MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel"

Transcrição

1 MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel

2 Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na formulação e resolução de problemas. Nos modelos matemátcos, os fatores mportantes de um sstema são representados por um conjunto de equações. Tpos de modelos matemátcos: Modelos determnístcos (mecanístcos): baseados no conhecmento de físca, químca, engenhara do fenômenos, Modelos estocástcos (empírcos): construídos relaconando as varáves baseando-se apenas nos dados observados. Análse de regressão: lda com a nvestgação da relação entre duas ou mas varáves relaconadas de forma não determnístca (estocástca ou empírca).

3 Análse de Regressão: Utlzada na cração de modelos empírcos com algum dos objetvos: Análse estrutural (determnar os fatores mas mportantes) Fazer nferêncas (testar, estatístcamente, hpóteses) Crar prevsões (análses se-então ) Exemplos: casos em que queremos prever o valor de uma varável (chamada varável dependente) utlzando o valor de outra varável (chamada de varável ndependente): VARIÁVEL DEPENDENTE VENDAS DE UM PRODUTO VENDAS DE UM PRODUTO CUSTO TOTAL DE PRODUÇÃO VOLUME DE EMPRÉSTIMOS VENDAS DE UM PRODUTO VARIÁVEL INDEPENDENTE PREÇO DO PRODUTO GASTOS COM PROMOÇÃO UNIDADES PRODUZIDAS TAA DE JUROS PRATICADA TEMPO

4 Processo de expermentação: Expermentação pode ser vsto como um teste, ou uma sére de testes, nos quas mudanças propostas são aplcadas nas varáves de entrada de um processo ou sstema, para então se observar e dentfcar as mudanças ocorrdas nas varáves de saída. A expermentação é feta de forma seqüencal: 1. O prmero expermento em um sstema complexo (possu mutas varáves de controle) é um ploto (screenng experment). É utlzado na dentfcação das varáves mas mportantes.. Expermentos subseqüentes são fetos para refnar a nformação e determnar quas ajustes nas varáves crítcas são necessáros para melhorar o sstema. 3. Otmzação: é o objetvo fnal da expermentação. Consste em determnar os níves ótmos das varáves crítcas (resultarão no sstema com a melhor performance possível).

5 Processo de expermentação: Exemplo: Entrada Fatores Controláves x 1 x x 3 x 4 x p... Processo z 1 z z 3 z 4 z q Fatores Incontroláves (ruídos) Saída y 1 y y 3 y 4 y m Processo: Moldagem Plástca : Tempo de njeção, tempo de resframento, temperatura do molde, velocdade e pressão de njeção Y: Rebarba, Deformação, Falha Z: Operador Processo de expermentação: 1. Prmero expermento: dentfcar os fatores controláves () que mas mpactam em cada uma das saídas (Y).. Segundo expermento: refnar a nformação e obter um modelo matemátco que relacone e Y (superfíce de resposta). 3. Otmzação: determnar os níves ótmos dos fatores crítcos de forma a obter o melhor processo possível (mono ou multobjetvo).

6 Processo de expermentação: Atvdades de um processo de expermentação: 1. Conjectura: a hpótese orgnal que motva o expermento. Defnr os objetvos do expermento (ploto, refnamento, otmzação) 3. Escolha dos fatores controláves e seus níves 4. Seleção da(s) varável(s) de resposta 5. Projeto de expermento: teste(s) para nvestgar a conjectura 6. Realzação do expermento: coleta dos dados 7. Análse dos dados: métodos analítcos (estatístcos) e de otmzação aplcados aos dados 8. Conclusões e recomendações: o que fo aprenddo em relação a conjectura.

7 Programa do curso: Semana Conteúdo 1 Apresentação da dscplna. Prncípos de modelos lneares de regressão. Correlação amostral. Regressão lnear smples: hpóteses do modelo, estmação de parâmetros, propredades e nferênca dos estmadores. 3 Análse de varânca (ANOVA) em regressão. Intervalos de confança e de prevsão. Análse dos resíduos. 4 Dagnóstcos e reparação de problemas em regressão. Transformações. 5 Regressão lnear forma matrcal: estmação dos parâmetros, nferênca dos estmadores, ntervalos de confança. 6 Prova 7 Prncípos de regressão lnear múltpla. Dagnóstcos e reparação dos problemas em regressão lnear múltpla. Multcolneardade e seus efetos. 8 Seleção de varáves. Modelos polnomas. Modelos com varáves qualtatvas. 9 Introdução ao projeto de expermentos: estratéga de expermentação, prncípos báscos e aplcações típcas. Expermentos nteramente casualzados. Análse de varânca. 10 Expermentos fatoras com dos ou mas fatores. 11 Expermentos fatoras k. Pontos centras. 1 Expermentos em blocos casualzados. blocagem em expermentos k. 13 Prova 14 Expermentos fatoras fraconados. 15 Expermentos com fatores quanttatvos. Métodos de superfíce de resposta. 16 Otmzação de produtos e processos. Projetos robustos.

8 Avalação: Prmero bmestre: 1 prova (70%) + 1 trabalho ndvdual (30%) Segundo bmestre: 1 prova (70%) + relatóros dos laboratóros (30%) Exame: 1 Trabalho (ndvdual) Bblografa: Walpole, R., Myers, R., Myers, S. e Ye, K. (009), Probabldade e Estatístca para engenhara e cêncas, 8 a edção, Pearson. Montgomery, D.C. and Runger, G.C., Appled Statstcs and Probablty for Engneers,3 rd edton, John Wley, 00. Montgomery, D.C., Desgn and analyss of experments,6 th edton, John Wley, 005. Ste:

9 PRINCÍPIOS DE REGRESSÃO LINEAR SIMPLES Professor: Rodrgo A. Scarpel

10 Análse de Regressão: Um pouco de hstóra: Ajuste de curvas: 1. (MAE 1786 e MSAE 1799). (Mínmos quadrados / MSE 1809) Correlação e Regressão (Galton 1887)

11 Modelo Lnear de Regressão: Modelo: Y = k k +, =1,,n em que 0 é o ntercepto, j é o coefcente angular da varável j (j=1,,k) e é o termo de erro. Estmação de parâmetros 0 e j (j=1,,k): Pelo MSE para k=1 Equações normas:

12 Modelo Lnear de Regressão: Caso 1: Regressão sem regressor ( Y = 0 +, =1,,n) Caso : Regressão lnear smples ( Y = , =1,,n) Caso 3: Regressão lnear múltpla (k > 1) 1, Var Y Cov Y Y Y Y Y 1 0 Y 0

13 Custo Total (R$) Modelo Lnear de Regressão: Exemplo: Mês Quantdade Custos Totas (R$) Janero ,00 Feverero ,00 Março ,00 Abrl ,00 Mao ,00 Junho ,00 Julho ,00 Agosto ,00 Setembro ,00 Outubro ,00 Novembro ,00 Dezembro ,00 CORRELAÇÃO (,Y)=0, , , , , ,00 y = 0,5938x , , Quantdade (undades) 0 Y 1 Y Y Cov, Y Var 0,5938

14 Correlação Amostral (r): r, Y n x x y y x x y y 1 n 1 n 1 Propredades: -1 r Y 1 Se r Y é sgnfcatva é possível crar Y = + + y y y y Nestes casos e Y varam conjuntamente de forma lnear x x x x y y Nestes casos, não exste relação ou y a relação não é lnear x x x

15 Y Y Y Modelo Lnear de Regressão: Qualdade do ajuste: Coefcente de Determnação (R ) R Yˆ Y SQRegressão SQResíduos Yˆ Y Y Yˆ SQTotal SQTotal R = 0, R = 0, R = 0, Em regressão lnear smples, R = Cor(,Y) = r Y

16 Modelo Lnear de Regressão: Coefcente de Determnação (R ): Msunderstandngs 1. Um alto valor de R ndca que prevsões confáves podem ser fetas a partr do modelo ajustado qualdade no ajuste qualdade nas prevsões. Um alto valor de R ndca que o modelo de regressão obtdo tem um bom ajuste outlers, correlação e relação lnear 3. Um valor de R próxmo de zero ndca que as varáves ndependente () e dependente (Y) não são relaconadas correlação: relação lnear entre as varáves

17 Para casa: Laboratóro 1 (ste: Letura: Walpole et al. cap.11: Regressão lnear smples (11.1 a 11.3 e 11.1) Montgomery e Runger cap.11: SL Regresson (11.1, 11. e 11.11)

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel MÉTODOS MULTIVARIADOS Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo INTRODUÇÃO Semana Conteúdo Introdução aos métodos multvarados 1 Análse de componentes prncpas Aplcações de análse de componentes

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de

Universidade Federal de Viçosa. Introdução à Metodologia de Superfícies de Unversdade Federal de Vçosa Departamento de Estatístca Dscplna: EST 63 Métodos Estatístcos II Apostla Introdução à Metodologa de Superfíces de Resposta Paulo Roberto Cecon Anderson Rodrgo da Slva Vçosa,

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

O USO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA PARA ADEQUAR OS PARÂMETROS DE ENTRADA DE UM ALGORITMO GENÉTICO

O USO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA PARA ADEQUAR OS PARÂMETROS DE ENTRADA DE UM ALGORITMO GENÉTICO O USO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA PARA ADEQUAR OS PARÂMETROS DE ENTRADA DE UM ALGORITMO GENÉTICO Pedro Alberto Barbetta Departamento de Informátca e de Estatístca CTC UFSC Caxa Postal 476

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS

PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO

NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO I Congresso Baano de Engenhara Santára e Ambental - I COBESA NOVA METODOLOGIA PARA RECONCILIAÇÃO DE DADOS: CONSTRUÇÃO DE BALANÇÃO HÍDRICOS EM INDÚSTRIA UTILIZANDO O EMSO Marcos Vnícus Almeda Narcso (1)

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

Aplicação de um modelo simulado na formação de fábricas

Aplicação de um modelo simulado na formação de fábricas Aplcação de um modelo smulado na formação de fábrcas Márca Gonçalves Pzaa (UFOP) pzaa@ldapalm.com.br Rubson Rocha (UFSC) rubsonrocha@eps.ufsc.br Resumo O objetvo deste estudo é determnar a necessdade de

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

I Simpósio Nacional de Ciência e Meio Ambiente Progresso, Consumo e Natureza Desafios ao Homem

I Simpósio Nacional de Ciência e Meio Ambiente Progresso, Consumo e Natureza Desafios ao Homem EMPREGO DAS TÉCNICAS DE REMOSTRAGEM BAGGING E SUBBAGING EM CALIBRAÇÃO MULTIVARIADA Resumo Anna Lúca Bezerra da Slva Leandro Pedrosa Samuel da Costa Vcente Clarmar José Coelho Este trabalho apresenta o

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

2. Validação e ferramentas estatísticas

2. Validação e ferramentas estatísticas . Valdação e ferramentas estatístcas Mutos aspectos relaconados à socedade são suportados, de alguma forma, por algum tpo de medção analítca. Mlhões de medções analítcas são realzadas todos os das, em

Leia mais

AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA. Túlio Alves Matta

AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA. Túlio Alves Matta AVALIAÇÃO DO VALOR DE IMÓVEIS POR ANALISE DE REGRESSÃO: UM ESTUDO DE CASO PARA A CIDADE DE JUIZ DE FORA Túlo Alves Matta MONOGRAFIA SUBMETIDA À COORDENAÇÃO DE CURSO DE ENGENHARIA DE PRODUÇÃO DA UNIVERSIDADE

Leia mais

O PROBLEMA DA MODELAGEM DA VARIÂNCIA NA OTIMIZAÇÃO EXPERIMENTAL DE PRODUTOS OU PROCESSOS

O PROBLEMA DA MODELAGEM DA VARIÂNCIA NA OTIMIZAÇÃO EXPERIMENTAL DE PRODUTOS OU PROCESSOS O PROBLEMA DA MODELAGEM DA VARIÂNCIA NA OTIMIZAÇÃO EXPERIMENTAL DE PRODUTOS OU PROCESSOS Pedro Alberto Barbetta Departamento de Informátca e de Estatístca Unversdade Federal de Santa Catarna Antono Cezar

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

Regressão Logística Aplicada aos Casos de Sífilis Congênita no Estado do Pará

Regressão Logística Aplicada aos Casos de Sífilis Congênita no Estado do Pará Regressão Logístca Aplcada aos Casos de Sífls Congênta no Estado do Pará Crstane Nazaré Pamplona de Souza 1 Vanessa Ferrera Montero 1 Adrlayne dos Res Araújo 2 Edson Marcos Leal Soares Ramos 2 1 Introdução

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

OTIMIZAÇÃO DO PROCESSO DE HOMOGENEIZAÇÃO DE EMULSÕES W/O DE PETRÓLEO COM O USO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA

OTIMIZAÇÃO DO PROCESSO DE HOMOGENEIZAÇÃO DE EMULSÕES W/O DE PETRÓLEO COM O USO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA OTIMIZAÇÃO DO PROCESSO DE HOMOGENEIZAÇÃO DE EMULSÕES W/O DE PETRÓLEO COM O USO DA METODOLOGIA DE SUPERFÍCIE DE RESPOSTA Anderson Paulo de Pava andersonppava@unfe.edu.br José Henrque de Fretas Gomes ze_henrquefg@yahoo.com.br

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11 EERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Lnear 4. EERCÍCIOS PARA RESOLVER NAS AULAS 4.1. O gestor de marketng duma grande cadea de supermercados quer determnar

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares

Leia mais

Estudo comparativo entre redes neurais artificiais e análise de regressão múltipla na avaliação de bens, para pequenas amostragens

Estudo comparativo entre redes neurais artificiais e análise de regressão múltipla na avaliação de bens, para pequenas amostragens Estudo comparatvo entre redes neuras artfcas e análse de regressão múltpla na avalação de bens, para pequenas amostragens Elane Hasselmann Camardella Schavo (CEFET/RJ) elane@consultora-cca.com.br Márco

Leia mais

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5.

Correlação. Frases. Roteiro. 1. Coeficiente de Correlação 2. Interpretação de r 3. Análise de Correlação 4. Aplicação Computacional 5. Correlação Frases Uma probabldade razoável é a únca certeza Samuel Howe A experênca não permte nunca atngr a certeza absoluta. Não devemos procurar obter mas que uma probabldade. Bertrand Russel Rotero

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

3 Aproximador de Função para Simulador de Reservatório Petrolífero

3 Aproximador de Função para Simulador de Reservatório Petrolífero Aproxmador de Função para Smulador de Reservatóro Petrolífero 37 3 Aproxmador de Função para Smulador de Reservatóro Petrolífero 3.1. Introdução O desenvolvmento de um campo petrolífero pode ser entenddo

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO RESUMO ABSTRACT

AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO RESUMO ABSTRACT AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO Rodrgo Mkosz Gonçalves John Alejandro Ferro Sanhueza Elmo Leonardo Xaver Tanajura Dulana Leandro Unversdade Federal do Paraná - UFPR

Leia mais

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada

Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Resumo: Qualdade é hoje uma palavra chave para as organzações. Sob o símbolo da Qualdade abrgam-se flosofas, sstemas

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (5,5): A redução da

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Fenômenos de Transporte, Calor e Massa - FTCM - Rotero Epermental - Relatóro Prof.: Dr. Cláudo S. Sartor - EXPERIMETO Dlatação Térmca ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Regressão múltipla linear

Regressão múltipla linear Regressão múltpla lnear (Análse de superfíces de tendênca) Coefcente de correlação lnear produto momento, segundo Pearson (r) SPXY = -( ) / n; SQX = - () / n; SQY = - () / n r cov(, ) var( )var( ) r SPXY

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS 22 2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS Como vsto no capítulo 1, a energa frme de uma usna hdrelétrca corresponde à máxma demanda que pode ser suprda contnuamente

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO

ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER. Reinaldo Bomfim da Silveira 1 Juliana Maria Duarte Mol 1 RESUMO ALTERNATIVA PARA DETERMINAR ACURÁCIA DA PREVISÃO DO MBAR UTILIZANDO ÍNDICE DE BRIER Renaldo Bomfm da Slvera 1 Julana Mara Duarte Mol 1 RESUMO Este trabalho propõe um método para avalar a qualdade das prevsões

Leia mais

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS EEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS Exemplo: Peso de 25 bolos ndustras Forma bruta: Dsposção ordenada 266 267 266 26 22 255 266 26 272 22 260 272 25 262 23 25 266 270 274 22 2 270 20

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Resumo 7-22, Janete Pereira Amador 1, Sidinei José Lopes 2, João Eduardo Pereira 1, Adriano Mendonça Souza 1, Marcos Toebe 3

Resumo 7-22, Janete Pereira Amador 1, Sidinei José Lopes 2, João Eduardo Pereira 1, Adriano Mendonça Souza 1, Marcos Toebe 3 7-, 011 Análse das pressuposções e adequação dos resíduos em modelo de regressão lnear para valores ndvduas, ponderados e não ponderados, utlzando pro- cedmentos do SAS Janete Perera Amador 1, Sdne José

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno grande (formato A) pautada com

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 071 ANÁLISE DE REGRESSÃO LINEAR. Cesar Augusto Taconeli UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ESTATÍSTICA CE 7 ANÁLISE DE REGRESSÃO LINEAR Cesar Augusto Taconel Curtba-PR . INTRODUÇÃO Taconel, C.A. Análse de Regressão Lnear Ao se tratar da relação

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

Utilizando SPICE. Disciplinas: SEL0301 Circuitos Elétricos I e SEL0602 Circuitos. Docente: Prof. Dr. Mário Oleskovicz PAE: André Luís da Silva Pessoa

Utilizando SPICE. Disciplinas: SEL0301 Circuitos Elétricos I e SEL0602 Circuitos. Docente: Prof. Dr. Mário Oleskovicz PAE: André Luís da Silva Pessoa Introdução à Análse de Crcutos Elétrcos Utlzando SPICE Dscplnas: SEL0301 Crcutos Elétrcos I e SEL0602 Crcutos Elétrcos Docente: Prof. Dr. Máro Oleskovcz PAE: André Luís da Slva Pessoa Unversdade de São

Leia mais