cov(, ) var( )var( ) r SPXY

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

PROJETO PRESTES MAIA. Transposição Seca Santos Guarujá

PROJETO PRESTES MAIA. Transposição Seca Santos Guarujá PROJETO PRESTES MAIA Transposição Seca Santos Guarujá Análise de alternativas construtivas em função da localização com melhores indicadores de demanda CONCEPÇÃO DO PROJETO DE ENGENHARIA Restrições da

Leia mais

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial O mgrante de retorno na Regão Norte do Brasl: Uma aplcação de Regressão Logístca Multnomal 1. Introdução Olavo da Gama Santos 1 Marnalva Cardoso Macel 2 Obede Rodrgues Cardoso 3 Por mgrante de retorno,

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade Aplcações de Estmadores Bayesanos Empírcos para Análse Espacal de Taxas de Mortaldade Alexandre E. dos Santos, Alexandre L. Rodrgues, Danlo L. Lopes Departamento de Estatístca Unversdade Federal de Mnas

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais