FAAP APRESENTAÇÃO (1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "FAAP APRESENTAÇÃO (1)"

Transcrição

1 ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume, smplfca nformações; constró tabelas e gráfcos; calcula meddas que representam os dados observados.. robabldade- estuda os fenômenos lgados ao acaso.. Inferênca Estatístca- através de observações fetas numa amostra analsa, nterpreta e conclu na população. () or que estudar Estatístca? A Estatístca é cada vez mas utlzada nos meos de comuncação. Além dsso, é amplamente utlzada em pesqusas de mercado, pesqusas de opnão, fnanças, estudos lgados a saúde, a jogos, etc. () Em Estatístca, chamamos de população ao conjunto de todos os elementos que possuem a característca que está sendo estudada. A amostra é um subconjunto da população. ara que a população fque bem representada (ndspensável num estudo estatístco), a amostra deve ser seleconada de modo que todos os elementos da população tenham chance de fazer parte dela.

2 NOTAÇÃO SIGMA (SOMATÓRIO) Dado o conjunto:,,,..., n, n n... Eemplos: Dados os conjuntos X:, 5, 7, 9, e Y:, 6,, 4, 5, calcular: 8 49 ) ( y y

3 DISTRIBUIÇÕES DE FREQÜÊNCIAS. DISTRIBUIÇÕES DE FREQÜÊNCIAS.. Varável Aleatóra (v.a.): é a característca que está sendo estudada. Seu valor vara de uma observação para outra de manera aleatóra. Eemplos: peso, altura, número de alunos, relgão, cor do cabelo, grau de nstrução, número de gols, velocdade, etc... Classfcação das Varáves Aleatóras: a. Qualtatvas: representam uma qualdade do objeto em observação. a.. Nomnas: não apresentam nenhum tpo de herarqua entre os possíves valores da varável. Eemplos: tpo de morada, cor dos olhos, relgão, etc. b.. or ostos (Ordnas): apresentam algum tpo de ordenação ou herarqua entre seus possíves valores. Eemplos: grau de nstrução, cargos numa empresa, etc. b. Quanttatvas: são numércas. b.. Dscretas: assumem apenas valores nteros, por sua própra natureza. São varáves que resultam de contagens. Eemplos: número de gols, de faltas, de acdentes, de produtos venddos, etc. b.. Contínuas: podem assumr qualquer valor real. São varáves que resultam de medções. Eemplos: peso, altura, velocdade, pressão, etc. Cada um dos valores observados de uma varável, numa amostra ou na própra população, é um dado estatístco... Rol: é a lsta dos dados observados, em ordem crescente..4. Dstrbuções de Freqüêncas: são tabelas ou gráfcos onde os dados observados são organzados. Neles aparecem os valores observados para a varável em estudo, suas respectvas freqüêncas e/ou a porcentagem que os valores representam no total de observações. a. Dstrbução de Freqüêncas para uma Varável Qualtatva: Grau de Instrução dos Funconáros da Empresa X 4 Grau de Instrução Número de Funconáros % Fundamental % Médo 4% Superor 5 % ós-graduação 5 % Total 5 % Fonte: Departamento de Recursos Humanos da Empresa X

4 obs: a coluna Número de Funconáros representa a freqüênca (número de observações ) de cada categora. Sua soma é o número total de observações (n). n = f A coluna % é calculada dvdndo-se o número de observações da categora pelo número total de observações. Mutas vezes essa porcentagem aparece na forma decmal e é chamada de freqüênca relatva (f rel ). f rel = f /n A freqüênca relatva representa a proporção de determnada categora no total de dados observados. p = /n. Gráfco de Setores: Grau de nstrução dos funconáros da empresa X - 4 % % % 4% Fundamental Médo Superor ós-graduação 4

5 Gráfco de Barras: Grau de nstrução dos funconáros da empresa X - 4 Grau de nstrução Fundamental Número de funconáros b. Dstrbução de Freqüêncas para uma Varável Quanttatva Dscreta: Número de Flhos dos Funconáros da Empresa X - 4 Número de Número de % Flhos Funconáros 6% 4 8% 5 % 7 4% 4 8 6% 5 4% 6 % Total 5 % Fonte: Departamento de Recursos Humanos da Empresa X obs: a coluna Número de Flhos representa os valores assumdos pela varável. Ela pode ser ndcada por. A coluna Número de Funconáros representa as freqüêncas (f ). 5

6 Gráfco de ontos: Número de flhos dos funconáros da empresa X - 4 Número de funconáros Número de flhos c. Dstrbução de Freqüêncas para uma Varável Quanttatva Contínua: Incremento percentual na cotação de ações da Empresa X set/4 Incremento percentual na cotação da ação Número de ações %,4,9 6,67%,9,4 9 %,4 4,9 8 6,67% 4,9 6,4 6 % 6,4 7,9 5 6,67% Total % Fonte: Departamento Fnancero da Empresa X Elementos de uma dstrbução de freqüêncas de varável contínua: classes: ntervalos de varação,4,9 lmte nferor da classe (l ) lmte superor da classe (L ) _ ponto médo da classe( ): _ = (l + L )/ 6

7 Hstograma: Incremento percentual das ações da empresa X - set/4 número de ações 8 6 4,4 -,9,9 -,4,4-4,9 4,9-6,4 6,4-7,9 ncremento percentual olígono de Freqüêncas: Incremento percentual das ações da empresa X - set/4 número de ações ncremento percentual 7

8 MEDIDAS DE TENDÊNCIA CENTRAL Meddas de tendênca central são meddas que resumem os dados. odemos ter uma boa déa do que ocorre com os dados quando observamos suas meddas de tendênca central. Essas meddas podem ser localzadas numa reta de números reas, motvo pelo qual também são chamadas de meddas de posção. _. Méda (X): é o ponto de equlíbro entre os dados. X n. Moda (Mo): é a observação que tem a maor freqüênca.. Medana (Md): é a medda que dvde a dstrbução em duas partes guas. n ímpar: Md = (n+)/ n par: Md = ( n/ + n/+ )/ n 4. Quarts (Q ): são meddas que dvdem a dstrbução em quatro partes guas. n ímpar: Q = (n+)/4 ; Q = (n+)/4 n par: Q = ( n/4 + n/4+ )/; Q = ( n/4 + n/4+ )/ Eemplos: ) Os valores abao referem-se ao número de faltas de alunos em determnado mês.,,,,,,,,,, Calcular a méda, a moda, a medana, o prmero e o tercero quarts. Solução: Em prmero lugar, devemos dspor os dados em rol:,,,,,,,,,,. X Mo Md 6 Q Q 9 8

9 ) Os valores abao referem-se ao número de gols fetos em 8 jogos do últmo campeonato naconal., 4,,,,,, Calcular a méda, a moda, a medana, o prmero e o tercero quarts. Solução: Em prmero lugar, devemos dspor os dados em rol:,,,,,,,4. 4 X,5 8 Mo 4 5 Md,5 Q 6 7 Q VALORES DISCREANTES Numa dstrbução de freqüêncas são valores atípcos aqueles maores que Q +,5.(Q -Q ) e aqueles menores que Q -,5.(Q -Q ). Esses valores podem ser resultado de um erro de observação caso em que serão chamados dscrepantes ou outlers - ou podem ser efetvamente atípcos naquela dstrbução, porém reas e verdaderos. É mportante que se nvestgue a orgem de um valor atípco para que se decda se ele é apenas atípco ou se é dscrepante. Eemplos: ) Verfque se a dstrbução de freqüêncas abao possu valores dscrepantes.,,,,,,, 5, 6, 6, 6, 7, 9,, 5 n 5 Q Q Q 7,5.(Q Q ) 7,5.(7 ) 4,5 Q,5.(Q Q ),5.(7 ) 5,5 4 5 é um valor dscrepante. 9

10 Nesse eemplo é precso nvestgar a orgem do valor 5 para decdr se ele é realmente dscrepante ou apenas atípco. ) A dstrbução a segur representa a população de algumas cdades.verfque se ela possu valores dscrepantes. Cdade opulação (em mlhões de habtantes) Adalante, Barro do Norte, Manguernha 4,5 az do Mundo, Rberão Velho,4 Salnas, Terra do Cacau,95 n 7 rol :,,,,4,95, 4,5 Q, Q 6, Q,5.(Q Q ),5.(,),47 Q,5.(Q Q ),,5.(,),45 4,5 é um valor dscrepante. Este eemplo mostra uma stuação na qual um valor realmente observado é atípco, porém verdadero. Nesse caso, ele deve ser consderado na dstrbução.

11 MEDIDAS DE DISERSÃO São meddas que avalam a varabldade dos dados e a representatvdade das meddas de tendênca central.. AMLITUDE: A = mámo - mínmo. INTERVALO: É o ntervalo de observação da varável. VARIÂNCIA: 4. DESVIO ADRÃO: amostral : S populaconal : ( X ) n ( X ) n amostral : S S populaconal : 5. COEFICIENTE DE VARIAÇÃO: mede a representatvdade da méda. S amostral : CV X populaconal : CV X Se CV,5, a méda representa muto bem os dados (baa dspersão). Se,5 < CV,5, a méda representa por os dados conforme o CV se aproma de,5 (méda dspersão). Se CV >,5, a méda não representa bem os dados (alta dspersão). Eemplo: Os valores abao referem-se às dades de 5 pessoas que se nscreveram num concurso de desenho. 6,8,,5,5 Calcular a ampltude, o ntervalo, a varânca, o desvo padrão e o coefcente de varação.

12 Solução: A Intervalo : 6;5 S CV 4, X 5 (6 ) (8 ) ( ) S 4 6,5 4,6,9, por tan to (5 ) (5 ) 6,5 a méda não representa muto bem as dades ASSIMETRIA dos nscrtos A dstrbução de freqüêncas representada no gráfco acma é smétrca. Nas dstrbuções smétrcas, o ponto médo, a méda, a moda e a medana são guas.

13 A dstrbução de freqüêncas representada no gráfco acma é assmétrca. ROORÇÃO roporção é uma parte do todo. É uma medda usada para varáves qualtatvas. É calculada assm: p n onde n é a quantdade total de elementos (tamanho da amostra) e é a quantdade de elementos com a característca de nteresse. Eemplo: Num grupo de 5 donas-de-casa, têm lava-louças em casa. A proporção de donas-de-casa que possu lava-louças em casa é: p,4 ou 4% 5

14 ROBABILIDADES. DEFINIÇÕES.. Epermento Aleatóro: epermento que apresenta resultados dferentes quando repetdo váras vezes... Espaço Amostral (): conjunto de todos os possíves resultados de um epermento aleatóro... Evento (A,B,...): qualquer subconjunto do espaço amostral, nclusve ele mesmo ou o conjunto vazo..4. Eventos Independentes: A e B são ndependentes se a ocorrênca de um deles não modfca a probabldade de ocorrênca do outro..5. Eventos Mutuamente Eclusvos: AB.6. Eventos Coletvamente Eaustvos: AB =.7. Eventos Complementares (A e A c ): AA c e AA c =. CÁLCULOS E RORIEDADES:.. (A) = n(a)/n(), onde n(*) é o número de elementos do conjunto *. conseqüêncas: () = n()/n() = () = n()/n() = (A).. (AB) = (A)+(B), quando A e B são mutuamente eclusvos... (AB) = (A)+(B)-(AB), quando A e B não são mutuamente eclusvos..4. (AB) = (A).(B), quando A e B são ndependentes..5. (AB) = (A/B).(B), quando A e B são ndependentes, onde (A/B) é a probabldade condconal de A em relação a B..6. (A) + (A c ) = 4

15 . EXEMLOS:. Consdere o lançamento de um dado e os eventos: A: sar face par. B: sar face menor que. C: sar face maor que. Calcule: a. (AB) = /6 + /6 = 4/6 = / b. (AC) = /6 + 4/6 /6 = 5/6 c. (BC) = /6 + 4/6 = 5/6 d. (AB) = e. (AC) = /6 =/ f. (BC) =. Consdere a tabela abao: Número Número Total Bolas vermelhas 5 5 Bolas azus Total 5 45 Uma bola será escolhda ao acaso. Calcule a probabldade de que a bola escolhda: a. seja vermelha e tenha o número. (V ) = /45 = /9 b. seja azul e tenha o número. (A ) = /45 = 4/9 c. seja vermelha e tenha o número. (V ) = 5/45 = /9 d. seja azul e tenha o número. (A ) = /45 = /9 e. seja vermelha. (V) = 5/45 = / f. seja azul. (A) = /45 = / g. tenha o número. () = /45 = / 5

16 h. tenha o número. () = 5/45 = /. tenha o número, se for vermelha. (/V) = /5 = / j. tenha o número, se for azul. (/A) = / = / k. tenha o número, se for vermelha. (/V) = 5/5 = / l. tenha o número, se for azul. (/A) = / = / m. seja vermelha, se tver o número. (V/) = / = / n. seja azul, se tver o número. (A/) = / = / o. seja vermelha, se tver o número. (V/) = 5/5 = / p. seja azul, se tver o número. (A/) = /5 = / 4. REGRA DE BAYES: A A A A n... B A 4 A ( A / B ) n ( A ). ( B / A ) j ( A j ). ( B / A j ) 6

17 EXEMLO: Uma fábrca tem máqunas, A, B e C, responsáves por 5%, % e 45% da produção, respectvamente. A máquna A produz 4% de peças defetuosas, a B, % e a C, %. Etrau-se uma peça da produção conjunta das máqunas e verfcou-se que ela é defetuosa. Qual é a probabldade dela Ter sdo produzda pela máquna A? ( A / D ) ( A ). ( D / A ) ( A ). ( B ). ( D ( D / / A ) B ) ( C ). ( D / C ), 5., 4, 5,., 4.,, 45.,, 45 Outra estratéga de resolução:,4 D,5 A,96, B, D,45,99, D C,98 ( A / D ) ( A ( D D ) ), 5., 4, 5,.., 4,, 45.,, 45 7

18 VARIÁVEIS ALEATÓRIAS. Varável aleatóra Uma varável aleatóra assoca um número a cada resultado de um epermento aleatóro. Se forem assocados apenas números nteros aos resultados, dzemos que a varável aleatóra é dscreta. or eemplo, suponhamos que estam, numa urna, oto bolas, das quas três são brancas (B) e as outras vermelhas (V). Etrando-se duas bolas dessa urna, os resultados possíves são: BB, BV, VB e VV. odemos defnr a segunte varável aleatóra dscreta: número de bolas brancas na etração de duas bolas dessa urna. Denotamos essa varável por X e seus possíves valores, a saber:, e, por.. Dstrbução de robabldades Uma dstrbução de probabldades assoca, a cada ponto do espaço amostral de um epermento aleatóro, sua respectva probabldade. Analsemos o eemplo dado no tem anteror. O espaço amostral do epermento é = {,,} e suas respectvas probabldades são 5/64, 5/ e 9/64, supondo que as etrações das bolas sejam fetas com reposção. odemos representar essa dstrbução de probabldades da segunte manera: (X=) 5/64 5/ 9/64 Total 8

19 odemos construr, também, a dstrbução de probabldades da varável aleatóra Y: número de bolas brancas em duas etrações sem reposção. A dstrbução de probabldades da varável Y é: y (Y=y) 5/4 5/8 /8 Total. Esperança Matemátca, Varânca e Desvo adrão E(X) = =.(X=) No eemplo dado acma, E(X) =.5/4 +.5/8 +./8 = /8 =,75 VAR(X) = = E(X ) [E(X)], onde E(X ) =.(X=) No eemplo: E(X )=.5/4 +.5/8 +./8 = 7/8 =,964 VAR(X) = (7/8) (/8) =,48 D( X ) No eemplo : D( X ),48,69 4. ropredades E(c) = c e VAR(c) =, c é uma constante. E(cX) = c.e(x) e VAR(cX) = c.var(x), c é uma constante. E(X±Y) = E(X) ± E(Y). VAR(X ±Y) = VAR(X) + VAR(Y), se X e Y forem ndependentes. 9

20 DISTRIBUIÇÃO BINOMIAL É uma dstrbução de probabldades utlzada para varáves aleatóras dscretas tas que: Um epermento aleatóro é repetdo n vezes de manera ndependente; Estem duas possbldades de resultado, mutuamente eclusvas (sucesso e fracasso); A probabldade de sucesso p é constante. A probabldade de ocorrer sucessos em n repetções é dada por: ( X ) C onde C n, n, p. n!!( n )! p n, Méda: = n.p Varânca: = n.p.(-p) Eemplo: Uma moeda é vcada, de modo que a probabldade de sar coroa é,5. Em oto lançamentos dessa moeda, calcule: a) a probabldade de saírem coroas. b) a probabldade de sar pelo menos coroa. c) A probabldade de saírem mas de 6 coroas. d) a méda, a varânca e o desvo padrão da dstrbução. Solução: a) ( X b) ( X c) ( X 8! ).(,5).(,5)!(8 )! ) ( X 6) ( X c) 8.,5,8; 8! ).(,5).(,5)!(8 )! 7) ( X 7) ( X 8! 7 8! 8.(,5).(,5).(,5).(,5) 7!(8 7)! 8!(8 8)!,,,5 5,786 8) 8.,5.,65,8;,8,49 8,968

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

PROBABILIDADE - CONCEITOS BÁSICOS

PROBABILIDADE - CONCEITOS BÁSICOS ROBBILIDD - CONCITOS BÁSICOS xpermento leatóro é um expermento no qual: todos os possíves resultados são conhecdos; resulta num valor desconhecdo, dentre todos os resultados possíves; pode ser repetdo

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Análise de Variância. Comparação de duas ou mais médias

Análise de Variância. Comparação de duas ou mais médias Análse de Varânca Comparação de duas ou mas médas Análse de varânca com um fator Exemplo Um expermento fo realzado para se estudar dabetes gestaconal. Desejava-se avalar o comportamento da hemoglobna (HbA)

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6:

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6: Lsta de Exercícos - Probabldade INE 700 GABARITO LISTA DE EXERÍIOS PROBABILIDADE ) Vamos medr o tempo de duração da lâmpada. Ao lgarmos a lâmpada ela pode não funconar, ou durar um tempo ndetermnado. a)

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho Professor Luz Antono de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos AULA e Raconas 9 e APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA PROGRESSÃO ARITMÉTICA

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011

BC0406 Introdução à Probabilidade e à Estatística Lista de Exercícios Suplementares 3 3 quadrimestre 2011 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares novembro 0 BC0406 Introdução à Probabldade e à Estatístca Lsta de Eercícos Suplementares quadrmestre 0 Além destes eercícos,

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIAS

DISTRIBUIÇÃO DE FREQUÊNCIAS Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa DISTRIBUIÇÃO DE FREQUÊNCIAS 5 5. DISTRIBUIÇÃO

Leia mais

Licenciatura Análise de Dados e Probabilidade 1 e 2. Clara Costa Duarte. 1º Semestre 2006/2007

Licenciatura Análise de Dados e Probabilidade 1 e 2. Clara Costa Duarte. 1º Semestre 2006/2007 Lcencatura 34 -nálse de Dados e robabldade e º Semestre 6/7 Clara Costa Duarte 34- nálse de Dados e robabldade. Introdução Estatístca:é um conjunto de nstrumentos que servem para: Recolher Descrever e

Leia mais

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES

MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata dstrbuções, normal, bnomal Eercícos de eames e provas ofcas. Um saco contém nove bolas numeradas de a 9, ndstnguíves ao tato. onsdere a segunte eperênca aleatóra: retram-se smultaneamente e ao acaso,

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO

UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO UNIDADE IV MEDIDAS DE DISPERSÃO OU VARIAÇÃO Conteúdo Programátco Cálculo da varânca Cálculo e nterpretação do Devo-padrão VARIÂNCIA E DESVIO-PADRÃO A medda de varação ou dperão, avalam a varabldade da

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

INTRODUÇÃO À ANÁLISE ESTATÍSTICA DE MEDIDAS14

INTRODUÇÃO À ANÁLISE ESTATÍSTICA DE MEDIDAS14 ITRODUÇÃO À AÁLISE ESTATÍSTICA DE MEDIDAS4 Sérgo Rcardo Munz Fundamentos da Matemátca II 3. Introdução: o que é estatístca e para que serve? 3. A estatístca no da-a-da 3.3 Eatdão, precsão, erros e ncertezas

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS EEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS Exemplo: Peso de 25 bolos ndustras Forma bruta: Dsposção ordenada 266 267 266 26 22 255 266 26 272 22 260 272 25 262 23 25 266 270 274 22 2 270 20

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4?

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4? Segmento: ENSINO MÉDIO Dscplna: MATEMÁTICA Tpo de Atvdade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/2016 Turma: 3 A PROBABILIDADE 1) No lançamento de um dado, determnar a probabldade de se obter: a) o número

Leia mais

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres

Análise de Variância. Introdução. Rejane Sobrino Pinheiro Tania Guillén de Torres Análse de Varânca Rejane Sobrno Pnhero Tana Gullén de Torres Análse de Varânca Introdução Modelos de análse de varânca consttuem uma classe de modelos que relaconam uma varável resposta contínua com varáves

Leia mais

Apostila de Estatística

Apostila de Estatística Apostla de Estatístca Prof. Ms. Osoro Morera Couto Junor Capítulo 1 - Introdução Estatístca 1.1 Hstórco A estatístca é um ramo da matemátca aplcada. A partr do século XVI começaram a surgr as prmeras análses

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL MATERIAL DIDATICO DO CURSO ESTATISTICA EXPERIMENTAL: Com aplcaçoes em R Medcna

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6 EXEMPLOS ADICIONAIS DA ENGENHARIA ELÉTRICA 1)Suponha que a probabldade de que um engenhero elétrco utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

ESTATÍSTICA PARA TCU PROFESSOR: GUILHERME NEVES

ESTATÍSTICA PARA TCU PROFESSOR: GUILHERME NEVES Estatístca Descrtva A Estatístca, ramo da Matemátca Aplcada, teve orgem na hstóra do homem. Desde a Antgudade, város povos regstravam o número de habtantes, de nascmentos, de óbtos, dstrbuíam equtatvamente

Leia mais

Capítulo XI. Teste do Qui-quadrado. (χ 2 )

Capítulo XI. Teste do Qui-quadrado. (χ 2 ) TLF 00/ Cap. XI Teste do Capítulo XI Teste do Qu-quadrado ( ).. Aplcação do teste do a uma dstrbução de frequêncas 08.. Escolha de ntervalos para o teste do.3. Graus de lberdade e reduzdo.4. Tabela de

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais