DEFINIÇÃO - MODELO LINEAR GENERALIZADO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DEFINIÇÃO - MODELO LINEAR GENERALIZADO"

Transcrição

1 DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1

2 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação;

3 Componente aleatóro: Um conjunto de varáves aleatóras ndependentes ( provenentes de uma mesma dstrbução da famíla exponencal de dspersão: Y,..., 1, Y Yn ) f ( y, φ) ( θ ) θ y b θ = exp + c ; φ φ ; ( y ) com méda e varânca: ( Y ) b ( θ ) = µ Var( Y ) = φ b ( θ ) = φv ( ) E = ; µ. Nota Nas aulas anterores, verfcamos que dentre as dstrbuções expressas na forma apresentada estão as dstrbuções de Bernoull, Bnomal, Posson, Bnomal Negatva, Normal, Gama e Normal nversa. 3

4 Componente sstemátco: corresponde ao predtor lnear, que contempla um conjunto de covaráves ( x 1, x, K, x p) por meo de uma combnação lnear de parâmetros: η = β + β x + β x + K+ β x p p. Função de lgação: uma função real, monótona e dferencavel que assoca o componente aleatóro (ou, mas especfcamente, a méda de sua dstrbução) ao componente sstemátco do modelo. Então, a função de lgação, denotada por g ( ), é defnda de tal forma que: g ( µ ) = η = β + β1x1 + βx + K+ β pxp 0, 1 1 ou, de manera equvalente, µ = g ( η ) = g ( β + β x + β x + K+ β x ) p p. Nota Repare que g ( ) tem o papel de lnearzar a relação entre os componentes aleatóro e sstemátco do modelo. 4

5 1. Especfcação do componente aleatóro A especfcação do componente aleatóro requer a defnção de uma dstrbução de probabldades aproprada à varável resposta. Essa defnção deve ser baseada nas propredades de sua dstrbução (trata-se de uma varável aleatóra dscreta ou contínua? É razoável assumr smetra? Qual o seu suporte?). O conhecmento dos modelos probablístcos dsponíves e de suas prncpas propredades é fundamental para uma escolha adequada. Não se tendo convcção sobre uma partcular escolha, pode-se tentar dferentes alternatvas, comparando os resultados (ajustes) produzdos. 5

6 . Defnção do predtor lnear. Quas varáves explcatvas devem ser consderadas? Como tas varáves serão ncorporadas ao predtor (na forma orgnal? Transformadas? Categorzadas? Centradas? Por meo de polnômos?...); Serão consderadas nterações entre as varáves? Entre quas? De qual ordem? 6

7 3. Defnção da função de lgação. Propor uma função de lgação capaz de lnearzar a relação entre µ e η; Produzr valores váldos (pertencentes ao espaço paramétrco) de µ para qualquer conjunto de valores para as varáves explcatvas; Apresentar propredades estatístcas e computaconas desejáves (trataremos dsso mas adante); Proporconar nterpretações prátcas para os coefcentes (parâmetros) presentes no predtor lnear. 7

8 Função de lgação canônca A lgação canônca é determnada pelo parâmetro canônco da dstrbução, produzndo: g ( µ ) = θ = η = β + β1x β pxp 0. o O uso da função de lgação canônca tem convenentes estatístcos, dentre os quas a garanta de exstênca de estatístcas sufcentes para os β ' s de mesma dmensão do vetor de coefcentes, além d a concavdade da função de verossmlhança. o Embora confgure uma alternatva convenente, a escolha da lgação canônca não é obrgatóra, sendo que em algumas stuações outras lgações podem proporconar melhor ajuste. 8

9 Lgação Quadro 1 Algumas funções de lgação usuas e suas nversas η = g( µ ) 1 µ ( η) = g Lgação canônca para a dstrbução Identdade µ η Normal Log ln ( µ ) η e Inverso 1 µ Posson 1 η Gama Inverso-quadrado µ 1 η Normal nversa Raz-quadrada µ η µ Logto ln 1 µ e η 1+ e Probto φ 1 ( µ ) φ ( η ) Log-Log ln[ ln ( µ )] exp [ exp( η) ] Complemento log-log ln [ ln ( 1 µ )] 1 exp[ exp( η) ] η Bnomal 9

10 Exemplo 1 Um engenhero está nteressado em nvestgar a resstênca de uma nova fbra sntétca usada na produção de camsas. Sabendo que a resstênca da fbra é afetada pela quantdade de algodão usada na fbra, e que a quantdade desejada de algodão no produto fnal, de acordo com as característcas desejadas, deve estar no ntervalo de 10 a 40%, o engenhero planeja um expermento delneado completamente ao acaso, consderando as seguntes quantdades de algodão: 15, 0, 5, 30 e 35%, com cnco replcações por tratamento. Tabela 1 Dados de resstênca (em lbras/pol ) para o expermento de fbra sntétca. Porcentagem Observação de algodão

11 5 0 Resstênca da fbra Porcentagem de algodão Fgura Gráfco de dspersão para as resstêncas das fbras sob cnco porcentagens dstntas de algodão. 11

12 Consderações: Componente aleatóro: Varável resposta: Resstênca da fbra sntétca ( y); Dstrbução proposta: y x ~ Normal(, σ ) µ, em que x representa a porcentagem de algodão. Componente sstemátco: Predtor lnear - supondo relação quadrátca entre resstênca ( y) e porcentagem de algodão ( x), tem-se: 0 + β1x βx η = β +. 1

13 Lgação: Função de lgação dentdade (canônca). Modelo resultante: (, ) µ y x ~ Normal σ ; [ y x ] = β + β x β x µ = E

14 Exemplo Amostras de 0 nsetos, Heloths vrescens (praga do algodão), resstentes a cypemethrn, foram expostas a doses crescentes do nsetcda, dos das depos da emergênca da pupa (Collet, 00). Após 7h, foram contados os números de nsetos mortos e os resultados obtdos estão na Tabela. Tabela Números de nsetos mortos em amostras de 0 nsetos machos e fêmeas submetdos a doses crescentes de cypemethrn. Dose Log(Dose) Nº nsetos mortos Machos Fêmeas 1, , , , , ,

15 Consderações: Componente aleatóro: Varável resposta: Número de nsetos mortos ( y); Dstrbução proposta: y dose, sexo ~ Bnomal( 0, π ) nseto do sexo j submetdo a dose. j j j, sendo j π a probabldade de morte de um Componente sstemátco: Predtor lnear com efetos adtvos de sexo e (log) dose: j ( dose ) sexo j η + = β0 + β1 log β, sendo sexo = 0, para sexo femnno, e sexo = 1, para sexo masculno. j j 15

16 Lgação: Função de lgação logto (canônca). Modelo resultante: y Dose ; Sexo ~ Bnomal ( 0, π ); j j j π j ln 1 π j = β 0 + β1 log ( dose ) + βsexo j, ou, escrevendo na escala da probabldade: β0 + β1 log ( dose ) + β Sexo j e π j = log ( dose ). β β + β Sexo j e

17 Exemplo 3 Na sequênca, são apresentadas as cnco prmeras lnhas de um banco de dados referente a um estudo prospectvo com 100 ndvíduos de pelo menos 65 anos de dade em boas condções físcas. O objetvo do estudo é tentar relaconar o número médo de quedas num período de ses meses com as seguntes varáves explcatvas, descrtas na ordem em que aparecem na base: Quedas número de quedas no período; Intervenção 0: educação somente; 1: educação e exercícos físcos; Sexo 0: femnno; 1: masculno; Balanço escore; Força escore. Indvíduo Quedas Intervenção Sexo Balanço Força

18 Componente aleatóro: Varável resposta: Número de quedas ( y); Dstrbução proposta: y ~ Posson( µ ) ntervenção, sexo,...) para o ndvíduo. x, em que x representa o vetor de covaráves (referentes a Componente sstemátco: Predtor lnear com efetos adtvos: η = β + força, 0 + β1interv + βsexo + β3balanço β4 sendo Interv e Sexo varáves ndcadoras do tpo de ntervenção e sexo e balanço e força covaráves numércas, correspondentes aos respectvos escores. 18

19 Lgação: Função de lgação logarítmca (canônca). Modelo resultante: ( ) y x ~ Posson µ ln ( µ ) β0 + β1interv + βsexo + β3balanço + β4 força =, ou, escrevendo na escala da méda: { β + β + β Sexo + β balanço β força } µ = exp Interv

20 Exemplo 4 Os Boxplots apresentados na Fgura 4 descrevem parcalmente os resultados de um expermento desenvolvdo no Departamento de Nutrção da Faculdade de Saúde Públca da USP (ver seção.8.1 de Paula (013)). Foram testadas 5 dferentes formas de um snack (tratamentos 1 a 5), que foram comparadas, segundo alguns parâmetros de nteresse, ao longo de 0 semanas. Nos referdos gráfcos, são apresentadas as dstrbuções referentes às forças de csalhamento desses snacks. 0

21 Csalhamento 80 Csalhamento Tratamento Semana Fgura 7 Boxplots da força de csalhamento segundo o tratamento, para todas as semanas, e segundo as semanas, para todos os tratamentos. 1

22 Componente aleatóro: Varável resposta: Força de csalhamento ( y); Dstrbução proposta: y Trat, semana ~ Gama( µ,ν ) para snacks do tratamento na semana j. j j j, sendo µ j a força méda de csalhamento Componente sstemátco: Predtor lnear (com efeto quadrátco assocado ao número de semanas): η j 0 + β1trat1 + βtrat + β3trat3 + β4trat4 + β5 semana j + 6 semana j = β β, sendo trat, = 1,..., 4, varáves ndcadoras dos correspondentes tratamentos (o tratamento 5 é consderado como referênca - Trat 5 = 0), e semana é a varável numérca.

23 Lgação: Função de lgação logarítmca. Modelo resultante: y j ( µ,ν ) Trat ; Semana j ~ Gama j ln( µ ) = β + β Trat + β Trat + β Trat + β Trat + β semana + β semana j j 6 j, ou, escrevendo na escala da méda: µ j { β + β Trat + β Trat + β Trat + β Trat + β semana + semana } = exp β j 6 j. 3

24 Nota Em cada exemplo fo apresentada apenas uma possbldade de modelo. Dversas outras especfcações seram possíves (quanto ao componente aleatóro, sstemátco ou à lgação) produzndo modelos alternatvos, possvelmente com melhor ajuste aos dados. No R: função glm (vamos a ela). 4

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Sumarização dos dados

Sumarização dos dados Inferênca e Decsão I Soluções da Colectânea de Exercícos 22/3 LMAC Capítulo 2 Sumarzação dos dados Nota: neste capítulo é apresentada a resolução apenas de alguns exercícos e a título ndcatvo. Exercíco

Leia mais

Modelagem da proporção de produtos defeituosos usando Modelo de Quase-verossimilhança

Modelagem da proporção de produtos defeituosos usando Modelo de Quase-verossimilhança XXV Encontro Nac. de Eng. de Produção Porto Alegre, RS, Brasl, 29 out a 01 de nov de 2005 Modelagem da proporção de produtos defetuosos usando Modelo de Quase-verossmlhança Ângelo Márco O. Sant Anna (UFRGS)

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

MODELAGEM CONJUNTA DE MÉDIA E VARIÂNCIA EM EXPERIMENTOS FRACIONADOS SEM REPETIÇÃO UTILIZANDO GLM

MODELAGEM CONJUNTA DE MÉDIA E VARIÂNCIA EM EXPERIMENTOS FRACIONADOS SEM REPETIÇÃO UTILIZANDO GLM UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO MODELAGEM CONJUNTA DE MÉDIA E VARIÂNCIA EM EXPERIMENTOS FRACIONADOS SEM REPETIÇÃO UTILIZANDO

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS EEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS Exemplo: Peso de 25 bolos ndustras Forma bruta: Dsposção ordenada 266 267 266 26 22 255 266 26 272 22 260 272 25 262 23 25 266 270 274 22 2 270 20

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

MÉTODO DE ORIENTAÇÃO À MODELAGEM DE

MÉTODO DE ORIENTAÇÃO À MODELAGEM DE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO MÉTODO DE ORIENTAÇÃO À MODELAGEM DE DADOS MENSURADOS EM PROPORÇÃO Ângelo Márco Olvera

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples

CAPÍTULO 9 REGRESSÃO LINEAR PPGEP REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES REGRESSÃO LINEAR SIMPLES UFRGS. Regressão Linear Simples CAPÍTULO 9 REGREÃO LINEAR IMPLE REGREÃO LINEAR IMPLE UFRG Em mutos problemas há duas ou mas varáves que são relaconadas, e pode ser mportante modelar essa relação. Por exemplo, a resstênca à abrasão de

Leia mais

ANDRÉ OLIVEIRA SOUZA TESTES ESTATÍSTICOS EM REGRESSÃO LOGÍSTICA SOB A CONDIÇÃO DE SEPARABILIDADE

ANDRÉ OLIVEIRA SOUZA TESTES ESTATÍSTICOS EM REGRESSÃO LOGÍSTICA SOB A CONDIÇÃO DE SEPARABILIDADE ANDRÉ OLIVEIRA SOUZA TESTES ESTATÍSTICOS EM REGRESSÃO LOGÍSTICA SOB A CONDIÇÃO DE SEPARABILIDADE Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós-Graduação

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

MODELANDO DADOS DE CONTAGEM COM INFLAÇÃO DE ZEROS, SOBREDISPERSÃO E DEPENDÊNCIA ESPACIAL. Carla Zeline Rodrigues Bandeira

MODELANDO DADOS DE CONTAGEM COM INFLAÇÃO DE ZEROS, SOBREDISPERSÃO E DEPENDÊNCIA ESPACIAL. Carla Zeline Rodrigues Bandeira MODELANDO DADOS DE CONTAGEM COM INFLAÇÃO DE ZEROS, SOBREDISPERSÃO E DEPENDÊNCIA ESPACIAL Carla Zelne Rodrgues Bandera Dssertação de Mestrado apresentada ao Programa de Pós-graduação em Matemátca, da Unversdade

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Análise de Regressão Linear Múltipla IV

Análise de Regressão Linear Múltipla IV Análse de Regressão Lnear Múltpla IV Aula 7 Guarat e Porter, 11 Capítulos 7 e 8 He et al., 4 Capítulo 3 Exemplo Tomando por base o modelo salaro 1educ anosemp exp prev log 3 a senhorta Jole, gerente do

Leia mais

4.1. Tábuas de mortalidade

4.1. Tábuas de mortalidade 42 4. Metodologa A verfcação da estênca de dferença na taa de mortaldade de partcpantes ue abandonam um plano de seguro de vda ou prevdênca complementar será realzada medante a comparação entre as probabldades

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

Exercícios de CPM e PERT Enunciados

Exercícios de CPM e PERT Enunciados Capítulo 7 Exercícos de CPM e PERT Enuncados Exercícos de CPM e PERT Enuncados 106 Problema 1 O banco TTM (Tostão a Tostão se faz um Mlhão) decdu transferr e amplar a sua sede e servços centras para a

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

IBMEC SÃO PAULO. Jefferson Ferreira. Modelos de previsão de perdas para. crédito massificado

IBMEC SÃO PAULO. Jefferson Ferreira. Modelos de previsão de perdas para. crédito massificado IBMEC SÃO PAULO Mestrado Profssonal em Economa Jefferson Ferrera Modelos de prevsão de perdas para crédto massfcado São Paulo 2008 Jefferson Ferrera Modelos de prevsão de perdas para crédto massfcado Dssertação

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

ANÁLISE DA SEGURANÇA NO PROJETO DE ESTRUTURAS: MÉTODO DOS ESTADOS LIMITES

ANÁLISE DA SEGURANÇA NO PROJETO DE ESTRUTURAS: MÉTODO DOS ESTADOS LIMITES ANÁLISE DA SEGURANÇA NO PROJETO DE ESTRUTURAS: MÉTODO DOS ESTADOS LIMITES Lela A. de Castro Motta 1 & Maxmlano Malte Resumo Este trabalho aborda a ntrodução da segurança baseada em métodos probablístcos,

Leia mais

4 Análise de confiabilidade de estruturas

4 Análise de confiabilidade de estruturas 4 Análse de confabldade de estruturas Nos prmórdos da engenhara cvl, o desconhecmento técnco-centífco conduza a proetos excessvamente seguros, mas em contrapartda de custo muto elevado. Hoe em da, o progresso

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

MODELO DE ALOCAÇÃO DE RECURSOS ENTRE AS INSTITUIÇÕES FEDERAIS DE ENSINO SUPERIOR: UMA APLICAÇÃO DOS MODELOS LINEARES GENERALIZADOS

MODELO DE ALOCAÇÃO DE RECURSOS ENTRE AS INSTITUIÇÕES FEDERAIS DE ENSINO SUPERIOR: UMA APLICAÇÃO DOS MODELOS LINEARES GENERALIZADOS MODELO DE ALOCAÇÃO DE RECURSOS ENTRE AS INSTITUIÇÕES FEDERAIS DE ENSINO SUPERIOR: UMA APLICAÇÃO DOS MODELOS LINEARES GENERALIZADOS Getúlo José Amorm AMARAL 1 Gauss Moutnho CORDEIRO 2 RESUMO: Neste artgo

Leia mais

APLICAÇÕES DE PLANEJAMENTO DE EXPERIMENTO PARA DADOS NÃO NORMAIS

APLICAÇÕES DE PLANEJAMENTO DE EXPERIMENTO PARA DADOS NÃO NORMAIS UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Centro de Cêncas Matemátcas e da Natureza Insttuto de Matemátca Departamento de Métodos Estatístcos Dogo da Hora Elas APLICAÇÕES DE PLANEJAMENTO DE EXPERIMENTO PARA

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Modelo de Alocação de Vagas Docentes

Modelo de Alocação de Vagas Docentes Reunão Comssão de Estudos de Alocação de Vagas Docentes da UFV Portara 0400/2016 de 04/05/2016 20 de mao de 2016 Comssão de Estudos das Planlhas de Alocação de Vagas e Recursos Ato nº 009/2006/PPO 19/05/2006

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL

MEDIDAS DE TENDÊNCIA CENTRAL 3.1- Introdução. ESTATÍSTICA MEDIDAS DE TENDÊNCIA CENTRAL Como na representação tabular e gráfca dos dados a Estatístca Descrtva consste num conjunto de métodos que ensnam a reduzr uma quantdade de dados

Leia mais

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6 EXEMPLOS ADICIONAIS DA ENGENHARIA ELÉTRICA 1)Suponha que a probabldade de que um engenhero elétrco utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco

Leia mais

Estimação Bayesiana das Fragilidades Individuais de Pacientes em Tratamento de Hemodiálise

Estimação Bayesiana das Fragilidades Individuais de Pacientes em Tratamento de Hemodiálise Estmação Bayesana das Fragldades Indvduas de Pacentes em Tratamento de Hemodálse Grazela Dutra Rocha Gouvêa 2 Vera Lúca Damasceno Tomazella 3 João Domngos Scalon 4 Introdução Em análse de sobrevvênca consdera-se,

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

APERFEIÇOAMENTO DE TESTES NOS MODELOS SÉRIES DE POTÊNCIA NÃO-LINEARES GENERALIZADOS MARIA DO CARMO SOARES DE LIMA

APERFEIÇOAMENTO DE TESTES NOS MODELOS SÉRIES DE POTÊNCIA NÃO-LINEARES GENERALIZADOS MARIA DO CARMO SOARES DE LIMA APERFEIÇOAMENTO DE TESTES NOS MODELOS SÉRIES DE POTÊNCIA NÃO-LINEARES GENERALIZADOS MARIA DO CARMO SOARES DE LIMA Orentadora: Prof a Dr a Audrey Helen Marz de Aquno Cysneros Área de Concentração: Estatístca

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM O modlo log-lnar d Posson Intrss m modlar a dstrbução d uma varávl rfrnt a algum tpo d contagm m função d covarávs. A stratéga mas comum para modlagm nssas stuaçõs

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6:

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6: Lsta de Exercícos - Probabldade INE 700 GABARITO LISTA DE EXERÍIOS PROBABILIDADE ) Vamos medr o tempo de duração da lâmpada. Ao lgarmos a lâmpada ela pode não funconar, ou durar um tempo ndetermnado. a)

Leia mais

2ª ACTIVIDADE ESCRITA DE MATEMÁTICA A 12.º C 2009 NOVEMBRO 20 Duração da prova: 45 minutos VERSÃO 1. Grupo I

2ª ACTIVIDADE ESCRITA DE MATEMÁTICA A 12.º C 2009 NOVEMBRO 20 Duração da prova: 45 minutos VERSÃO 1. Grupo I ª ATIVIDADE ESRITA DE MATEMÁTIA A.º 009 NOVEMBRO 0 Duração da prova 4 mnutos VERSÃO Grupo I Para cada uma das três questões deste grupo, seleccone a resposta correcta de entre as alternatvas que lhe são

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais