Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência."

Transcrição

1 MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada, pode fazer com que as estmatvas seam pouco confáves. Com o obetvo de encontrar um modelo mas flexível, Cox propôs em 1972 um modelo, denomnado modelo de rsco proporconal de Cox. Esse modelo passou a ser o mas utlzado na análse de dados de sobrevvênca por sua versatldade.

2 Como em análse de sobrevvênca o nteresse também pode estar no rsco de falha o modelo proposto por Cox modela dretamente a função de rsco. O prncípo básco deste modelo para estmar o efeto das covaráves é a proporconaldade dos rscos ao longo de todo o tempo de observação. Suponha o caso smples em que uma únca covarável, que é um ndcador de grupo, é consderada. Consdere, por exemplo, que pacentes são aleatorzados para receber um tratamento padrão ou um novo tratamento. Sea h 1 (t) e h 0 (t) as funções de rsco no tempo t para pacentes no tratamento novo e no tratamento padrão, respectvamente.

3 De acordo com o prncípo da proporconaldade o rsco no tempo t para pacentes no novo tratamento é proporconal ao rsco, no mesmo tempo, para pacentes sobre o tratamento padrão. O modelo de rscos proporconas pode ser expresso na forma h1 ( t) h0 ( t) Uma mplcação da suposção de rscos proporconas é que as correspondentes funções de sobrevvênca para ndvíduos no novo e no tratamento padrão são razoavelmente paralelas ao longo de todo tempo. Um cruzamento das curvas ou uma varação nas dstâncas entre as curvas de dferentes categoras podem ndcar ausênca de proporconaldade.

4 O valor de é uma taxa de rsco ou rsco relatvo. Se < 1, o rsco de falha em t é menor para um ndvíduo sobre o novo tratamento, relatvo ao ndvíduo no tratamento padrão. Por outro lado, se > 1, o rsco de falha em t é maor para um ndvíduo no novo tratamento, ou sea o tratamento padrão ndca uma melhor alternatva. Consdere agora um estudo com n ndvíduos e denote a função de rsco para o -ésmo ndvíduo por h (t), = 1,2,...,n. Sea h 0 (t) a função de rsco para um tratamento padrão. A função de rsco para o novo tratamento é então h 0 (t). Como o rsco relatvo,, não pode ser negatvo é convenente consderar = exp().

5 O parâmetro é então o logartmo do rsco relatvo e qualquer valor de defndo em (-, +) leva a um valor postvo de. Note que valores postvos de são obtdos quando o rsco relatvo é maor do que 1, que é quando o novo tratamento é nferor ao padrão. Sea X uma varável ndcadora de grupo que assume o valor 0 para ndvíduos no tratamento padrão e 1 para ndvíduos no tratamento novo. Se x é o valor de X para o -ésmo ndvíduo no estudo, a função de rsco para este ndvíduo pode ser escrta por h ( t) h0 ( t)exp{ x} Este modelo é o modelo de rsco proporconal de Cox para a comparação de dos tratamentos.

6 De forma genérca, consdere p covaráves, de forma que x sea um vetor da forma x = (x 1,x 2,...,x p ). A função de rsco para o -ésmo ndvíduo é então escrta por h t) h0 ( t)exp{ 1x1 2x2... p x p} h ( t)exp{ x} ( 0 Este modelo é composto pelo produto de dos componentes, um não-paramétrco e o outro paramétrco. O componente não-paramétrco, h 0 (t), não é especfcado e é uma função não-negatva do tempo. Este componente é geralmente chamado de função de base ou função básca pos h(t) = h 0 (t) quando x = 0. O componente paramétrco, ou componente lnear é freqüentemente usado na forma multplcatva garantndo que h(t) sea sempre não-negatva.

7 È mportante ctar que o componente não-paramétrco absorve o termo constante, 0, presente nos modelos paramétrcos. Este modelo semparamétrco torna-se mas flexível que o modelo paramétrco devdo a presença da função de base. Exste outras formas possíves para (x ), mas essa é a mas comumente usada para modelos de dados de sobrevvênca. Este modelo é também denomnado modelo de rscos proporconas pos a razão das taxas de falha de dos ndvíduos dferentes é constante no tempo. Isto é, a razão das funções de rsco para os ndvíduos e é h ( t) h0 ( t)exp( x ) exp{ x x } h ( t) h ( t)exp( x ) 0

8 Esta razão de rscos não depende do tempo. Se um ndvíduo no níco do estudo tem um rsco de falha gual a duas vezes o rsco de um outro ndvíduo, esta razão de rscos será a mesma para todo o período de acompanhamento. O modelo de rscos proporconas também pode ser escrto em termos da função de rsco acumulada ou da função de sobrevvênca. H( t / x) H0( t)exp{ x} exp{ x } S( t / x) S 0 ( t) H t ( t) h0 ( s ds Sˆ ( t) exp{ Hˆ ( )} 0 ) t

9 ESTIMAÇÃO DOS PARÂMETROS O modelo de Cox é caracterzado pelos coefcentes s, que medem os efetos das covaráves sobre a função de rsco. Para que o modelo fque determnado, estas quantdades devem ser estmadas a partr dos dados amostras. Partndo do pressuposto de proporconaldade, é possível estmar os efetos das covaráves sem ter que fazer qualquer suposção a respeto da dstrbução do tempo de vda. A função de rsco básca e os coefcentes s podem ser estmados separadamente. Os s são estmados prmero e estas estmatvas são então usadas para construr uma estmatva da função de rsco básca.

10 Este é um resultado mportante pos assm é possível fazer nferêncas sobre os efetos das p varáves explcatvas no rsco relatvo sem precsar estmar a função de rsco básca. Os coefcentes s podem ser estmados usando o método de máxma verossmlhança. Contudo, a presença do componente não-paramétrco (h 0 (t)) na função de verossmlhança torna esse método naproprado. A solução proposta por Cox consste em condconar a construção da função de verossmlhança ao conhecmento da hstóra passada de falhas e censuras para elmnar a função de rsco básca.

11 Este método é chamado de método de máxma verossmlhança parcal. Consdere que em uma amostra de n ndvíduos exstam k n falhas dstntas nos tempos t 1 t 2... t k. A déa básca deste método é consderar a probabldade condconal da -ésma observação vr a falhar no tempo t conhecendo quas observações estão sob rsco em t. Esta probabldade condconal, que é a razão entre o rsco do ndvíduo falhar em t e a soma dos rscos de falha de todos os ndvíduos em rsco, é a contrbução de cada ndvíduo no tempo de falha t. Então a verossmlhança ndvdual L será, ) ( ) ( 0 0 ) ( } exp{ } exp{ } )exp{ ( } )exp{ ( ) ( ) ( t R t R t R x x x t h x t h t h t h L

12 R(t ) é o conunto dos índces das observações sob rsco no tempo t. Assm, condconal a hstóra de falhas e censuras até o tempo t, o componente não paramétrco desaparece da expressão de verossmlhança. A função de verossmlhança é dada por Os estmadores de máxma verossmlhança de são obtdos a partr da verossmlhança parcal, L(). n t R k t R x x x x L 1 ) ( 1 ) ( } exp{ } exp{ } exp{ } exp{ ) (

13 O modelo de rsco proporconal para dados de sobrevvênca e sua função de verossmlhança parcal assumem que os tempos de sobrevvênca são contínuos. Sob esta suposção, não permtem empates nos valores observados. Como o tempo de sobrevvênca pode ser regstrado em horas, das, meses ou até anos podem ocorrer empates nos tempos de falha ou de censura. Quando ocorrem empates entre falhas e censuras, usa-se a convenção de que a censura ocorreu após a falha, defnndo assm as observações a serem ncluídas no conunto de rsco em cada tempo de falha.

14 Para consderar empates entre tempos de falhas, a função de verossmlhança parcal pode ser modfcada. Uma aproxmação para a função de verossmlhança fo proposta por Breslow e Peto em 1972 e é freqüentemente usada em pacotes etsatístcos pela sua forma smples. Esta aproxmação é adequada quando o número de empates em qualquer tempo não é grande. Alguns autores provaram que os estmadores de máxma verossmlhança para o modelo de Cox são consstentes e assntotcamente normas sob certas condções de regulardade.

15 INTERPRETAÇÃO DOS COEFICIENTES O efeto das covaráves no modelo de rscos proporconas de Cox é de acelerar ou desacelerar a função de rsco. Para nterpretar os coefcentes estmados, a propredade de rscos proporconas do modelo deve ser usada. Consdere a razão das taxas de falha de dos ndvíduos e, que têm os mesmos valores para as covaraves com exceção da l-ésma. h h ( t) ( t) exp l x l x l Consdere que x l sea uma varável dcotômca ndcando pacentes hpertensos.

16 O rsco de morte entre os hpertensos é exp{ l } vezes o rsco de pacentes com pressão normal, com as outras covaráves mantda fxas. Sea = exp{}, que é a taxa de falha relatva no tempo t, assm ˆ exp ˆ. Para verfcar a exstênca de dferenças sgnfcatvas entre os grupos, basta observar se o valor 1 pertence ao ntervalo de confança estmado. Caso sto ocorra não há evdêncas de que os rscos dos pacentes nos dos grupos apresentam dferenças sgnfcatvas.

17 EXEMPLO: Consdere uma covarável grupo com três níves, representada por x 1 : grupo 1 e x 2 : grupo 2. As estmatvas de máxma verossmlhança parcal com I.C. entre parênteses são: ˆ 2,01,5;4,1 exp ˆ 2 1,2 0,7;1,8 exp 1 Exste dferença sgnfcatva entre o grupo controle e grupo 1, mas não exste dferença entre o grupo controle e grupo 2. O rsco de falha para pacentes do grupo 1 é duas vezes o rsco dos pacentes do grupo controle. Consdere agora a covarável dade com efeto sgnfcatvo e estmatva pontual dada por exp{ ˆ} 1.05 Temos então que se aumentarmos em um ano a dade, o rsco de falha fca aumentado em 5%.

18 AVALIAÇÃO DA PROPORCIONALIDADE DOS RISCOS Uma avalação ncal da proporconaldade do efeto das covaráves no tempo pode ser feta através da construção das curvas de Kaplan-Meer. A suposção de proporconaldade ao longo do tempo, será aceta se não houver cruzamento entre as curvas de sobrevvênca por categoras das varáves. Uma outra forma de avalar a suposção de proporconaldade é através da análse de resíduos de Schoenfeld. Consdere que se o -ésmo ndvíduo com vetor de covaráves x =(x 1,...,x p )` é observado falhar.

19 Tem-se para este ndvíduo um vetor de resíduos de Schoenfeld r = (r 1,...r p ) dado por r q x q Estes resíduos são nterpretados como a dferença entre os valores observados de covaráves de um ndvíduo com tempo de ocorrênca do evento t e os valores esperados em t dado o grupo de rsco R(t ). R( t ) x R( t ) q exp exp x ˆ x ˆ Estes resíduos são defndos apenas nos tempos de falha. O número de vetores de resíduos é gual ao número de covaráves austadas no modelo.

20 Dessa forma, através do gráfco dos resíduos padronzados de Schoenfeld contra o tempo é possível verfcar a exstênca ou não de proporconaldade. Isto é, se a suposção de rscos proporconas for satsfeta não deverá exstr nenhuma tendênca sstemátca no gráfco. É possível realzar um teste para verfcar a hpótese de que não exste correlação entre o tempo de sobrevvênca transformado e os resíduos padronzados. Isto equvale a testar a hpótese nula de que não exste tendênca no tempo (H 0 : =0).

21

22

23 AVALIAÇÃO DO AJUSTE DO MODELO Os mesmos testes aplcados aos modelos paramétrcos, também podem ser utlzados no modelo de Cox. A estatístca de Wald pode ser utlzada tanto para testar a sgnfcânca do parâmetro do modelo, como verfcar o auste global do mesmo. O teste da razão de verossmlhança (análse da função desvo) compara modelos encaxados. Avala se a nclusão de uma ou mas varáves no modelo aumenta de modo sgnfcatvo a verossmlhança de um modelo em relação ao modelo com menos parâmetros. A função desvo é assntotcamente semelhante a estatístca de Wald quando o número de observações é grande. Caso esse número sea pequeno, a análse da função desvo é mas robusta.

24 AVALIAÇÃO DO AJUSTE DO MODELO

25 AVALIAÇÃO DO AJUSTE DO MODELO PERGUNTA: Qual o poder explcatvo de um modelo escolhdo para avalar os dados? Uma medda de qualdade de auste para modelos lneares é o R 2. Poucas são as meddas estatístcas dsponíves para avalar globalmente a qualdade de auste de um modelo de sobrevvênca. A mas smples delas é uma medda baseada na razão de verossmlhanças e está dsponível no R.

26 EXEMPLO: Aletamento materno

27 EXEMPLO: Aletamento materno

28 EXEMPLO: Aletamento materno

29 EXEMPLO: Leucema Pedátrca

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

Análise de Regressão Linear Múltipla IV

Análise de Regressão Linear Múltipla IV Análse de Regressão Lnear Múltpla IV Aula 7 Guarat e Porter, 11 Capítulos 7 e 8 He et al., 4 Capítulo 3 Exemplo Tomando por base o modelo salaro 1educ anosemp exp prev log 3 a senhorta Jole, gerente do

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-4 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Programa do curso: Semana Conteúdo Apresentação da dscplna. Prncípos de modelos lneares de regressão.

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

Equações Simultâneas

Equações Simultâneas Equações Smultâneas Caracterzação. Os modelos de equações smultâneasenvolvem mas de uma varável dependente, ou endógena, sendo necessáras tantas equações quanto for o número de varáves endógenas 2. Uma

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Linear ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11 EERCÍCIOS PRÁTICOS - CADERNO 4 Regressão Lnear 4. EERCÍCIOS PARA RESOLVER NAS AULAS 4.1. O gestor de marketng duma grande cadea de supermercados quer determnar

Leia mais

Estimação Bayesiana das Fragilidades Individuais de Pacientes em Tratamento de Hemodiálise

Estimação Bayesiana das Fragilidades Individuais de Pacientes em Tratamento de Hemodiálise Estmação Bayesana das Fragldades Indvduas de Pacentes em Tratamento de Hemodálse Grazela Dutra Rocha Gouvêa 2 Vera Lúca Damasceno Tomazella 3 João Domngos Scalon 4 Introdução Em análse de sobrevvênca consdera-se,

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Expermentas em Cêncas Mecâncas Professor Jorge Luz A. Ferrera Sumáro.. Dagrama de Dspersão. Coefcente de Correlação Lnear de Pearson. Flosofa assocada a medda da Estatstca. este de Hpótese 3. Exemplos.

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos. Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos http://www.ufjf.br/nups/ Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08

Leia mais

Alternativas ao modelo de Cox na análise de dados de sobrevivência com covariáveis dependentes no tempo

Alternativas ao modelo de Cox na análise de dados de sobrevivência com covariáveis dependentes no tempo Alternatvas ao modelo de Cox na análse de dados de sobrevvênca com covaráves dependentes no tempo Luís Machado Departamento de Matemátca para a Cênca e a Tecnologa, Unversdade do Mnho Carmen Cadarso-Suárez

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Estatística Espacial: Dados de Área

Estatística Espacial: Dados de Área Estatístca Espacal: Dados de Área Dstrbução do número observado de eventos Padronzação e SMR Mapas de Probabldades Mapas com taxas empírcas bayesanas Padronzação Para permtr comparações entre dferentes

Leia mais

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas

Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Unversdade de São Paulo Escola Superor de Agrcultura Luz de Queroz Departamento de Cêncas Exatas Prova escrta de seleção para DOUTORADO em Estatístca e Expermentação Agronômca Nome do canddato (a): Questão

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

ANDRÉ OLIVEIRA SOUZA TESTES ESTATÍSTICOS EM REGRESSÃO LOGÍSTICA SOB A CONDIÇÃO DE SEPARABILIDADE

ANDRÉ OLIVEIRA SOUZA TESTES ESTATÍSTICOS EM REGRESSÃO LOGÍSTICA SOB A CONDIÇÃO DE SEPARABILIDADE ANDRÉ OLIVEIRA SOUZA TESTES ESTATÍSTICOS EM REGRESSÃO LOGÍSTICA SOB A CONDIÇÃO DE SEPARABILIDADE Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa de Pós-Graduação

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (5,5): A redução da

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

4.1. Tábuas de mortalidade

4.1. Tábuas de mortalidade 42 4. Metodologa A verfcação da estênca de dferença na taa de mortaldade de partcpantes ue abandonam um plano de seguro de vda ou prevdênca complementar será realzada medante a comparação entre as probabldades

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO.

JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO. JOANNE MEDEIROS FERREIRA ANÁLISE DE SOBREVIVÊNCIA: UMA VISÃO DE RISCO COMPORTAMENTAL NA UTILIZAÇÃO DE CARTÃO DE CRÉDITO. RECIFE-PE, 007 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE PESQUISA

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Tipo tratamento idade Tipo tratamento sexo

Tipo tratamento idade Tipo tratamento sexo Modelos de Regressão em Saúde Rejane Sobrno Pnhero Tâna Zdenka Gullén de Torres Modelos de Regressão Famíla de técncas estatístcas város fatores meddos (predtor, covarável, varável ndependente) relaconados

Leia mais

4 Modelos de Equações Estruturais

4 Modelos de Equações Estruturais 4 Modelos de Equações Estruturas 4. Introdução Este capítulo é dedcado aos fundamentos teórcos sobre os Modelos de Equações Estruturas baseados em Estruturas de Covarâncas (CSM) e em Mínmos Quadrados Parcas

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard

Estatística. 8 Teste de Aderência. UNESP FEG DPD Prof. Edgard Estatístca 8 Teste de Aderênca UNESP FEG DPD Prof. Edgard 011 8-1 Teste de Aderênca IDÉIA: descobrr qual é a Dstrbução de uma Varável Aleatóra X, a partr de uma amostra: {X 1, X,..., X n } Problema: Seja

Leia mais

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos

1. Quantidade de dinheiro doado para caridade: muitas pessoas não fazem este tipo de doação. Uma parcela expressiva dos Tópcos em Econometra I Ala /7/23 Modelo Tobt para solção de canto Eemplos Solções de canto. Qantdade de dnhero doado para cardade: mtas pessoas não fazem este tpo de doação. Uma parcela epressva dos dados

Leia mais

Regressão Logística Aplicada aos Casos de Sífilis Congênita no Estado do Pará

Regressão Logística Aplicada aos Casos de Sífilis Congênita no Estado do Pará Regressão Logístca Aplcada aos Casos de Sífls Congênta no Estado do Pará Crstane Nazaré Pamplona de Souza 1 Vanessa Ferrera Montero 1 Adrlayne dos Res Araújo 2 Edson Marcos Leal Soares Ramos 2 1 Introdução

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

ANÁLISE DE VARIÂNCIA (ANOVA) CLÁSSICA: TÉCNICA ÚTIL, PORÉM RESTRITIVA!

ANÁLISE DE VARIÂNCIA (ANOVA) CLÁSSICA: TÉCNICA ÚTIL, PORÉM RESTRITIVA! ANÁLSE DE VARÂNCA (ANOVA) CLÁSSCA: TÉCNCA ÚTL, PORÉM RESTRTVA! Questões assocadas à verfcação de suas suposções: (adtvdade, ndependênca, homocedastcdade e normaldade) k..d.~n(0, ) quadrados mínmos ordnáros

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

APLICAÇÕES DE PLANEJAMENTO DE EXPERIMENTO PARA DADOS NÃO NORMAIS

APLICAÇÕES DE PLANEJAMENTO DE EXPERIMENTO PARA DADOS NÃO NORMAIS UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Centro de Cêncas Matemátcas e da Natureza Insttuto de Matemátca Departamento de Métodos Estatístcos Dogo da Hora Elas APLICAÇÕES DE PLANEJAMENTO DE EXPERIMENTO PARA

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

F = O modelo de Regressão Múltipla Geral é dado por: Y i = β 1 + β 2 X 1i + β 3 X 2i + +β k X ki + U i Para testar a hipótese nula de que: H

F = O modelo de Regressão Múltipla Geral é dado por: Y i = β 1 + β 2 X 1i + β 3 X 2i + +β k X ki + U i Para testar a hipótese nula de que: H Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ Nem sempre se quer testar os coefcentes ndvduas da regressão. Pode ser necessáro e é convenente testar o modelo como um todo, sto é testar

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL

MEDIDAS DE TENDÊNCIA CENTRAL 3.1- Introdução. ESTATÍSTICA MEDIDAS DE TENDÊNCIA CENTRAL Como na representação tabular e gráfca dos dados a Estatístca Descrtva consste num conjunto de métodos que ensnam a reduzr uma quantdade de dados

Leia mais

DENILSON MORAIS VAGNER AYRES LARA ESTUDO SOBRE ALEITAMENTO MATERNO ATÉ OS 60 PRIMEIROS DIAS DE VIDA: UMA APLICAÇÃO DA REGRESSÃO LOGÍSTICA

DENILSON MORAIS VAGNER AYRES LARA ESTUDO SOBRE ALEITAMENTO MATERNO ATÉ OS 60 PRIMEIROS DIAS DE VIDA: UMA APLICAÇÃO DA REGRESSÃO LOGÍSTICA DENILSON MORAIS VAGNER AYRES LARA ESTUDO SOBRE ALEITAMENTO MATERNO ATÉ OS 60 PRIMEIROS DIAS DE VIDA: UMA APLICAÇÃO DA REGRESSÃO LOGÍSTICA Trabalho de Conclusão de Curso apresentado à dscplna de Laboratóro

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO ESTATISTICA EXPERIMENTAL: Com aplcaçoes em R Medcna

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

Diferenciais de Salários por Raça e Gênero: Aplicação dos procedimentos de Oaxaca e Heckman em Pesquisas Amostrais Complexas

Diferenciais de Salários por Raça e Gênero: Aplicação dos procedimentos de Oaxaca e Heckman em Pesquisas Amostrais Complexas N o 638 ISSN 0104-8910 Dferencas de Saláros por Raça e Gênero: Aplcação dos procedmentos de Oaxaca e Heckman em Pesqusas Amostras Complexas Alexandre Pnto de Carvalho, Marcelo Côrtes Ner, Dense Brtz Slva

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Estatístca Expermental Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 03 ÍNDICE AULA ESTATÍSTICA DESCRITIVA º EXERCÍCIO

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais